Dr. Égert János – Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN Dr. Égert János – Dr. Nagy Zoltán

ALKALMAZOTT RUGALMASSÁGTAN

UNIVERSITAS-GYŐR Nonprofit Kft. + Győr, 2009

Írta: Dr. Égert János – Dr. Nagy Zoltán

Lektorálta: Dr. Szabó Tamás

ISBN:

© UNIVERSITAS-GYŐR Nonprofit Kft., 2009

Minden jog fenntartva, beleértve a sokszorosítás, a mű bővített, illetve rövidített változata kiadásának jogát is. A kiadó írásbeli hozzájárulása nélkül sem a teljes mű, sem annak része semmiféle formában nem sokszorosítható.

Kiadja az UNIVERSITAS-GYŐR Nonprofit Kft. Felelős kiadó: a Kft mindenkori ügyvezetője; Műszaki szerkesztő: Nagy Zoltán Készült a Palatia Nyomda és Kiadó Kft. nyomdájában. Felelős vezető Radek József

Tartalomjegyzék

0.	BEVEZETÉS
1.	MATEMATIKAI ÖSSZEFOGLALÓ
	1.1 Vektorok és vektor műveletek
	1.2. Gvakorló feladatok vektor műveletekre
	1.3. A mátrix algebra alapjai
	1.4. Vektorok skaláris és diadikus szorzata
	1.5 Mátrix sajátértékei és saját vektorai
	1.6. Tenzorok előállítása
	1.7. Gvakorló feladatok mátrixokra, tenzorokra
	1 8 Differenciál egyenletek
2.	RUGALMASSÁGTANI ALAPFOGALMAK
3.	SZILÁRDSÁGTANI ÁLLAPOTOK
	3 1 Elmozdulási állanot
	3.2 Failagos relatív elmozdulási állanot
	3.3 A failagos relatív elmozdulási állanot felhontása
	3.4 Alakváltozási állanot
	3.5 Feszültségi állanot helső erőrendszer
	3.5.1 Eszültségi unupot, obiso erőrendszer
	3.5.2 Deviátor és gömbi tenzorok
	3.5.2. Devlator es gonior tenzorok
	3.6 Energia állanot
	3.6.1 Alakváltozási energia
	3.6.2 Mechanikai energia tétel
	3.7. Gyakorló feladatok szilárdsáotani állapotokra
4	MÉRETEZÉS ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
••	4 1 Méretezés ellenőrzés feszültségesúcsra
	4.2 Méretezés, ellenőrzés szerkezeti jellemzők alapián
5	RUGALMASSÁGTANI EGVENLETEK
	5 1 Fovensúlvi egyenletek – feszültségi állanot
	5.2. Kinematikai /geometriai/ kompatibilitási egyenletek
	5 2 1 Az elmozdulásmező derivált tenzora
	5.2.2. Az alakváltozási tenzor
	5.2.3 A forgató tenzor
	5.3 Anvagegyenletek lineárisan rugalmas anvagra
	5 3 1 Általános Hooke-törvény izotrón anyagra
	5 3 2 Általános Hooke-törvény ortotrón anyagra
	5.4 Peremfeltételek
	5.5. A rugalmasságtan egyenletrendszere
	5.6. A kompatihilitási egyenlet más alakiai
	5.6.1 Saint-Venant – féle kompatibilitási egyenlet
	5.6.2 Beltrami-Michell – féle kompatibilitási egyenlet
6	RÍDFELADATOK
U .	

	6.1. Síkgörbe rudak Grashof-féle elmélete
	6.1.1. Az alakváltozási jellemzők előállítása
	6.1.2. A feszültség és az igénybevétel kapcsolata
	6.1.3. Redukált másodrendű nyomaték.
	6.1.4. Az elmélet alkalmazhatósága
	6.1.5. A középvonal alakváltozási jellemzői
	6.1.6. Az eredmények általánosítása
	6.2. Prizmatikus rudak szabad csavarása
	6.2.1. Egzakt megoldás
	6.2.2. Közelítő megoldás
7.	RUGALMASSÁGTAN 2D FELADATAI
	7.1. Sík alakváltozás (SA)
	7.2. Általánosított sík feszültségi feladat (ÁSF)
	7.3. Forgásszimmetrikus/tengelyszimmetrikus feladat (FSZ)
	7.4. Sík feladatok (SA, ÁSF) megoldása feszültségfüggvény bevezetésével
	7.5. Forgásszimmetrikus síkbeli feladatok
	7.6. Vastagfalú csövek
	7.6.1. Egyszerű vastagfalú cső
	7.6.2. Vastag kettősfalú csövek
	7.6.2.1. A túlfedés következtében kialakuló állapotok
	7.6.2.2. Kettősfalú vastag cső külső terheléssel
	7.6.2.3. A túlfedés meghatározása
	7.6.2.4. Optimális csőméretek
	7.7. Gyorsan forgó tengelyek, csőtengelyek
	7.7.1. Gyorsan förgó csőtengely diagramja
	7.7.1. Gyorsan forgó tengely diagramja
	7.8. Kör és körgyűrű alakú tárcsák
	7.8.1. Furatos tárcsa.
	7.8.2. Tulfedessel illesztett kettős furatós tárcsa
	7.9. Gyorsan forgo kor es korgyuru alaku tarcsak
	7.9.2. Gyorsan forgo furatos tarcsa
	7.9.2. Gyorsan forgo tomor tarcsa
0	/.9.3. Gyorsan forgo egyenszilardságu tomor tarcsa
ð.	VEKONY FORGASHEJAK MEMBRAN ELMELETE
	8.1. Alapiogalmak, egyenletek
0	6.2. Peluak a memoran anapot megnatarozasara
У.	0.1 Alenfogelmek
	9.1. Alapiogailliak 0.2. Kirahoff fála lamazalmálat
	9.2. Kitchon-tele lentezeinnelet.
	7.5. Tengeryszinninettikus terhetesu kor es korgyuru alaku terhezek

0. BEVEZETÉS

1. MATEMATIKAI ÖSSZEFOGLALÓ

1.1. Vektorok és vektorműveletek

<u>Skaláris mennyiség</u>: olyan geometriai, vagy fizikai mennyiség, amelyet nagyság, (előjel) és mértékegység jellemez.

<u>Vektor mennyiség</u>: irányított geometriai, vagy fizikai mennyiség, amelyet nagyság (előjel), irány és mértékegység jellemez.

a) Vektor megadása:

Egységvektorok: \vec{e}_x , \vec{e}_y .

Az egységvektorok hossza egységnyi: $|\vec{e}_x| = |\vec{e}_y| = 1$.

Egy tetszőleges vektor megadása egységvektorokkal: $\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y$.

Ha ismert az \vec{a} vektor hossza és az x tengellyel bezárt szöge, akkor az előző összefüggésből:

 $\vec{a} = \mid \vec{a} \mid \cos \alpha \, \vec{e}_x + \mid \vec{a} \mid \sin \alpha \, \vec{e}_y = \mid \vec{a} \mid (\cos \alpha \, \vec{e}_x + \sin \alpha \, \vec{e}_y) = \mid \vec{a} \mid \vec{e}_a$

Az \vec{a} vektor hosszát a Pithagorasz-tétel segítségével számíthatjuk ki: $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$.

Könnyen belátható az is, hogy \vec{e}_a vektor egységvektor : $|\vec{e}_a| = \sqrt{\cos^2 \alpha + \sin^2 \alpha} = 1$.

A vektorok közötti műveletek a vektorok támadásponthoz, vagy hatásvonalhoz kötöttségétől függetlenül érvényesek.

b) Vektorok összeadása:

Legyen adott két vektor: $\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y$, $\vec{b} = b_x \vec{e}_x + b_y \vec{e}_y$.

A két vektor összegének kiszámítása:

$$\vec{a} + b = (a_x \, \vec{e}_x + a_y \, \vec{e}_y) + (b_x \, \vec{e}_x + b_y \, \vec{e}_y) = \underbrace{(a_x + b_x)}_{C_x} \vec{e}_x + \underbrace{(a_y + b_y)}_{C_y} \vec{e}_y = \vec{c} \; .$$

A két vektor összegének megszerkesztése:

Háromszög szabály

Paralelogramma szabály

c) Vektorok kivonása:

Legyen adott két vektor: $\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y$, $\vec{b} = b_x \vec{e}_x + b_y \vec{e}_y$.

A két vektor különbségének kiszámítása:

$$\vec{a} - \vec{b} = (a_x \vec{e}_x + a_y \vec{e}_y) - (b_x \vec{e}_x + b_y \vec{e}_y) = \underbrace{(a_x - b_x)}_{d_x} \vec{e}_x + \underbrace{(a_y - b_y)}_{d_y} \vec{e}_y = \vec{d}.$$

Két vektor különbségének megszerkesztése:

d) Vektorok skaláris szorzása (az eredmény skaláris mennyiség):

A skaláris szorzás értelmezése: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \alpha$.

A skaláris szorzás kiszámítása: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$.

Az $\vec{a} \cdot \vec{b}$ jelölés kiejtése (kiolvasása): á skalárisan szorozva bével. Egységvektorok skaláris szorzata: $\vec{e}_x \cdot \vec{e}_x = 1$, $\vec{e}_y \cdot \vec{e}_y = 1$, $\vec{e}_z \cdot \vec{e}_z = 1$, $\vec{e}_x \cdot \vec{e}_y = 0$ $\vec{e}_x \cdot \vec{e}_z = 0$ $\vec{e}_y \cdot \vec{e}_z = 0$.

Az eredmény általánosítása: $\vec{a} \cdot \vec{a} = |\vec{a}|^2$ és $\vec{a} \cdot \vec{b} = 0 \implies \vec{a} \perp \vec{b}$.

Az $\vec{a} \perp \vec{b}$ jelölés kiejtése (kiolvasása): á merőleges bére.

e) Vektorok vektoriális szorzata (az eredmény vektor):

A vektoriális szorzás értelmezése:

Az eredményvektor nagysága: $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \alpha$.

a paralelogramma magassága

Az eredményvektor irányát ún. jobbkéz szabálylyal kapjuk meg: ha jobb kézzel az \vec{a} vektort a \vec{b} vektorba forgatjuk, akkor a jobb kéz hüvelykujja adja meg az eredményvektor irányát.

