VÉGESELEM MÓDSZER mérnök hallgatók számára

Az 5. gyakorlat anyaga

Feladat: sík alakváltozási feladat

Folyó keresztmetszete

Az 1. ábra egy folyó hosszú egyenes szakaszának valamely keresztmetszetét vázolja. Feltételezésünk szerint ezen a hosszú egyenes folyószakaszon a folyómeder és gátrendszer sík alakváltozási állapotában van. A feladat szimmetrikus.

Geometria: az adatokat a 2. ábra lekerekítés nélkül, és 3. ábra lekerekítéssel szemlélteti.

2. ábra

Terhelés: a víz nyomása, (a víz fajsúlya $\gamma = 0.00001 \frac{N}{mm^3}$).

Elmozdulási peremfeltétel: a sraffozott peremen az elmozdulás zérus.

Anyagjellemzők: a talaj és gát anyagjellemzői: E = 20.68MPa, v = 0.29, G = 8.0155MPa.

Végeselem háló: hat csomópontú, háromszög alakú, sík alakváltozású végeselem.

Meghatározandó: - a perem jellemző pontjainak elmozdulása,

- a feszültségi állapot maximális normálfeszültségei és csúsztató feszültségei és azok helyei.

Szemléltetés: - elmozdulási állapot,

- feszültségi állapot,

- jellemző pontokban az elmozdulás és a feszültség számszerű értékei.

Megoldás:

Model file name: gat04

Application: Simulation

Task: Master modeler

OK

Menü: **Option** \rightarrow **Units** \rightarrow mm(newton)

Option \rightarrow Preferences \rightarrow Selector \rightarrow Auto shift (*kijelölni*)

A geometria megrajzolása

Master Modeler

B(2,3) Workplane appearence

-25000	-25000
25000	25000

A munkaterület igazítása képernyő területéhez.

C(2,1) Zoom all

A munkaterület igazítása a képernyő területéhez.

A(2,1) Polylines

A gát keresztmetszetének megrajzolása.

A(4,1) Dimension

A méretvonalak megrajzolása.

B(2,1) Modify entity

A méretek pontosítása.

B(1,2) Move

A méretvonalak esetleges mozgatása

A(4,2) Fillets

Pick section, curve or corner to fillet

Pick another curve to fillet

Kattintson a két egyenesre!

Radius 5000 A lekerekítés megadása.

Constrain v

Trim/Extend **v**

OK Kilépés

A(5,1) Surface by Boundary

Pick boundary definition

Kattintson a perem görbére a bal egérgombbal!

Pick curve to add or remove

Körbejárva a peremet, mindig a felkínált szaggatott vonalra kattintson a bal egérgombbal!)

.

Pick curve to add or remove (Done)

Körbejárás után, végül nyomja meg az egéren a középső gombot!

Surface Boundaries Options

A feljövő menüben a felület meg is tekinthető, majd kilépünk.

OK Kilépés

(Done) Középső egérgomb.

B(2,2) Info

Pick entity to list info on

Kattintson a gát legmagasabb pontjára!

Done

Olvassa le az" I-deas List" ablakban az y koordinátát! Ez (y= 6974.08) az adat a hidrosztatikus nyomás előírásához lesz szükség.

A végeselem háló elkészítése

Meshing	
B(4,2)	Create FE Model
	OK
	OK
A(1,1)	Define Shell Mesh
	Pick Surfaces
	Kattintson a felületre a bal egérgombbal!
	Pick Surfaces (Done)
	Nyomja meg a középső gombot!
	A feljövő Define Mesh menürendszerben beállítandóak az alábbiak:
	• Free
	Element Length: 2000
	Element Family: Plane Strain
	Element Type: Δ (6 csomópontú)
	Megtekintés!

Keep mesh

A háló elkészítése és elfogadása .

