SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK

VÉGESELEM MÓDSZER mérnök hallgatók számára

A 8. gyakorlat anyaga

Feladat: Harang sajátrezgéseinek meghatározása

1. ábra Harang

Az 1. ábra egy harang egyszerűsített geometriáját mutatja. A test forgásszimmetrikus ezért csak a meridián metszet geometriáját a szerkesztéssel összhangban három lépésnek megfelelően adjuk meg.

2. ábra

A szerkesztés lépései: 1. érintő vonalak, 2. lekerekítések és a kilógó egyenes szakaszok törlése, 3. három görbe egyesítése és eltolása valamint a forgástengely megadása

Geometria: A harang meridián metszetét a 2. ábrán definiáltuk

Terhelés: Sajátfrekvencia számításnál nincs terhelés

Elmozdulási peremfeltétel: A harang a belső furat mentén meg van fogva.

Anyagjellemzők: az acél anyagjellemzői: E = 20068MPa, v = 0.29, G = 8015.5MPa.

Végeselem háló: Tíz csomópontú tetraéder elem.

Meghatározandó: - 15 sajátfrekvencia,

- az elmozdulási állapotok,
- a feszültségi állapotok.

Szemléltetés: - elmozdulási állapot,

- feszültségi állapot,
- az animációt csak vonalas vagy vektoros szemléltetésnél alkalmazunk.

Megoldás:

Model file name: harang

Application: Simulation

Task: Master modeler

OK

Kilépés.

Menü: **Option** \rightarrow **Units** \rightarrow mm(newton)

Option \rightarrow Preferences \rightarrow Selector \rightarrow Auto shift (*kijelölni*)

A geometria megrajzolása

Master Modeler

B(2,3) Workplane appearence

-1000	-1000
1000	1000

A munkaterület igazítása képernyő területéhez.

C(2,1) Zoom all

A(2,1) Polylines

A 2. ábra első lépéséhez tartozó belső perem geometriájának megrajzolása.

A(4,1) Dimension

A méretvonalak megrajzolása.

B(2,1) Modify entity

A méretek pontosítása.

A lekerekítések megadása

A(4,2)	Fillet	
	Radius 500	
	Constrain	v
	Trim/Extend	v
A(4,2)	Fillet	
	Radius 250	
	Radius 250 Constrain	V

A lekerekítéseken túl lógó vonalak törlése.

B(4,1) Delete

Pick entity to delete Pick entity to delete (Done) Kattintson a kilógó vonal darabkákra és a középső egérgombbal fejezze be a törlést!

A megmaradt három vonal darab egyesítése.

A(4,2) Merge Curves

Kattintson a vonalakra egyesével, majd a középső egérgombbal hajtsa végre az egyesítést!

A(3,3) Offset

Pick section or curve to offset

Kattintson az egyesített vonalra és a feljövő ablakban állítsa be az eltolás távolságát!

Start Distance 75

Az ikonra kattintva megtekintheti az eltolás eredményét Ha nem jó irányba tolta el, akkor a ferde nyílra \checkmark kattintva ellenkező irányba hajtja végre az eltolást.

OK

Kilépés.

A 2. ábra harmadik lépésének megrajzolása.

A(2,1) Polylines

B(2,1)	Modify entity		
	A méretvonalak megrajzolása.		
A(4,1)	Dimension		
	forgástengelyt 100 mm távolságra.		
	Összekötjük a görbe vonalak végeit és megrajzoljuk a függőleges		

A meridián metszet forgatását négy lépésben hajtjuk végre egyenként 90 fokos forgatással. Ugyanis tapasztalat szerint nem kapunk szabályos végeselem felosztást a hálógenerálás során, ha egy lépésben 360 fokos forgatást hajtunk végre.

A(5,1) Revolve

Pick curve or section

Kattintson az egyik vonal szakaszra a bal egérgombbal!

Pick curve to add or remove (Done)

Ha minden vonal meg van jelölve, nyomja meg az egéren a középső gombot!

Pick axis to revolve about

Pick axis to revolve about (Accept)**

A feljövő menüben állítsa be a forgatás szögét

Angle 90

Az ikonra kattintva megtekintheti a forgatás eredményét (F3 gombbal az ábra mozgatható)

OK

Kilépés.

Kilépés után létre jön az elforgatott geometria. Ezt az utasítást még háromszor megismételve elő áll a harang geometriája.

A végeselem háló elkészítése

Meshing	
B(4,2)	Create FE Model
	OK
	Kilépés.
A(5,1)	Materials

Kattintás a (GENERIC_ISOTROPIC_STEEL)-re

Kattintás a módosító gombra, ahol az anyag tulajdonságokat módosíthatjuk:

MODOLUS OF ELASTICITY	10340
POISSONS RATIO	0.29
DENSITY	8.00E-9
SHEAR MODULUS	40072.5
OK	
Kilépés.	
OK	
Kilépés.	

Háló generálás.

A(1,1) Define Solid Mesh

Pick Volumes

Pick Volumes (Done)

Az egér segítségével fogja közre az összes térfogatot (a bal egérgomb

lenyomva tartásával)!

Pick Volumes (Done)

Nyomja meg a középső gombot!

A feljövő **Define Mesh** menürendszerben beállítandóak az alábbiak:

• Free

Element Length: 75

Element Family: Solid

Kattintson a megtekintés ikonra!

Keep mesh

A háló elkészítése és elfogadás.

Peremfeltételek (megfogások, terhelések) megadása

Boundary Conditions

A VEM háló láthatóságát megszüntetjük.

B(1,3) Display Filter

A menüpontra kattintunk.

FE Models

A menüpontra kattintunk.

Node

Element

A csomópont és elem megjelölését megszüntetjük.

OK

Kilépés.

OK

Kilépés.

A végeselem háló most nem látható.

A sajátfrekvencia számításhoz beállítjuk a peremfeltétel típusát.

A(1,1) Normal Mode Dynamics

C(3,1) Top View

Felül nézetet állítunk be..

A furat felületén megfogást írunk elő.

A(4,2) Displacement Restraint

Pick entities

Pick entities (Done)

Az egérrel egy ablakba befogjuk a furatot, és a középső egérgombot megnyomjuk (Done).

Surface *A felületet választjuk és a feljövő menüben beállítjuk a megfogást.*

Set All Constant

OK

Kilépés.

A peremfeltétel halmazt beállítjuk

A(6,1) Boundary Sets

Az ikonra kattintunk és a feljövő menüben a paramétereket beállítjuk

Normal Mode Dynamics Lanczos

OK

Kilépés.

OK

Kilépés.

A végeselem számítás elvégzése

Model Solution

A megoldás paraméter halmaz összeállítása.

"No warrnings or errors encountered in last run" – üzenetnek kell megjelenni.

Ha nem így történt, akkor valamit hibásan adtunk meg.

Az eredmények utófeldolgozása.

Post Processing

Elmozdulások szemléltetése

A(1,1) Results

Az elmozdulása.

A(1,2) Display Template

	• Contur
	v Deformed ← rákattintva
	Maximum Deformation(% of Screen) 10
	OK
	Kilépés.
	OK
	Kilépés.
A(2,2)	Display Done
	Megjelenítés. A lengéskép ábrája mellet a frekvenciát is leolvashatjuk.

Az eredmények megtekinthetők egy másik módon is.

A(6,2)	Display	Visualiser
	A feljövő ik	oncsoportot D "mátrixnak" nevezve
D(1,2)	Select results	
	Itt a frekver	ıcia közvetlenül a Displacement mellé van írva, a megfelelőt
	kiválasztva	a lengéskép megtekinthető.