Az eredményvektor merőleges a szorzásban szereplő mindkét vektorra. A vektoriális szorzás kiszámítása:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} = \vec{e}_{x}(a_{y}b_{z} - b_{y}a_{z}) - \vec{e}_{y}(a_{x}b_{z} - b_{x}a_{z}) + \vec{e}_{z}(a_{x}b_{y} - b_{x}a_{y}).$$

Egységvektorok \vec{e} vektoriális szorzata:

 $\vec{e}_x \times \vec{e}_x = \vec{0}, \quad \vec{e}_y \times \vec{e}_y = \vec{0}, \quad \vec{e}_z \times \vec{e}_z = \vec{0},$

$$\vec{e}_{x} \times \vec{e}_{y} = \vec{e}_{z}, \quad \vec{e}_{y} \times \vec{e}_{z} = \vec{e}_{x}, \quad \vec{e}_{z} \times \vec{e}_{x} = \vec{e}_{y},$$
$$\vec{e}_{z} \times \vec{e}_{x} = \vec{e}_{x}, \quad \vec{e}_{x} \times \vec{e}_{z} = -\vec{e}_{y}, \quad \vec{e}_{z} \times \vec{e}_{y} = -\vec{e}_{x}$$

<u>Szabály:</u> - Ha két egységvektort az ábrán látható nyíllal megegyező sorrendben szorzunk össze vektoriálisan, akkor pozitív előjellel kapjuk a harmadik egységvektort.

- Ha két egységvektort az ábrán látható nyíllal ellentétes sorrendben szorzunk öszsze vektoriálisan, akkor negatív előjellel kapjuk a harmadik egységvektort.

Az eredmény általánosítása: $\vec{a} \times \vec{b} = \vec{0} \implies \vec{a} \parallel \vec{b}$.

f) Vektorok kétszeres vektoriális szorzata (az eredmény vektor):

 $(\vec{a} \times \vec{b}) \times \vec{c}$, vagy $\vec{a} \times (\vec{b} \times \vec{c})$.

Kiszámítás kétféle úton lehetséges:

- a két vektoriális szorzásnak a kijelölt sorrendben történő elvégzésével,

- a kifejtési szabállyal:

$$(\vec{a} \times \vec{b}) \times \vec{c} = b(\vec{a} \cdot \vec{c}) - \vec{a}(\vec{b} \cdot \vec{c}), \text{ ill. } \vec{a} \times (\vec{b} \times \vec{c}) = b(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

g) Vektorok vegyes szorzata (az eredmény skalár mennyiség):

Értelmezés: $(\vec{a}\,\vec{b}\,\vec{c}) = (\vec{a}\times b)\cdot\vec{c} = \vec{a}\cdot(\vec{b}\times\vec{c}).$

Kiszámítás:
$$(\vec{a}\,\vec{b}\,\vec{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{vmatrix}$$

Tulajdonság: $(\vec{a}\,\vec{b}\,\vec{c}) = (\vec{c}\,\vec{a}\,\vec{b}) = (\vec{b}\,\vec{c}\,\vec{a}) = -(\vec{c}\,\vec{b}\,\vec{a}) = -(\vec{a}\,\vec{c}\,\vec{b}) = -(\vec{b}\,\vec{a}\,\vec{c}).$

Következmény: Ha $|\vec{a}| \neq \vec{0}, |\vec{b}| \neq \vec{0}$ és $|\vec{c}| \neq \vec{0}$, továbbá $(\vec{a} \, \vec{b} \, \vec{c}) = 0 \implies A$ három vektor egy síkban van.

1.2. Gyakorló feladatok vektorműveletekre

1.2.1. feladat: Helyvektorok felírása, összegzése, abszolút értékének meghatározása

Kidolgozás:

a) A H pont \vec{r}_{H} helyvektorának meghatározása:

$$\begin{split} \vec{r}_{H} &= \vec{r}_{OF} + \vec{r}_{FH} .\\ \vec{r}_{OF} &= \vec{r}_{F} = (8e_{y} + 6\vec{e}_{z}) \text{ m},\\ \vec{e} &= \frac{\vec{r}_{BF}}{|\vec{r}_{BF}|} = \frac{1}{\sqrt{45}} (-3\vec{e}_{x} + 6\vec{e}_{z}) \text{ m}, \quad \vec{r}_{BF} = (-3\vec{e}_{x} + 6\vec{e}_{z}) \text{ m},\\ &|\vec{r}_{BF}| = \sqrt{x_{BF}^{2} + z_{BF}^{2}} = \sqrt{3^{2} + 6^{2}} = \sqrt{9 + 36} = \sqrt{45} \text{ m}\\ &|\vec{r}_{FH}| = 0.5\sqrt{45} \text{ m},\\ \vec{r}_{FH} &= |\vec{r}_{FH}| \vec{e} = \frac{\sqrt{45}}{2} \frac{1}{\sqrt{45}} (-3\vec{e}_{x} + 6\vec{e}_{z}) = (-1.5\vec{e}_{x} + 3\vec{e}_{z}) \text{ m},\\ \vec{r}_{H} &= (8\vec{e}_{y} + 6\vec{e}_{z}) + (-1.5\vec{e}_{x} + 3\vec{e}_{z}) = (-1.5\vec{e}_{x} + 8\vec{e}_{y} + 9\vec{e}_{z}) \text{ m}. \end{split}$$

b) A *H*-ból a *B* pontba mutató \vec{r}_{HB} helyvektor meghatározása.

$$\vec{r}_{HB} = -\frac{3}{2} |\vec{r}_{BF}| \vec{e} = -\frac{3}{2} \sqrt{45} \frac{1}{\sqrt{45}} (-3\vec{e}_x + 6\vec{e}_z) \text{ m}, \vec{r}_{HB} = (4, 5\vec{e}_x - 9\vec{e}_z) \text{ m}.$$

1.2.2. feladat: Vektorok összege, különbsége, egymással bezárt szöge

<u>Adott:</u> $\vec{F}_1 = (40\vec{e}_x + 50\vec{e}_y) \text{ N},$ $\vec{F}_2 = (-20\vec{e}_x + 4\vec{e}_y) \text{ N}.$

Feladat:

- a) A két erő $\vec{F}_0 = \vec{F}_1 + \vec{F}_2$ összegvektorának meghatározása.
- b) A két erő $\vec{F}_* = \vec{F}_1 \vec{F}_2$ különbségvektorának meghatározása.
- c) A két erővektor által bezárt α_{12} szög meghatározása.

Kidolgozás:

a) A két erő $\vec{F}_0 = \vec{F}_1 + \vec{F}_2$ összegvektorának meghatározása: $\vec{F}_0 = \vec{F}_1 + \vec{F}_2 = (40\vec{e}_x + 50\vec{e}_y) + (-20\vec{e}_x + 4\vec{e}_y) = (20\vec{e}_x + 54\vec{e}_y) \text{ N}.$

- b) A két erő $\vec{F}_* = \vec{F}_1 \vec{F}_2$ különbségvektorának meghatározása: $\vec{F}_* = \vec{F}_1 - \vec{F}_2 = (40\vec{e}_x + 50\vec{e}_y) - (-20\vec{e}_x + 4\vec{e}_y) = (60\vec{e}_x - 46\vec{e}_y) \text{ N}.$
- c) A két erővektor által bezárt α_{12} szög meghatározása:

$$\vec{F}_{1} \cdot \vec{F}_{2} = \left| \vec{F}_{1} \right| \left| \vec{F}_{2} \right| \cos \alpha \implies \cos \alpha = \frac{\vec{F}_{1} \cdot \vec{F}_{2}}{\left| \vec{F}_{1} \right| \left| \vec{F}_{2} \right|}.$$

$$\vec{F}_{1} \cdot \vec{F}_{2} = 40(-20) + 50 \cdot 4 = -800 + 200 = -600 \text{ N}^{2}, \left| \vec{F}_{1} \right| = \sqrt{F_{1x}^{2} + F_{1y}^{2}} = \sqrt{40^{2} + 50^{2}} = 64,03 \text{ N},$$

$$\left| \vec{F}_{2} \right| = \sqrt{F_{2x}^{2} + F_{2y}^{2}} = \sqrt{20^{2} + 4^{2}} = 20,40 \text{ N}, \cos \alpha = \frac{-600}{64,03 \cdot 20,40} = -0,45934,$$

$$\alpha = \arccos(-0,45934) = 117,34^{\circ}.$$

1.2.3. feladat: Vektor koordinátái és összetevői

<u>Adott:</u> $\vec{a} = (10\vec{e}_x + 5\vec{e}_y) \text{ m}$. b) Az \vec{a} vektor x és y irányú skaláris koordinátáinak meghatározása. b) Az \vec{a} vektor x és y irányú összetevőinek meghatározása.

Kidolgozás:

 a) A vektor koordinátatengely irányú koordinátáinak meghatározása (skaláris mennyiségek): A skaláris szorzás értelmezéséből:

b) A vektor koordinátatengely irányú összetevői (vektor mennyiségek):

$$\vec{a}_x = a_x \vec{e}_x = (10\vec{e}_x) \text{ m}, \quad \vec{a}_y = a_y \vec{e}_y = (5\vec{e}_y) \text{ m}.$$

1.2.4. feladat: Vektor koordinátái és összetevői Adott: **T**-1-1-

Adott:Feladat:
$$\vec{b} = (6\vec{e}_x + 6\vec{e}_y) \,\mathrm{m}$$
,a) A \vec{b} vektor \vec{a} irányú b_{\parallel} és \vec{a} irányra merőleges b_{\perp} skaláris ko-
ordinátáinak meghatározása. $\vec{a} = (12\vec{e}_x + 4\vec{e}_y) \,\mathrm{m}$.b) A \vec{b} vektor \vec{a} irányú \vec{b}_{\parallel} és \vec{a} irányra merőleges \vec{b}_{\perp} összetevői-
nek meghatározása.