A(5,1) **Materials** Kattintás a (GENERIC ISOTROPIC STEEL)-re Changes the name of a material A" címke" ikonra kattintva átírjuk az anyag nevét: TALAJ Modify Kattintás a módosító gombra, ahol az anyag tulajdonságokat módosítjuk: MODOLUS OF ELASTICITY 20.68 0.29 POISSONS RATIO SHEAR MODULUS 8.0155 OK Kilépés. OK Kilépés.

Peremfeltételek (megfogások, terhelések) megadása

Boundary Conditions

A VEM háló láthatóságát megszüntetjük.

B(1,3) Display Filter

A menüpontra kattintunk.

FE Models

A menüpontra kattintunk.

Element

Node

A csomópont és elem megjelölését megszüntetjük.

OK

Kilépés.

OK

Kilépés.

A végeselem háló most nem látható.

A folyó közepén a függőleges vonal mentén szimmetriát definiáló peremfeltételt írunk elő.

A(4,2) Displacement Restraint

Függőleges vonal megjelölése Done

Set All Free		
A menüpontra l	kattintunk.	
X Translation		constant

OK

Kilépés.

A modell alsó vízszintes vonalának és jobboldali függőleges peremének teljes megfogása:

A(4,2) Displacement Restraint

Az alsó vízszintes és a jobboldali függőleges perem görbékre kattintás. Done

Set All Constant

A menüpontra kattintunk.

OK

Kilépés.

A víznyomásából adódó terhelés előírása a folyómeder és a gát megfelelő peremvonalain. Választunk egy peremszakaszt és először egy "Edge function"-t rendelünk hozzá, majd második lépésben egységnyi intenzitású "Inplane" irányú erőt írunk elő.

A(3,3) Data Edge by Function

Expression $(6974.08 - Y)^* 0.00001$

A gát legmagasabb pontja: 6974.08mm; a víz fajsúlya: $0.00001 \frac{\text{N}}{\text{mm}^3}$.

OK

Force

A(2,1)

- Intensity
- Az intenzitás opcióra kattintunk.

Inplane force $\boxed{IN/mm}$ \boxed{Edge} $\boxed{DATA EDGE \#}$

A megfelelő paramétereket beállítjuk.

OK

Ezután a két lépést peremvonalanként ismételjük.

A végeselem számítás elvégzése

Model Solution

A megoldás paraméter halmaz összeállítása.

A(1,2) Solution Set

 $\boxed{Create} \rightarrow \boxed{OK} \rightarrow \boxed{Dismiss}$

A(2,1) Solve

"No warrnings or errors encountered in last run" – üzenetnek kell megjelenni. Ha nem így történt, akkor valamit hibásan adtunk meg.

Az eredmények utófeldolgozása.

Post Processing

Elmozdulások szemléltetése

(-)-)	
	Displacement $\triangleright \leftarrow$ rákattintva $\rightarrow X$ OK
	Az elmozdulás X irányú koordinátájának kiválasztása.
A(1,2)	Display Template
	• Contur
	v Deformed \leftarrow rákattintva
	• Scale Factor 1
	OK
	Kilépés.
	OK
	Kilépés.
A(2,2)	Display Done
	Megjelenítés.
Numerikus ért	ékek a nevezetes pontokban

A(2,3) Probe

A gát legfelsőbb pontjára kattintva megkapjuk az X irányú elmozdulás a gát legfelsőbb pontján. A lépés sorozatot megismételjük a Y irányú elmozdulások meghatározására is.

Feszültségek szemléltetése

A(1,1) Results

Stresses $\triangleright \leftarrow \text{rákattintva} \rightarrow Y$ OK

A normálfeszültség Y irányú koordinátájának kiválasztása.

A(2,2) Display Done

Megjelenítés.

Numerikus értékek a nevezetes pontokban

A(2,3) Probe

A folyómeder közepére kattintva normálfeszültség Y irányú koordinátája határozható meg. A lépés sorozatot megismételjük a X,Z és XY irányú feszültségek kívánt pontokba történő meghatározására is