SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR

ALKALMAZOTT MECHANIKA TANSZÉK

VÉGESELEM MÓDSZER

egyetemi alapképzésben résztvevő hallgatók számára

6. gyakorlat anyaga

Feladat: Tengelyszimmetrikus feladat

Adott:

méretek,

anyag: $E = 2.1 \cdot 10^5 \frac{\text{N}}{\text{mm}^2}, \nu = 0.3,$ terhelés: $p = \frac{F}{A} = 5 \frac{\text{N}}{\text{mm}^2}.$

Végeselem modell: tengelyszimmetrikus végeselem

Végeselem felosztás: Átlagos elemméret 2mm, a feszültséggyűjtő helyek közelében 0,2mm.

Meghatározandó: – A próbatest elmozdulásmezeje – A próbatest alakváltozása – A próbatestben ébredő feszültségek

Szemléltetés: – A szerkezet deformáció utáni alakjának kirajzoltatása,

Megoldás: Model file name: probatest

Application: Simulation

Task: Master modeler

ΟK

Menü:

Option \rightarrow Units \rightarrow mm(newton) Option \rightarrow Prefrences \rightarrow Selector \rightarrow Auto shift *(kijelölni)*

A geometria megrajzolása

MASTER MODELER

A munkaterület méretének megadása, koordináta rendszer megjelenítése.

B(2,3)	Workplane appearence -50 -50 50 50
	■ Display origin ← bejelölni OK A munkaterület igazítása a képernyő méretéhez.
C(2,1)	Zoom all A képernyő frissítése.
C(1,1)	Redisplay Koordináta rendszer létrehozása
A(1,2)	Coordinate system Origóra kattintani Done, Done
	Az xz síkban fogunk dolgozni.
C(3,1)	Bottom view Az F3 gomb és az egér segítségével forgassuk úgy a koordináta tengelyeket, hogy a z tengely balra mutasson, az x tengely pedig fölfelé.
	Munkafelület áthelyezése az xz síkba.
A(1,1)	Sketch in place xz síkra kattintani (szaggatott vonal)
	A hengerszimmetria miatt a próbatest meridiánmetszetének felét kellene megrajzolni, viszont további szimmetria tulajdonságok miatt elég ennek a felét megrajzolni.
A(2,1)	Rectangle by 2 corners Jobb egérgomb: FOCUS origóra húzni az egeret és kattintani Done
	Úgy kell megrajzolni a metszetet, hogy a Z tengely legyen a szimmetria tengely, a metszet pedig a pozitív X félsíkon kell hogy elhelyezkedjen.

A két szemközti sarokpontot (a számozás sorendjében) egérkattintással kijelöljük.

Megadjuk a próbatest méreteit

B(2,1) Modify entity

Méretszámra kattintani, a méreteket módosítani Körén majaolósa

Körív rajzolása

A(2,2) Center start end

Az ábrán látható sorrendben kijelöljük a körív középpontját és két pontját. A 2. kattintás az oldal közepére essen.

A meridiánmetszet kontúrjának megfelelően fel kell osztani két részre azokat a vonalakat, amelyekhez a körívek csatlakoznak.

A(4,2) Divide at

A megrajzolt vonalak segítségével létrehozzuk a meridiánmetszetet alkotó síkidomot.

A(5,1)

Surface by boundary

Jelöljük ki a szaggatott vonalakkal jelzett vonalat Done YES

A végeselem felosztás elkészítése

MESHING

 $\begin{array}{cc} \mathbf{A(1,1)} & \quad \mathbf{Define \ shell \ mesh} \\ \hline & \quad \mathbf{OK} & \rightarrow & \quad \mathbf{OK} \end{array}$

Jelöljük ki a felületet

Done ♦ Free Element length: (2) Element family: Axisymmetric solid

 $\leftarrow r \acute{a} katt intan i$

Tools: Local length $\leftarrow rákattintani$ A szaggatott vonallal jelölt éleket kijelölni.

Ezeken a helyeken kisebb méretű elemeket akarunk létrehozni, mint a próbatest többi részén.

Done Size of element on edge $\leftarrow rákattintani$ (0.2) ENTER

(0.2) ENTER

Done KEEP MESH

Peremfeltételek (megfogások, terhelések) megadása

Boundary conditions

Megfogások: a terhelések szimmetriája miatt a jobb oldali él nem mozdulhat el Z irányban

A(4,2) Displacement restraint

Terhelések megadása

A(2,1) Force

Done ♦ Axisymmetric Intensity (Force/Area) In plane force: (-5) OK

A végeselem számítás elvégzése

MODEL SOLUTION

A(1,2) Solution set

Create... OK **DISMISS**

A számítás elvégzése

A(2,1) Solve

"No warnings or errors encountered in last run" — üzenetnek kell megjelenni. Ha nem így történik, akkor valamit hibásan adtunk meg.

Az eredmények megjelenítése

POST PROCESSING

Az elmozdulásmező szemléltetése

A(1,1) Results

...Displacement $1... \leftarrow rákattintani$ Display results-nál a \blacktriangleright -ra kattintani

A megjelenítés beállításai

A(1,2) Display template

♦ Arrow ← bekapcsolni
□ Deformed model ← kikapcsolni
Kirajzolás

A(2,1) Display

Az feszültségek szemléltetése

A(1,1) Results

... Stress_3 rákattintani... Display results- $nál \ a \frown$ - $ra \ kattintani$ OK

A megjelenítés beállításai

A(1,2) Display template

♦ Contour $\leftarrow bekapcsolni$ Stepped shaded ▼

 $Kirajzol \acute{as}$

A(2,1) Display

Egy él mentén a feszültségek értékeinek szemléltetése grafikonnal

A(4,2) Setup XY graph

Select results to plot válasszuk ki hogy mit szeretnénk szemléltetni ...Stress_3... ← kijelölni Display results-nál a → ra kattintani (Component X ▼ majd az "Y", "Z" és "XZ shear" szemléltetése külön-külön, az A(4,2) ismételt meghívásával)

A(3,1) Animate

jobb egérgomb END