Kidolgozás:

a) Adott irányú koordináták meghatározása:

$$\begin{array}{cccc}
 & y & \text{A} \quad \vec{b} \text{ vektor } \vec{a} \text{ irányú koordinátája } (\vec{a} \text{ irányra eső vetülete}): \\
 & \vec{b}_{\parallel} \quad \vec{b}_{\parallel} \quad x & \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \alpha \Rightarrow \quad b_{\parallel} = |\vec{b}| \cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}. \\
 & \vec{a} \cdot \vec{b} = 12 \cdot 6 + 4 \cdot 6 = 96 \text{ m}^2, \\
 & \vec{b}_{\parallel} = \frac{96}{12,65} = 7,59 \text{ m} & |\vec{a}| = \sqrt{12^2 + 4^2} = \sqrt{160} = 4\sqrt{10} \approx 12,65 \text{ m},
\end{array}$$

A \vec{b} vektor \vec{a} irányra merőleges koordinátája (az \vec{a} irányra merőleges vetülete):

$$|\vec{a} \times \vec{b}| = |\vec{a}| \underbrace{|\vec{b}| \sin \alpha}_{\vec{b}_{\perp}} \implies b_{\perp} = |\vec{b}| \sin \alpha = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|}.$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ 12 & 4 & 0 \\ 6 & 6 & 0 \end{vmatrix} = \vec{e}_{z} (72 - 24) = (48 \vec{e}_{z}) \text{ m}^{2}, \quad |\vec{a} \times \vec{b}| = 48 \text{ m}^{2},$$

$$|\vec{a}| = 12,65 \text{ m}.$$

$$b_{\perp} = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}|} = \frac{48}{12,65} = 3,79 \text{ m}.$$

b) Adott irányú összetevők meghatározása:

A *b* vektor
$$\vec{a}$$
 irányú összetevője:
 $\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{12,65} (12\vec{e}_x + 4\vec{e}_y) = (0,9486\vec{e}_x + 0,3162\vec{e}_y),$
 $\vec{b}_{\parallel} = b_{\parallel}\vec{e}_a = 7,59(0,9486\vec{e}_x + 0,3162\vec{e}_y) = (7,2\vec{e}_x + 2,4\vec{e}_y) \text{ m}.$

A \vec{b} vektor \vec{a} irányra merőleges összetevője:

$$\vec{b}_{\perp} = \underbrace{\left(\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \times \frac{\vec{a}}{|\vec{a}|}\right)}_{\vec{e}_{\perp}} \underbrace{|\vec{b}| \sin \alpha}_{\vec{b}_{\perp}} = \left(\frac{\vec{a} \times \vec{b}}{|\vec{a}||\vec{b}| \sin \alpha} \times \frac{\vec{a}}{|\vec{a}|}\right) |\vec{b}| \sin \alpha = = \frac{(\vec{a} \times \vec{b}) \times \vec{a}}{|\vec{a}|^2}.$$

$$(\vec{a} \times \vec{b}) \times \vec{a} = (48\vec{e}_z) \times (12\vec{e}_x + 4\vec{e}_y) = (-192\vec{e}_x + 576\vec{e}_y) \text{ m}^3,$$

$$\vec{b}_{\perp} = \frac{-192\vec{e}_x + 576\vec{e}_y}{160} = (-1, 2\vec{e}_x + 3, 6\vec{e}_y) \text{ m}.$$

Ellenőrzés:
 $\vec{b} = \vec{b}_{\parallel} + \vec{b}_{\perp} = (7, 2\vec{e}_x + 2, 4\vec{e}_y) + (-1, 2\vec{e}_x + 3, 6\vec{e}_y) = (6\vec{e}_x + 6\vec{e}_y) \text{ m}.$

1.2.5. feladat: Vektorok skaláris szorzata

Adott:
$$\vec{F}_1 = (40\vec{e}_x + 18\vec{e}_y - 26\vec{e}_z) \text{ kN}$$
,
 $\vec{F}_2 = (-2\vec{e}_x + 2\vec{e}_y + 3\vec{e}_z) \text{ kN}$,
 $\vec{F}_3 = (F_{3y}\vec{e}_y)$.
Kérdés:
Mekkora legyen F_{3y} , ha azt akarjuk,
hogy $(\vec{F}_1 + \vec{F}_3)$ merőleges legyen \vec{F}_2 -re?

Kidolgozás:

Ha $\vec{a} \perp \vec{b}$, akkor $\vec{a} \cdot \vec{b} = 0 = |\vec{a}| |\vec{b}| \cos \alpha = 0$.

Ezért teljesülnie kell az $(\vec{F}_1 + \vec{F}_3) \cdot \vec{F}_2 = 0$ összefüggésnek. $(\vec{F}_1 + \vec{F}_3) \cdot \vec{F}_2 = [40\vec{e}_x + (18 + F_{3y})\vec{e}_y - 26\vec{e}_z] \cdot (-2\vec{e}_x + 2\vec{e}_y + 3\vec{e}_z) = 0,$ $-40 \cdot 2 + (18 + F_{3y})2 - 26 \cdot 3 = 0,$ $-80 + 36 + 2F_{3y} - 78 = 0,$ $2F_{3y} = 122 \implies F_{3y} = 61$ kN.

1.2.6. feladat: Vektor koordinátái és összetevői

$$\begin{array}{c}
y\\
\vec{b}\\
a_{\parallel}\\
\vec{a}\\
\vec{a}\\
\vec{a}\\
\vec{a}\\
\vec{a}\\
\vec{a}\\
\vec{x}\\
\vec{a}\\
\vec{x}\\
\vec{x}\\$$

<u>Adott:</u> *a* = (3*e*_x + *e*_y) N, *b* = (4*e*_x + 2*e*_y) N.

<u>Feladat:</u> a) Az *a* vektor *b* irányú *a*_∥ és a *b* irányra merőleges *a*_⊥ skaláris koordinátáinak meghatározása.

b) Az \vec{a} vektor \vec{b} irányú \vec{a}_{\parallel} és a \vec{b} irányra merőleges \vec{a}_{\perp} összetevőinek meghatározása. Megoldás:

- a) Az \vec{a} vektor \vec{b} irányú a_{\parallel} és a \vec{b} irányra merőleges a_{\perp} skaláris koordinátái: $a_{\parallel} = 2,235$ N, $a_{\perp} = 2,235$ N.
- b) Az \vec{a} vektor \vec{b} irányú \vec{a}_{\parallel} és a \vec{b} irányra merőleges \vec{a}_{\perp} összetevői: $\vec{a}_{\parallel} \approx (\vec{e}_x + 2\vec{e}_y)$ N, $\vec{a}_{\perp} \approx (2\vec{e}_x - \vec{e}_y)$ N.

1.3. Mátrixalgebrai összefoglaló

a) Mátrix értelmezése, jelölése:

<u>Mátrix:</u> Skaláris mennyiségeknek, számoknak megadott szabály szerint táblázatba rendezett halmaza.

Mátrix jelölése: $\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$.

A mátrixokat kétszer aláhúzott betűvel, a mátrixok elemeit (koordinátáit) alsó indexes betűvel jelöljük. Pl. $\underline{A}, \underline{a}$ és a_{13}, a_2 stb.

Az a_{13} mátrixelem az $\underline{\underline{A}}$ mátrix első sorában és harmadik oszlopában van.

Mátrix mérete: Például a fenti (2x3)-as méretű $\left[\underline{\underline{A}}\right]$ mátrixnak két sora és három oszlopa van.

Az a_{13} mátrix elem jelölés kiejtése (kiolvasása): á egy három.

Oszlopmátrix:
$$\begin{bmatrix} \underline{a} \\ \underline{a} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
, sormátrix: $\begin{bmatrix} \underline{a} \\ \underline{a} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$.

Az oszlopmátrixnak egy oszlopa, a sormátrixnak egy sora van.

A sormátrix ugyanannak az oszlopmátrixnak a transzponáltja. A sormátrixot a mátrix betűjelének felső indexébe írt *T* betű jelöli.

b) Mátrixműveletek:

A műveleteket (2×2) -es, (2x1)-es és (1x2)-es mátrixokra mutatjuk be.

- Mátrix transzponáltja (tükrözés a főátlóra):

A mátrix főátlóját az azonos indexű elemek alkotják.

$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \implies \begin{bmatrix} \underline{A}^T \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

$$(2 \times 2)$$

A transzponálási művelet jele: T (a mátrix felső indexében).

A transzponálás oszlopmátrixból sormátrixot, sormátrixból pedig oszlopmátrixot hoz létre.

Az \underline{A}^{T} jelölés kiejtése á transzponált.

- Mátrixok összeadása, kivonása:

Csak azonos méretű mátrixok adhatók össze, vonhatók ki egymásból.

$$\underline{\underline{A}} \pm \underline{\underline{B}} = \underline{\underline{C}}, \\ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \pm \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} (a_{11} \pm b_{11}) & (a_{12} \pm b_{12}) \\ (a_{21} \pm b_{21}) & (a_{22} \pm b_{22}) \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ (2 \times 2) \end{bmatrix}.$$

- Mátrix szorzás (sor-oszlop kombináció):

Csak olyan mátrixok szorozhatók össze, amelyek teljesítik azt a feltételt, hogy az első szorzótényező oszlopainak száma megegyezik a második szorzótényező sorainak számával.

$$\underline{\underline{A}} \, \underline{\underline{B}} = \underline{\underline{C}} \,,$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} (a_{11} b_{11} + a_{12} b_{21}) & (a_{11} b_{12} + a_{12} b_{22}) \\ (a_{21} b_{11} + a_{22} b_{21}) & (a_{21} b_{12} + a_{22} b_{22}) \end{bmatrix} .$$

$$\underbrace{\underline{A} \ \underline{b} = \underline{c} \\ (a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{2} \end{bmatrix} = \begin{bmatrix} (a_{11} b_{1} + a_{12} b_{2}) \\ (a_{21} b_{1} + a_{22} b_{2}) \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{2} \times 1 \end{pmatrix} .$$

$$\underbrace{\underline{a}^{T} \ \underline{B} = \underline{d}^{T} ,$$

$$\underbrace{\begin{bmatrix} a_{1} & a_{2} \\ b_{2} \\ c_{2} \times 2 \end{pmatrix} \begin{bmatrix} b_{1} & b_{12} \\ b_{2} \\ c_{2} \times 1 \end{bmatrix} = \underbrace{\begin{bmatrix} (a_{1} b_{11} + a_{2} b_{2}) \\ (2 \times 1) \\ c_{2} \times 1 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ b_{21} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} (a_{1} b_{11} + a_{2} b_{21}) & (a_{1} b_{12} + a_{2} b_{22}) \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{11} \\ a_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{11} + a_{2} & b_{21} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{11} + a_{2} & b_{21} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{11} + a_{2} & b_{21} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{12} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{1} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{22} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{2} \times 2 \end{bmatrix}} = \underbrace{\begin{bmatrix} a_{2} & b_{2} \\ c_{$$

c) Különleges mátrixok:

- Egységmátrix:
$$\underline{\underline{E}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. Tulajdonsága: $\underline{\underline{E}} \underline{\underline{A}} = \underline{\underline{A}} \underline{\underline{E}} = \underline{\underline{A}}$

Az egységmátrix a főátlójában 1-es koordinátákat, a főátlóján kívül 0 elemeket tartalmaz. Az egységmátrixszal történő szorzás nem változtatja meg a megszorzott mátrixot.

- Szimmetrikus mátrix: $\underline{\underline{A}}^{T} = \underline{\underline{A}}$

A mátrix elemei megegyeznek a főátlóra vett tükörképükkel.

Például
$$\begin{bmatrix} \underline{A} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$
 szimmetrikus mátrix.

- Ferdeszimmetrikus mátrix: $\underline{A}^{T} = -\underline{A}$.

A mátrix bármelyik eleme megegyezik a főátlóra vett tükörképének mínusz egyszeresével. Ebből az következik, hogy a főátlóban csak zérus elemek lehetnek.

Például $\begin{bmatrix} \underline{A} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix}$ ferdeszimmetrikus mátrix.

1.4. Vektorok skaláris, kétszeres vektoriális és diadikus szorzata

Egyes vektor szorzások mátrixok szorzataként is elvégezhetők.

a) Vektorok skaláris szorzata:

A skaláris szorzás értelmezése: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \alpha$.

(α a vektorok között bezárt szög, $\alpha \leq \pi$.)

A skaláris szorzás kiszámítása mátrixszorzással:

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = a_x b_x + a_y b_y + a_z b_z$$

Az első szorzó tényező koordinátáit sormátrixba, a második szorzó tényező koordinátáit oszlopmátrixba rendezzük és a szorzást a mátrixszorzás szabályai szerint (sor-oszlop kombináció) végezzük el.

A szorzás eredménye egy skaláris mennyiség.

b) Vektorok diadikus szorzata:

Legyen adott az \vec{a} , \vec{b} és \vec{c} tetszőleges vektor.

Két vektor diadikus szorzatának jelölése: $\vec{a} \circ \vec{b}$, elnevezése: diád.

Az $\vec{a} \circ \vec{b}$ jelölés kiejtése (kiolvasása): á diád bé.

Két vektor diadikus szorzatát a szorzás tulajdonságainak megadásával értelmezzük:

- a diadikus szorzás és a skaláris szorzás *asszociatív* (csoportosítható, azaz szorzások elvégzésének sorrendje felcserélhető):

 $(\vec{a}\circ\vec{b})\cdot\vec{c}=\vec{a}\circ(\vec{b}\cdot\vec{c})\,,$

- a diád a skaláris szorzás szempontjából *nem kommutatív* (nem mindegy, hogy egy diádot jobbról, vagy balról szorzunk meg skalárisan egy vektorral, mert más eredményt kapunk):

$$\vec{c} \cdot (\vec{a} \circ \vec{b}) \neq (\vec{a} \circ \vec{b}) \cdot \vec{c} .$$

Ha a szorzás a fenti összefüggéseket kielégíti, akkor a szorzás diadikus.

Két vektor diadikus szorzatának kiszámítása jobbsodrású, derékszögű koordinátarendszerben:

$$\begin{bmatrix} \vec{a} \circ \vec{b} \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \begin{bmatrix} b_x & b_y & b_z \end{bmatrix} = \begin{bmatrix} a_x b_x & a_x b_y & a_x b_z \\ a_y b_x & a_y b_y & a_y b_z \\ a_z b_x & a_z b_y & a_z b_z \end{bmatrix}.$$

Az első szorzó tényező koordinátáit oszlopmátrixba, a második szorzó tényező koordinátáit sormátrixba rendezzük és a szorzást a mátrix szorzás szabályai szerint (sor-oszlop kombináció) végezzük el. A szorzás eredménye egy kilenc skaláris mennyiséget tartalmazó mátrix.

Egységvektorok diadikus szorzata:

$$\begin{bmatrix} \vec{e}_x \circ \vec{e}_x \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \vec{e}_y \circ \vec{e}_y \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} \vec{e}_z \circ \vec{e}_z \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \vec{e}_x \circ \vec{e}_y \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} \vec{e}_x \circ \vec{e}_z \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \vec{e}_y \circ \vec{e}_z \end{bmatrix} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 1\\0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} \vec{e}_y \circ \vec{e}_z \end{bmatrix} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix},$$

$$\begin{bmatrix} \vec{e}_z \circ \vec{e}_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

A skalár számmal történő szorzás mindig diadikus, vagy más szóhasználattal általános szorzás.

1.5. Mátrix sajátértékei és sajátvektorai

a) A sajátérték feladat kitűzése:

Létezik-e olyan \underline{n} oszlopmátrix, amellyel az \underline{A} négyzetes mátrixot megszorozva, az \underline{n} oszlopmátrix valahányszorosát kapjuk:

$$\underline{\underline{A}}\,\underline{\underline{n}} = \lambda\,\underline{\underline{n}}\,,$$

ahol a λ skaláris mennyiség?

Ha létezik ilyen \underline{n} oszlopmátrix, akkor ezt az $\underline{\underline{A}}$ négyzetes mátrix sajátvektorának, a λ skaláris mennyiséget pedig az $\underline{\underline{A}}$ mátrix sajátértékének nevezzük.

b) A sajátérték feladat megoldása:

A sajátérték feladat megoldását egy (2x2)-es mátrixon mutatjuk be. Az előző egyenletet részletesen kiírva és bal oldalra rendezve:

 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \lambda \begin{bmatrix} n_x \\ n_y \end{bmatrix}, \quad \Rightarrow \quad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} - \lambda \begin{bmatrix} n_x \\ n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$

és a szorzásokat elvégezve, az n_x , n_y ismeretlenre homogén lineáris algebrai egyenletrendszert kapunk:

$$(a_{11} - \lambda)n_x + a_{12}n_y = 0,$$

 $a_{21}n_x + (a_{11} - \lambda)n_y = 0.$

Az egyenletrendszer nem triviális (nullától különböző) megoldásának feltétele az, hogy a rendszer mátrixából képezett determinánsnak el kell tűnnie:

$$\begin{vmatrix} (a_{11} - \lambda) & a_{12} \\ a_{21} & (a_{11} - \lambda) \end{vmatrix} = 0$$

A determinánst kifejtve kapjuk a karakterisztikus egyenletet:

$$\lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0.$$

A karakterisztikus egyenlet megoldásai a mátrix sajátértékei:

$$\lambda_{1,2} = \frac{(a_{11} + a_{22}) \pm \sqrt{(a_{11} + a_{22})^2 + 4a_{12}a_{21}}}{2}$$

A homogén lineáris algebrai egyenletrendszernek csak $\lambda = \lambda_1$ és $\lambda = \lambda_2$ esetén van nemtriviális megoldása.

A mátrix sajátértékeit növekvő sorrendben szokás sorszámozni.

Ha az egyes λ_i (i=1,2) sajátértékeket behelyettesítjük a homogén lineáris algebrai egyenletrendszerbe, akkor az egyenletrendszer megoldható az n_{ix} , n_{iy} ismeretlenre:

$$\begin{array}{c} (a_{11} - \lambda_i) n_{ix} + a_{12} n_{iy} = 0 \\ a_{21} n_{ix} + (a_{11} - \lambda_i) n_{iy} = 0 \end{array} \qquad \Rightarrow \qquad \begin{array}{c} n_{ix} = \dots \\ n_{iy} = \dots \end{array}, \quad \text{ahol i=1,2} \end{array}$$

Az λ_i (i=1,2) sajátértékek behelyettesítése esetén azonban az egyenletrendszer egyenletei egymástól nem lineárisan függetlenek, ezért az egyik egyenletet el kell hagyni és a másik egyenletből csak az n_{ix} / n_{iy} , vagy n_{iy} / n_{ix} (i=1,2) hányados határozható meg.

Az n_{ix} és n_{iy} értékét akkor kapjuk meg egyértelműen, ha az $\underline{n}_{i}^{T} = [n_{ix} n_{iy}]$ sajátvektoroktól megköveteljük, hogy egységvektorok legyenek:

$$\sqrt{n_{ix}^2 + n_{iy}^2} = 1$$
, i=1,2.

1.6. Tenzorok előállítása

a) Tenzor értelmezése és tulajdonságai:

Tenzor: Homogén lineáris vektor-vektor függvény által megvalósított leképezés (hozzárendelés).

A \underline{T} tenzor a tetszőleges \vec{v} vektorhoz a \vec{w} képvektort rendeli hozzá.

A vektor-vektor függvény olyan függvénykapcsolat, amelynek \vec{v} értelmezési tartománya és \vec{w} értékkészlete is vektor mennyiség.

A tenzor tulajdonságai:

Homogén lineáris: Ha egy vektort két másik vektor lineáris kombinációjaként állítunk elő, akkor a vektor képvektora egyenlő a lineáris kombinációban szereplő vektorok képvektorainak lineáris kombinációjával:

Ha $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2$ és $\vec{w}_1 = f(\vec{v}_1)$, $\vec{w}_2 = f(\vec{v}_2)$, akkor

 $\vec{w} = f(\vec{v}) = f(\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2) = \lambda_1 f(\vec{v}_1) + \lambda_2 f(\vec{v}_2) = \lambda_1 \vec{w}_1 + \lambda_2 \vec{w}_2.$

Az összefüggésekben λ_1 és λ_2 tetszőleges skaláris együtthatók.

Következmény: A zérus vektorhoz zérus vektort rendel hozzá: $\vec{0} = f(\vec{0})$.

A tenzor koordináta-rendszertől független fizikai (geometriai, mechanikai) mennyiség.

b) Tenzor előállítása jobbsodratú, derékszögű descartesi koordináta-rendszerben:

- Tenzor megadása: - a tenzor koordinátáival (mátixával) és

- a koordináta-rendszerrel történik.

- Tenzor koordinátáinak jelölése mátrixba rendezve:

$$\begin{bmatrix} \underline{T} \\ \underline{xyz} \end{bmatrix} = \begin{bmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix}.$$

- Tenzor előállítása derékszögű descartesi KR-ben:

- <u>1. Tétel:</u> Térbeli esetben minden tenzor egyértelműen megadható három egymásra merőleges egységvektor és ezek képvektorai (három értékpár) ismeretében.
 - Síkbeli esetben minden tenzor egyértelműen megadható két egymásra merőleges egységvektor és ezek képvektorai (két értékpár) ismeretében.
- <u>2. Tétel:</u> Térbeli esetben minden tenzor előállítható három diád összegeként.
 Síkbeli esetben minden tenzor előállítható két diád összegeként.

Legyen ismert három értékpár:

$$\vec{e}_x \rightarrow \vec{a} = f(\vec{e}_x), \qquad \vec{a} = a_x \vec{e}_x + a_y \vec{e}_y + a_z \vec{e}_z, \vec{e}_y \rightarrow \vec{b} = f(\vec{e}_y), \qquad \vec{b} = b_x \vec{e}_x + b_y \vec{e}_y + b_z \vec{e}_z, \vec{e}_z \rightarrow \vec{c} = f(\vec{e}_z), \qquad \vec{c} = c_x \vec{e}_x + c_y \vec{e}_y + c_z \vec{e}_z.$$

A tenzor diadikus előállítása: $\underline{T} = (\vec{a} \circ \vec{e}_x + \vec{b} \circ \vec{e}_y + \vec{c} \circ \vec{e}_z).$

A tenzor mátrixa:
$$\begin{bmatrix} \underline{T} \\ \underline{xyz} \end{bmatrix} = \begin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{bmatrix}$$
.

A tenzor mátrixát a diadikus előállításban kijelölt diadikus szorzások és az összeadások elvégzésével kapjuk.

A tenzor mátrixának oszlopai az \vec{a} , \vec{b} , \vec{c} képvektorok koordinátáit tartalmazzák. A mátrix első sorában a képvektorok x koordinátái, a második sorban a képvektorok y koordinátái, a harmadik sorban a képvektorok z koordinátái állnak.

c) <u>Tenzorok kétszeres skaláris szorzása</u>

Legyen :

$$\underbrace{\underline{A}}_{\underline{a}} \cdots \underbrace{\underline{B}}_{\underline{a}} = \left(\vec{a}_{1} \circ \vec{e}_{x} + \vec{a}_{2} \circ \vec{e}_{y} + \vec{a}_{3} \circ \vec{e}_{z}\right) \cdots \left(\vec{b}_{1} \circ \vec{e}_{x} + \vec{b}_{2} \circ \vec{e}_{y} + \vec{b}_{3} \circ \vec{e}_{z}\right) = \\ = \left(\vec{a}_{1} \circ \vec{e}_{x}\right) \cdots \left(\vec{b}_{1} \circ \vec{e}_{x}\right) + \left(\vec{a}_{1} \circ \vec{e}_{x}\right) \cdots \left(\vec{b}_{2} \circ \vec{e}_{y}\right) + \left(\vec{a}_{1} \circ \vec{e}_{x}\right) \cdots \left(\vec{b}_{3} \circ \vec{e}_{z}\right) + \\ + \left(\vec{a}_{2} \circ \vec{e}_{y}\right) \cdots \left(\vec{b}_{1} \circ \vec{e}_{x}\right) + \left(\vec{a}_{2} \circ \vec{e}_{y}\right) \cdots \left(\vec{b}_{2} \circ \vec{e}_{y}\right) + \left(\vec{a}_{2} \circ \vec{e}_{y}\right) \cdots \left(\vec{b}_{3} \circ \vec{e}_{z}\right) + \\ + \left(\vec{a}_{3} \circ \vec{e}_{z}\right) \cdots \left(\vec{b}_{1} \circ \vec{e}_{x}\right) + \left(\vec{a}_{3} \circ \vec{e}_{z}\right) \cdots \left(\vec{b}_{2} \circ \vec{e}_{y}\right) + \left(\vec{a}_{3} \circ \vec{e}_{z}\right) \cdots \left(\vec{b}_{3} \circ \vec{e}_{z}\right) .$$

Diádok kétszeres skaláris szorzata:

$$\begin{pmatrix} \vec{a} \circ \vec{b} \end{pmatrix} \cdot \cdot (\vec{c} \circ \vec{d}) = (\vec{a} \cdot \vec{c}) (\vec{b} \cdot \vec{d})$$

$$\underline{\underline{A}} = = (\vec{a}_1 \cdot \vec{b}_1) \underbrace{(\vec{e}_x \cdot \vec{e}_x)}_1 + (\vec{a}_1 \cdot \vec{b}_2) \underbrace{(\vec{e}_x \cdot \vec{e}_y)}_0 + (\vec{a}_1 \cdot \vec{b}_3) \underbrace{(\vec{e}_x \cdot \vec{e}_z)}_0 + (\vec{a}_2 \cdot \vec{b}_3) \underbrace{(\vec{e}_x \cdot \vec{e}_z)}_0 + (\vec{a}_2 \cdot \vec{b}_3) \underbrace{(\vec{e}_y \cdot \vec{e}_z)}_0 + (\vec{a}_3 \cdot \vec{b}_3) \underbrace{(\vec{e}_y \cdot \vec{e}_z)}_0 + (\vec{a}_3 \cdot \vec{b}_3) \underbrace{(\vec{e}_z \cdot \vec{e}_z)}_0 + (\vec{a}_3 \cdot \vec{b}_3) \underbrace{(\vec{e}_z \cdot \vec{e}_z)}_0 = \vec{a}_1 \cdot \vec{b}_1 + \vec{a}_2 \cdot \vec{b}_2 + \vec{a}_3 \cdot \vec{b}_3 = \vec{a}_1 \cdot \vec{b}_{11} + \vec{a}_1 \cdot \vec{b}_{12} + \vec{a}_{13} \cdot \vec{b}_{13} + \vec{a}_{21} \cdot \vec{b}_{21} + \vec{a}_{22} \cdot \vec{b}_{22} + \vec{a}_{23} \cdot \vec{b}_{23} + \vec{a}_{31} \cdot \vec{b}_{31} + \vec{a}_{32} \cdot \vec{b}_{32} + \vec{a}_{33} \cdot \vec{b}_{33} .$$

1.7. Gyakorló feladatok mátrixokra, tenzorokra

1.7.1. feladat: Mátrix műveletek

Adott:
$$\begin{bmatrix} \underline{A} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 7 & 3 \end{bmatrix}, \begin{bmatrix} \underline{B} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} -12 & 4 \\ -6 & 3 \end{bmatrix}$$

Feladat:

a) Az $\underline{\underline{A}}^{T}$ és $\underline{\underline{B}}^{T}$ transzponált mátrixok meghatározása.

b) Az $\underline{\underline{A}} + \underline{\underline{B}}$ összegmátrix és az $\underline{\underline{A}} - \underline{\underline{B}}$ különbségmátrix meghatározása.

c) Az <u>AB</u> szorzatmátrix meghatározása.

Kidolgozás:

a) Az $\underline{\underline{A}}^{T}$ és $\underline{\underline{B}}^{T}$ transzponált mátrixok meghatározása:

$$\underline{\underline{A}}^{T} = \begin{bmatrix} 2 & 7 \\ -4 & 3 \end{bmatrix}, \quad \underline{\underline{B}}^{T} = \begin{bmatrix} -12 & -6 \\ 4 & 3 \end{bmatrix}$$

b) Az $\underline{\underline{A}} + \underline{\underline{B}}$ összegmátrix és az $\underline{\underline{A}} - \underline{\underline{B}}$ különbségmátrix meghatározása:

$$\underline{\underline{A}} + \underline{\underline{B}} = \begin{bmatrix} 2 & -4 \\ 7 & 3 \end{bmatrix} + \begin{bmatrix} -12 & 4 \\ -6 & 3 \end{bmatrix} = \begin{bmatrix} -10 & 0 \\ 1 & 6 \end{bmatrix}$$
$$\underline{\underline{A}} - \underline{\underline{B}} = \begin{bmatrix} 2 & -4 \\ 7 & 3 \end{bmatrix} - \begin{bmatrix} -12 & 4 \\ -6 & 3 \end{bmatrix} = \begin{bmatrix} 14 & -8 \\ 13 & 0 \end{bmatrix}$$

c) Az <u>AB</u> szorzatmátrix meghatározása.

$$\underline{AB} = \begin{bmatrix} 2 & -4 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} -12 & 4 \\ -6 & 3 \end{bmatrix} = \begin{bmatrix} 2(-12) + (-4)(-6) & 2 \cdot 4 + (-4)3 \\ 7(-12) + 3(-6) & 7 \cdot 4 + 3 \cdot 3 \end{bmatrix} = \begin{bmatrix} -48 & -4 \\ -102 & 37 \end{bmatrix}.$$

1.7.2. feladat: Skaláris, diadikus és mátrix szorzás gyakorlása <u>Adott:</u> $\vec{a} = (4 \vec{e}_x + 6 \vec{e}_y - \vec{e}_z) \text{ m}, \qquad \frac{\text{Feladat:}}{a}$ $\vec{b} = (-3 \vec{e}_x + \vec{e}_y - \vec{e}_z) \text{ m}, \qquad a) \text{ Az } \vec{a} \cdot \vec{b}$ és az $\vec{a} \circ \vec{b}$ szorzatok meghatározása. $\vec{c} = (-2 \vec{e}_y - 6 \vec{e}_z) \text{ m}.$ $\vec{b} \text{ Az } (\vec{a} \circ \vec{b}) \cdot \vec{c}$ és a $\vec{c} \cdot (\vec{a} \circ \vec{b})$ szorzat meghatározása.

Kidolgozás:

a) Az $\vec{a} \cdot \vec{b}$ és az $\vec{a} \circ \vec{b}$ szorzatok meghatározása:

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} 4 & 6 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ -1 \end{bmatrix} = 4 (-3) + 6 \cdot 1 + (-1) (-1) = -5 \text{ m}^2,$$

$$\vec{a} \circ \vec{b} = \begin{pmatrix} 4 \vec{e}_x + 6 \vec{e}_y - \vec{e}_z \end{pmatrix} \circ \begin{pmatrix} -3 \vec{e}_x + \vec{e}_y - \vec{e}_z \end{pmatrix} =$$

$$= \begin{bmatrix} \begin{pmatrix} -12 \vec{e}_x - 18 \vec{e}_y + 3 \vec{e}_z \end{pmatrix} \circ \vec{e}_x + \begin{pmatrix} 4 \vec{e}_x + 6 \vec{e}_y - \vec{e}_z \end{pmatrix} \circ \vec{e}_y +$$

$$+ \begin{pmatrix} -4 \vec{e}_x - 6 \vec{e}_y + \vec{e}_z \end{pmatrix} \circ \vec{e}_z \end{bmatrix} \text{ m}^2.$$

A szögletes zárójelben lévő diádok első szorzó tényezőinek koordinátái a tenzor mátrixának oszlopaiban jelennek meg:

$$\begin{bmatrix} \vec{a} \circ \vec{b} \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix} \begin{bmatrix} -3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -12 & 4 & -4 \\ -18 & 6 & -6 \\ 3 & -1 & 1 \end{bmatrix} m^2.$$

b) Az $(\vec{a} \circ \vec{b}) \cdot \vec{c}$ és a $\vec{c} \cdot (\vec{a} \circ \vec{b})$ szorzat meghatározása:

- Az értelmezés alapján: $(\vec{a} \circ \vec{b}) \cdot \vec{c} = \vec{a} \circ (\vec{b} \cdot \vec{c}) =$ $= (4 \vec{e}_x + 6\vec{e}_y - \vec{e}_z) \circ [(-3 \vec{e}_x + \vec{e}_y - \vec{e}_z) \cdot (-2\vec{e}_y - 5 \vec{e}_z)] =$ $= (4 \vec{e}_x + 6\vec{e}_y - \vec{e}_z) \circ [-2 + 5] = (12 \vec{e}_x + 18 \vec{e}_y - 3 \vec{e}_z) m^3,$

- Mátrixszorzással:

$$\begin{bmatrix} (\vec{a} \circ \vec{b}) \end{bmatrix} \begin{bmatrix} \vec{c} \end{bmatrix} = \begin{bmatrix} -12 & 4 & -4 \\ -18 & 6 & -6 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ -5 \end{bmatrix} = \begin{bmatrix} -8+20 \\ -12+30 \\ 2-5 \end{bmatrix} = \begin{bmatrix} 12 \\ 18 \\ -3 \end{bmatrix} m^3.$$

A kétféleképp előállított eredmény természetesen megegyezik. - Az értelmezés alapján:

$$\vec{c} \cdot (\vec{a} \circ \vec{b}) = (\vec{c} \cdot \vec{a}) \circ \vec{b} = \left[\left(-2\vec{e}_y - 5\vec{e}_z \right) \cdot \left(4\vec{e}_x + 6\vec{e}_y - \vec{e}_z \right) \right] \circ \left(-3\vec{e}_x + \vec{e}_y - \vec{e}_z \right) = \\ = \left[-12 + 5 \right] \circ \left(-3\vec{e}_x + \vec{e}_y - \vec{e}_z \right) = \left(21\vec{e}_x - 7\vec{e}_y + 7\vec{e}_z \right).$$

- Mátrixszorzással:

$$\begin{bmatrix} \vec{c} \end{bmatrix} \begin{bmatrix} (\vec{a} \circ \vec{b}) \end{bmatrix} = \begin{bmatrix} 0 & -2 & -5 \end{bmatrix} \begin{bmatrix} -12 & 4 & -4 \\ -18 & 6 & -6 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} (36 - 15) & (-12 + 5) & (12 - 5) \end{bmatrix} = \begin{bmatrix} 21 & -7 & 7 \end{bmatrix} \text{m}^3.$$

A kétféleképp előállított eredmény természetesen megegyezik.

1.7.3. feladat: Vektor adott irányra merőleges összetevőjének meghatározása

Feladat:

a) A \vec{b} vektor \vec{e}_a egységvektorral párhuzamos \vec{b}_{\parallel} összetevőjének meghatározása.

- b) A \vec{b} vektor \vec{e}_a egységvektorra merőleges \vec{b}_{\perp} összetevőjének meghatározása kétszeres vektoriális szorzással.
- c) A \vec{b} vektor \vec{e}_a egységvektorra merőleges \vec{b}_{\perp} összetevőjének meghatározása a kifejtési szabállyal.

Kidolgozás:

a) A \vec{b}_{\parallel} párhuzamos összetevő meghatározása:

$$\vec{b}_{\parallel} = (\vec{e}_a \cdot \vec{b}) \vec{e}_a = \left[\begin{bmatrix} 0 & 0.8 & -0.6 \end{bmatrix} \begin{bmatrix} 20 \\ 40 \\ -30 \end{bmatrix} \right] \vec{e}_a = (32 + 18) \vec{e}_a = 50 \vec{e}_a$$
$$\vec{b}_{\parallel} = 50 \vec{e}_a = 50(0.8 \vec{e}_y - 0.6 \vec{e}_z) = (4\vec{e}_y - 30\vec{e}_z) \text{ m.}$$

b) A \vec{b}_{\perp} merőleges összetevő meghatározása kétszeres vektoriális szorzással:

$$\vec{b}_{\perp} = (\vec{e}_a \times \vec{b}) \times \vec{e}_a .$$

$$(\vec{e}_a \times \vec{b}) = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 0 & 0.8 & -0.6 \\ 20 & 40 & -30 \end{vmatrix} = \vec{e}_x (-24 + 24) - \vec{e}_y (12) + \vec{e}_z (-16) ,$$

$$(\vec{e}_a \times \vec{b}) \times \vec{e}_a = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 0 & -12 & -16 \\ 0 & 0,8 & -0,6 \end{vmatrix} = \vec{e}_x (7, 2 + 12, 8) - \vec{e}_y (0) + \vec{e}_z (0) + \vec{e}_$$

 $\vec{b}_{\perp} = (\vec{e}_a \times \vec{b}) \times \vec{e}_a = (20 \ \vec{e}_x) \text{ m.}$

c) A \vec{b}_{\perp} összetevő meghatározása a kifejtési szabállyal: $\vec{b}_{\perp} = (\vec{e}_a \times \vec{b}) \times \vec{e}_a = \vec{b}(\vec{e}_a \cdot \vec{e}_a) - \vec{e}_a(\vec{b} \cdot \vec{e}_a) = \vec{b} - \vec{b}_{\parallel}.$ $\vec{b}_{\perp} = \vec{b} - \vec{b}_{\parallel} = (20\vec{e}_x + 40\vec{e}_y - 30\vec{e}_z) - (40\vec{e}_y - 30\vec{e}_z) = (20\vec{e}_x) \text{ m.}$

1.7.4. feladat: Tenzor előállítása

Feladat:

a) Annak a \underline{T} tenzor mátrixának az előállítása, amely az xy sík helyvektoraiból a helyvekto-

roknak a koordináta-rendszer *O* kezdőpontjára tükrözött vektorait állítja elő.

b) Meghatározni azt az \vec{r}_A vektort, amely az \vec{r}_P vektor origóra vett tükörképe.

Kidolgozás:

a) A tenzor előállítása:

Síkbeli esetben a tenzort két értékpárja határozza meg:

$$\vec{e}_x \rightarrow \vec{a} = -\vec{e}_x, \qquad \vec{e}_y \rightarrow \vec{b} = -\vec{e}_y.$$

A két értékpárból a tenzor: $T = (\vec{a} \circ \vec{e}_x + \vec{b} \circ \vec{e}_y).$
A tenzor mátrixa: $\begin{bmatrix} \underline{T} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$

b) Az origóra tükrözött \vec{r}_A képvektor meghatározása:

$$\vec{r}_{A} = \underbrace{T}_{=} \cdot \vec{r}_{P} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_{P} \\ y_{P} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$
$$\vec{r}_{A} = (-4\vec{e}_{x} - 2\vec{e}_{y}) \quad \text{m}.$$

<u>Adott:</u> $\vec{r}_P = (4\vec{e}_x + 3\vec{e}_y) \text{ m.}$

Feladat:

a) Annak a \underline{T} tenzor mátrixának az előállítása, amely az xy sík helyvektoraiból a helyvektoroknak a koordináta-rendszer x tengelyére tükrözött vektorait állítja elő.

b) Meghatározni azt az \vec{r}_A vektort, amely az \vec{r}_P vektor x tengelyre vett tükörképe.

Kidolgozás:

a) A tenzor előállítása:

Síkbeli esetben a tenzort két értékpárja határozza meg:

$$\vec{e}_x \rightarrow \vec{a} = \vec{e}_x, \qquad \qquad \vec{e}_y \rightarrow b = -\vec{e}_y.$$

 $T = (\vec{a} \circ \vec{e}_x + \vec{b} \circ \vec{e}_y)$ A két értékpárból a tenzor:

A tenzor mátrixa: $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ 0]

$$\begin{bmatrix} \underline{T} \\ \underline{-} \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix}.$$

b) Az x tengelyre tükrözött \vec{r}_A képvektor meghatározása:

$$\vec{r}_{A} = \underline{T} \cdot \vec{r}_{P} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_{P} \\ y_{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}.$$
$$\vec{r}_{A} = (4\vec{e}_{x} - 3\vec{e}_{y}) \quad \text{m}.$$

 \vec{e}_{v})m.

x

1.7.6. feladat: Tenzor előállítása

 \vec{r}_p

$$\frac{\text{Adott:}}{\varphi = 30^{\circ}, \ \vec{r}_p = (4\vec{e}_x + \sqrt{y})$$

- Feladat:
- a) Annak a <u>T</u> tenzor mátrixának az előállítása, amely az xy sík helyvektoraiból a helyvektorok z tengely körül φ szöggel elforgatott vektorait állítja elő.
- b) Meghatározni azt az \vec{r}_{A} vektort, amelyet az \vec{r}_{p} vektor φ szöggel történő elforgatásával kapunk.

Kidolgozás:

0

a) A tenzor előállítása:

Síkbeli esetben a tenzort két értékpárja határozza meg:

$$\vec{e}_x \rightarrow \vec{a} = (\cos \varphi \vec{e}_x + \sin \varphi \vec{e}_y),$$

 $\vec{e}_y \rightarrow \vec{b} = (-\sin \varphi \vec{e}_x + \cos \varphi \vec{e}_y).$
A két értékpárból a tenzor: $T = (\vec{a} \circ \vec{e}_x + \vec{b} \circ \vec{e}_y)$

A diádok kiszámítása:

$$\begin{bmatrix} \vec{a} \circ \vec{e}_x \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} a_x & 0 \\ a_y & 0 \end{bmatrix} = \begin{bmatrix} \cos \varphi & 0 \\ \sin \varphi & 0 \end{bmatrix},$$
$$\begin{bmatrix} \vec{b} \circ \vec{e}_y \end{bmatrix} = \begin{bmatrix} b_x \\ b_y \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & b_x \\ 0 & b_y \end{bmatrix} = \begin{bmatrix} 0 & -\sin \varphi \\ 0 & \cos \varphi \end{bmatrix}.$$
A tenzor mátrixa:
$$\begin{bmatrix} \underline{T} \\ \underline{T} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} = \begin{bmatrix} 0,866 & -0.5 \\ 0,5 & 0,866 \end{bmatrix}.$$

b) Az elforgatott \vec{r}_A vektor meghatározása:

$$\vec{r}_{A} = \underbrace{T}{=} \cdot \vec{r}_{P} = \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix} \begin{bmatrix} x_{P} \\ y_{P} \end{bmatrix} = \begin{bmatrix} 0,866 & -0.5 \\ 0,5 & 0,866 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2,964 \\ 2,866 \end{bmatrix}$$
$$\vec{r}_{A} = (2,964\vec{e}_{x} + 2,866\vec{e}_{y}) \quad \text{m}.$$

1.7.7. feladat: Tenzor előállítása

Adott:

Feladat:

- a) Annak a \underline{T} tenzor mátrixának az előállítása, amely az xy sík helyvektoraihoz a helyvektorok z tengely körül φ szöggel történő elforgatásakor a helyvektorok végpontjainak elmozdulás vektorait rendeli hozzá.
- b) Meghatározni \vec{r}_p vektor végpontjának \vec{u}_p elmozdulás vektorát a φ szöggel történő elforgatásnál.

Kidolgozás:

a) A $\underline{\underline{T}}$ tenzor előállítása:

A tenzor mátrixa:

$$\begin{bmatrix} \underline{T} \\ \underline{=} \end{bmatrix} = \begin{bmatrix} (\cos \varphi - 1) & -\sin \varphi \\ \sin \varphi & (\cos \varphi - 1) \end{bmatrix} = \begin{bmatrix} -0,293 & -0,707 \\ 0,707 & -0,293 \end{bmatrix}.$$

b) Az \vec{u}_p elmozdulásvektor meghatározása:

$$\vec{u}_{p} = \underline{T} \cdot \vec{r}_{p} = \begin{bmatrix} -0,293 & -0,707\\ 0,707 & -0,293 \end{bmatrix} \begin{bmatrix} 5\\ 2 \end{bmatrix} = \begin{bmatrix} -2,879\\ 2,949 \end{bmatrix}$$
$$\vec{u}_{p} = (-2,879\vec{e}_{x} + 2,949\vec{e}_{y}) \quad \text{m}.$$

1.7.8. feladat: Tenzor előállítása

Adott:
$$\vec{n} = \left(-\frac{1}{\sqrt{2}}\vec{e}_y + \frac{1}{\sqrt{2}}\vec{e}_z\right), \quad \vec{r}_p = \left(5\vec{e}_x + 2\vec{e}_y + 10\vec{e}_z\right) \text{m.}$$

Feladat:

 a) Annak a <u>T</u> tenzor mátrixának az előállítása, amely a tér minden helyvektorához a helyvektoroknak az <u>n</u> normálisú S síkba eső vetületvektorát rendeli hozzá.

b) Meghatározni \vec{r}_p vektornak az adott \vec{n} normálisú *S* síkba eső \vec{r}_A vetületvektorát.

A vetületvektort úgy kapjuk, hogy az \vec{r}_p vektor végpontját merőlegesen vetítjük az *S* síkra. <u>Kidolgozás:</u>

a) A $\underline{\underline{T}}$ tenzor előállítása:

A tetszőleges \vec{v} vektor *S* síkba eső \vec{w} vetületvektora:

$$\vec{w} = \vec{n} \times (\vec{v} \times \vec{n}) = \vec{v} \underbrace{(\vec{n} \cdot \vec{n})}_{=1} - \vec{n} (\vec{n} \cdot \vec{v}) = \vec{v} - \vec{n} (\vec{n} \cdot \vec{v}).$$

Térbeli esetben a tenzort három értékpárja határozza meg:

$$\vec{e}_x \rightarrow \vec{a} = \vec{e}_x - \vec{n} \underbrace{(\vec{n} \cdot \vec{e}_x)}_{= 0} = \vec{e}_x,$$

$$\vec{e}_{y} \rightarrow \vec{b} = \vec{e}_{y} - \vec{n} \underbrace{(\vec{n} \cdot \vec{e}_{y})}_{= -\frac{1}{\sqrt{2}}} = \vec{e}_{y} - \frac{1}{2}\vec{e}_{y} + \frac{1}{2}\vec{e}_{z} = \left(\frac{1}{2}\vec{e}_{y} + \frac{1}{2}\vec{e}_{z}\right),$$

$$\vec{e}_{z} \rightarrow \vec{c} = \vec{e}_{z} - \vec{n} \underbrace{(\vec{n} \cdot \vec{e}_{z})}_{= \frac{1}{\sqrt{2}}} = \vec{e}_{z} + \frac{\vec{n}}{\sqrt{2}} = \vec{e}_{z} + \frac{1}{2}\vec{e}_{y} - \frac{1}{2}\vec{e}_{z} = \left(\frac{1}{2}\vec{e}_{y} + \frac{1}{2}\vec{e}_{z}\right).$$

A három értékpárból a tenzor: $T = (\vec{a} \circ \vec{e}_x + \vec{b} \circ \vec{e}_y + \vec{c} \circ \vec{e}_z)$.

A tenzor mátrixa:
$$\begin{bmatrix} \underline{T} \\ \underline{-} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,5 & 0,5 \\ 0 & 0,5 & 0,5 \end{bmatrix}$$

b) Az \vec{r}_{P} vektornak az adott \vec{n} normálisú síkba eső \vec{r}_{A} vetületvektorának meghatározása:

$$\vec{r}_{A} = \underline{\underline{T}} \cdot \vec{r}_{p} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,5 & 0,5 \\ 0 & 0,5 & 0,5 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 10 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 6 \end{bmatrix} \text{m.}$$
$$\vec{r}_{A} = (5\vec{e}_{x} + 6\vec{e}_{y} + 6\vec{e}_{z}) \text{ m.}$$

1.7.9. feladat: Tenzor előállítása <u>Adott:</u> $\vec{r}_p = (3 \vec{e}_x + 4 \vec{e}_y + 6 \vec{e}_z)$ m.

Feladat: a) Annak a \underline{T} tenzor mátrixának az előállítása, amely a tér minden helyvektorához a neu, ...
vett tükörkép-vektorát rendeli hozzá.
b) Meghatározni r_p vektornak az xy síkra vett r_A tükörb) vektorát.

A tükörkép-vektort a következőképpen kapjuk: Az \vec{r}_p vektor végpontját merőlegesen vetítjük az xy síkra. A D pont a vetítő egyenes döféspontja az xy síkon.

Megoldás:

a) A hozzárendelést megvalósító tenzor mátrixa:

$$\begin{bmatrix} \underline{T} \\ \underline{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

b) Az \vec{r}_A tükörkép-vektor: $\vec{r}_A = (3\vec{e}_x + 4\vec{e}_y - 6\vec{e}_z)$ m.

1.7.10. feladat: Tenzor előállítása

<u>Adott:</u> $\vec{r}_p = (4\vec{e}_x + 4\vec{e}_y + 8\vec{e}_z)$ m.

Feladat:

a) Annak a $\underline{\underline{T}}$ tenzor mátrixának az előállítása, amely a tér minden helyvektorához a helyvektoroknak az xy síkba eső vetületvektorát rendeli hozzá.

b) Meghatározni \vec{r}_p vektornak az xy síkba eső \vec{r}_A vetületvektorát.

A vetületvektort úgy kapjuk, hogy az \vec{r}_p vektor végpontját merőlegesen vetítjük az xy síkra. A D pont a vetítő egyenes döféspontja az xy síkon. A vetületvektor a D pontba mutató vektor. Megoldás:

a) A hozzárendelést megvalósító tenzor mátrixa:

$$\begin{bmatrix} \underline{T} \\ \underline{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

b) Az \vec{r}_A vetületvektor: $\vec{r}_A = (4\vec{e}_x + 4\vec{e}_y)$ m.

2. RUGALMASSÁGTANI ALAPFOGALMAK

<u>Szilárdságtan</u>: a terhelés előtt és után is tartós nyugalomban lévő alakváltozásra képes testek kinematikája, dinamikája és anyagszerkezeti viselkedése.

Az értelmezésben előforduló kifejezések definicíója:

<u>Terhelés</u>: az általunk vizsgált rendszerhez (testekhez) nem tartozó testekről származó ismert nagyságú hatás. Ez a hatás szilárd halmazállapotú testeknél általában felületi érintkezéssel valósul meg.

Terhelés \equiv ismert külső erőrendszer (ER).

A tartós nyugalom feltételei:

- a testre ható erőrendszer egyensúlyi,
- a test megtámasztása nem enged meg merevtest szerű elmozdulást.

Alakváltozás:

- a test pontjai terhelés hatására egymáshoz képest elmozdulnak és ezért
- anyagi, geometriai alakzatai (hossz, szög, felület, térfogat) megváltoznak.

Kinematika a szilárdságtanban: leírja a terhelés hatására a testben bekövetkező elmozdulásokat és alakváltozásokat.

Dinamika a szilárdságtanban: megadja az alakváltozás és a belső erőrendszer közötti kapcsolatot.

A valóságos testek helyett modelleket vizsgálunk.

<u>Test modell:</u> Olyan idealizált tulajdonságokkal rendelkező test, amely a valóságos test vizsgálata szempontjából leglényegesebb tulajdonságait tükrözi. A valóságos test lényegesnek tartott tulajdonságait megtartjuk, a lényegtelennek ítélt tulajdonságokat pedig elhanyagoljuk.

Például:

Merev test: Bármely két pontjának távolsága állandó- terhelés hatására nem változik meg. A test pontjai (részei) egymáshoz képest terhelés hatására sem mozdulnak el.

<u>Szilárd test:</u> A szilárd test alakváltozásra képes test. A test pontjainak távolsága, egyeneseinek egymással bezárt szöge terhelés hatására megváltozik. A test felületeinek és térfogatainak alakja és nagysága is megváltozik.

A szilárdságtan szilárd testek terhelés hatására történő viselkedését vizsgálja.

Rugalmas alakváltozás / rugalmas test:

A terhelés hatására alakváltozott szilárd test a terhelés megszüntetése (levétele) után visszanyeri eredeti alakját.

Lineárisan rugalmas alakváltozás: a terhelés és alakváltozás, a terhelés és a belső erőrendszer (ER) között lineáris kapcsolat van.

Nemlineárisan rugalmas alakváltozás: a kapcsolat nem lineáris.

Képlékeny alakváltozás / képlékeny test: Az alakváltozott test tehermentesítés után nem nyeri vissza eredeti alakját.

A tantárgy a lineárisan rugalmas testek kis elmozdulásaival és kis alakváltozásaival foglalkozik.

Kis elmozdulás: a test pontjainak elmozdulása nagyságrendekkel kisebb a test geometriai méreteinél.

<u>Kis alakváltozás:</u> a test alakváltozását jellemző mennyiségek lényegesen kisebbek, mint 1. $\varepsilon \ll 1$, $\gamma \ll 1$.

statikai

Egyenértékűség

szilárdságtani

<u>Statikai egyenértékűség:</u> két erőrendszer statikailag egyenértékű, ha azonos nyomatéki vektorteret hoznak létre.

<u>Szilárdságtani egyenértékűség:</u> két, ugyanazon testre ható erőrendszer szilárdságtanilag egyenértékű, ha azok – a test egy kis részétől eltekintve – a testnek ugyanazt az alakváltozási állapotát hozzák létre.

Például:

Ez a két erőrendszer statikailag egyenértékű, szilárdságtanilag viszont nem.

Az F erő a nyomaték vonatkozásában hatásvonala mentén eltolható \Rightarrow a két erőrendszer statikailag egyenértékű.

A fenti szerkezet az F erő támadáspontjától függően egészen másképp alakváltozik \Rightarrow a két erőrendszer szilárdságtanilag nem egyenértékű.

Saint - Venant elv:

Szilárd test alakváltozásakor a test valamely ugyanazon kis felületén ható nyomatéki terük vonatkozásában egyenértékű erőrendszerek - a kis felület közvetlen környezetének kivételé-vel – jó közelítéssel ugyanazt az alakváltozási állapotot állítják elő.

Például:

A tartóban, a terhelés környezetén kívül jó közelítéssel ugyanaz az alakváltozási állapot jön létre.

A fenti terhelés azonos módon modellhezhető.

Elemi környezet / elemi tömeg:

Minden test ∞ sok tömegpontból felépülő rendszernek is tekinthető.

A tömegpontokhoz úgy jutunk el, hogy a testet ∞ sok kis részre bontjuk.

Tömegpontnak / elemi tömegnek / elemi környezetnek a szilárdságtanban egy olyan kis testrészt tekintünk, amelynek méretei a test méreteihez képest elhanyagolhatóan kicsik.

Az elemi környezet szilárdságtani állapotait az elemi környezet egy pontjához (a középpontjához) kötött mennyiségekkel írjuk le.

Elemi környezet szilárdságtani állapotai:

- elmozdulási állapot,
- alakváltozási állapot,
- feszültségi állapot,
- energia állapot.

Test szilárdságtani állapotai:

Az elemi környezetek szilárdságtani állapotainak összessége (halmaza).

A test szilárdságtani állapotait mezőkkel (terekkel) írjuk le.

Mező / tér: az adott mennyiségeket a hely függvényében ismerjük.

3. SZILÁRDSÁGTANI ÁLLAPOTOK

3.1. Elmozdulási állapot

 \vec{u}_P - a test tetszőleges P pontjának elmozdulás vektora.

 $\vec{r}_{P'} = \vec{r}_P + \vec{u}_P \qquad \Longrightarrow \qquad \vec{u}_P = \vec{u}_{P'} - \vec{u}_P \,.$

Pont / elemi környezet: $\vec{u}_p = u_P \vec{e}_x + v_P \vec{e}_y + w_P \vec{e}_z$.

Test: $\vec{u}(x, y, z) = u(x, y, z) \vec{e}_x + v(x, y, z) \vec{e}_y + w(x, y, z) \vec{e}_z$.

 $\begin{array}{c} u(\vec{r}) = u(x, y, z) \\ v(\vec{r}) = v(x, y, z) \\ w(\vec{r}) = w(x, y, z) \end{array} \} \text{ az elmozdulásmező skaláris koordinátái.}$

3.2. Fajlagos, relatív elmozdulási állapot

<u>Elemi triéder</u>: a *P* pontban felvett terhelés előtt egymásra merőleges \vec{e}_x , \vec{e}_y , \vec{e}_z egységvektor hármas.

Feltételezzük, hogy az elemi triéder a P pont elemi környezetén belül helyezkedik el.

A P pont elemi környezetének elmozdulása felbontható:

- párhuzamos eltolásra és

- fajlagos relatív elmozdulásra.

Párhuzamos eltolás : \vec{u}_P .

A P pontra vonatkoztatott relatív elmozdulások:

 $\vec{u}_x = \vec{u}_A - \vec{u}_P \\ \vec{u}_y = \vec{u}_B - \vec{u}_P \\ \vec{u}_z = \vec{u}_C - \vec{u}_P$ az elemi triéder végpontjainak fajlagos relatív elmozdulás vektorai.

Relatív, mert a P ponthoz viszonyított.

Fajlagos, mert a P ponttól egységnyi távolságra lévő pontok elmozdulása.

Az elemi triéder mozgása :

$$PABC \longrightarrow PA^{**}B^{**}C^{**} \longrightarrow partial and a partial and a partial and a partial parti$$

<u>Célkitűzés:</u> megakarjuk határozni a P elemi környezetében lévő tetszőleges N pont relatív fajlagos elmozdulását.

Az \vec{n} - a *P*-ből az *N* pontba mutató helyvektor (egységvektor).

 $|\vec{n}| = l \Rightarrow$ az N pontok a P középpontú egységnyi sugarú gömbfelületen helyezkednek el.

$$\vec{n} \xrightarrow{\text{hozzárendelés}(\text{leképezés})} \vec{u}_n$$

Derivált tenzor:

$$- \underline{\underline{D}}_{P} = \vec{u}_{x} \circ \vec{e}_{x} + \vec{u}_{y} \circ \vec{e}_{y} + \vec{u}_{z} \circ \vec{e}_{z} .$$
$$- [\underline{\underline{D}}_{P}] = \begin{bmatrix} u_{xx} & u_{xy} & u_{xz} \\ u_{yx} & u_{yy} & u_{yz} \\ u_{zx} & u_{zy} & u_{zz} \end{bmatrix} \text{ nem szimmetrikus tenzor.}$$

A derivált tenzor egyértelműen jellemzi a *P* pont környezetének fajlagos, relatív elmozdulási állapotát.

A <u>D</u> derivált tenzor fizikai tartalma: megadja a P pont elemi környezetében az elmozdulás

hely szerinti megváltozását.

Az N pont fajlagos, relatív elmozdulásvektora: $\vec{u}_n = \underline{\underline{D}}_p \cdot \vec{n}$.

3.3. A fajlagos relatív elmozdulási állapot felbontása

A derivált tenzor felbontása: $\underline{\underline{D}}_{P} = \underbrace{\frac{1}{2} \left(\underline{\underline{D}} + \underline{\underline{D}}^{T} \right)}_{\underline{\underline{A}}_{P}} + \underbrace{\frac{1}{2} \left(\underline{\underline{D}} - \underline{\underline{D}}^{T} \right)}_{\underline{\underline{\Psi}}_{P}}$.

szimmetrikus rész ferdeszimmetrikus rész

Tetszőleges N pont fajlagos, relatív elmozdulásának felbontása:

 $\vec{u}_n = \underline{\underline{D}}_P \cdot \vec{n} = \left(\underline{\underline{A}}_P + \underline{\underline{\Psi}}_P\right) \cdot \vec{n} = \underline{\underline{A}}_P \cdot \vec{n} + \underline{\underline{\Psi}}_P \cdot \vec{n} = \vec{\alpha}_n + \vec{\beta}_n \quad .$

Az N a P pont elemi környezetében levő pont: $\overline{PN} = |\vec{n}|$.

Az N pont alakváltozási vektora : $\vec{\alpha}_n = \underline{\underline{A}}_P \cdot \vec{n}$, ahol $\underline{\underline{A}}_P$ a P pont alakváltozási tenzora.

Az *N* pont merevtestszerű forgási vektora: $\vec{\beta}_n = \underline{\Psi}_P \cdot \vec{n}$, ahol $\underline{\Psi}_P$ a *P* pont forgási tenzora. A fajlagos relatív elmozdulási állapot szemléltetése:

 $PABC \xrightarrow{alakváltozás} PA^*B^*C^* \xrightarrow{merevtestszerű forgás} PA^{**}B^{**}C^{**}$

3.4. Alakváltozási állapot

Az alakváltozási állapot során megváltozik a P pontra illeszkedő \vec{n} egységvektorok hossza és egymással bezárt szöge.

Az értelmezésből következik :

$$\gamma_{xy} = \gamma_{yx}, \ \gamma_{yz} = \gamma_{zy}, \ \gamma_{xz} = \gamma_{zx}.$$

<u>Alakváltozási jellemzők:</u> - fajlagos nyúlások : ε_x , ε_y , ε_z .

- fajlagos szögváltozások : γ_{xy} , γ_{yz} , γ_{xz} .

<u>Előjel:</u> $\varepsilon > 0$ megnyúlás, $\varepsilon < 0$ megrövidülés,

 $\gamma > 0$ az eredeti 90°-os szög csökken , ha $\gamma < 0$ az eredeti 90°-os szög nő. Mértékegység: ε : mm/mm = 1, γ : rad/rad = 1.

Kis alakváltozás: $\varepsilon = 10^{-3} \sim 10^{-4}$, $\gamma = 10^{-3} \sim 10^{-4}$.

Alakváltozási tenzor :

$$- \underline{\underline{A}}_{P} = \vec{\alpha}_{x} \circ \vec{e}_{x} + \vec{\alpha}_{y} \circ \vec{e}_{y} + \vec{\alpha}_{z} \circ \vec{e}_{z} .$$

$$- \left[\underline{\underline{A}}_{P}\right] = \begin{bmatrix} \varepsilon_{x} & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{yx} & \varepsilon_{y} & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{zx} & \frac{1}{2}\gamma_{zy} & \varepsilon_{z} \end{bmatrix} .$$

$$- \cdots - \cdots - \vec{\alpha}_{x} \qquad \vec{\alpha}_{y} \qquad \vec{\alpha}_{z}$$

Az alakváltozási tenzor a derivált tenzor szimmetrikus része.

 $\vec{\alpha}_x = \varepsilon_x \, \vec{e}_x + \frac{1}{2} \gamma_{yx} \, \vec{e}_y + \frac{1}{2} \gamma_{zx} \, \vec{e}_z \,,$ Az alakváltozási vektorok :

$$\vec{\alpha}_{y} = \frac{1}{2} \gamma_{xy} \vec{e}_{x} + \varepsilon_{y} \vec{e}_{y} + \frac{1}{2} \gamma_{zy} \vec{e}_{z},$$

$$\vec{\alpha}_{z} = \frac{1}{2} \gamma_{xz} \vec{e}_{x} + \frac{1}{2} \gamma_{yz} \vec{e}_{y} + \varepsilon_{z} \vec{e}_{z}.$$

Az alakváltozási állapot szemléltetése:

Az alakváltozási jellemzők számítása:

$$\varepsilon_n = \vec{n} \cdot \vec{\alpha}_n = \vec{n} \cdot \underline{\underline{A}} \cdot \vec{n} \quad [\text{mm} / \text{mm} = 1],$$

$$\frac{1}{2} \gamma_{mn} = \vec{m} \cdot \vec{\alpha}_n = \vec{\alpha}_m \cdot \vec{n} = \vec{m} \cdot \underline{\underline{A}} \cdot \vec{n} = \vec{n} \cdot \underline{\underline{A}} \cdot \vec{m} \quad [\text{rad} / \text{rad} = 1].$$

<u>A test alakváltozási állapota</u>: $\underline{A} = \underline{A}(\vec{r}) = \underline{A}(x, y, z).$

A test alakváltozási állapota alakváltozási tenzormezővel jellemezhető.

3.5. Feszültségi állapot, belső erőrendszer

A belső erőrendszert úgy tudjuk vizsgálni, ha a testet gondolatban részekre bontjuk és az így keletkezett testrészek egyensúlyát vizsgáljuk.

Feltételezés: az egész testre egyensúlyi erőrendszer hat.

Egyensúlyi erőrendszer = terhelések + támasztó erőrendszer.

A testet a P pontra illeszkedő síkkal vágjuk ketté.

A P ponton át végtelen sok sík vehető fel.

A szétvágás után az egyes részek egyensúlya akkor biztosított, ha az (S_1) és (S_2) felületen belső erőrendszer lép fel.

<u>Feszültségvektor</u>: $az(S_1)$ és (S_2) metszetfelületen megoszló belső erőrendszer sűrűségvektora. $\vec{\rho} = \vec{\rho}(\vec{r}, \vec{n})$, ahol $\vec{r} - a P$ pont helyvektora, $\vec{n} - az(S_1)$ sík normális egységvektora. <u>Pontbeli feszültség állapot</u> (\vec{r} =állandó):

$$\vec{\rho} = \vec{\rho} \left(\vec{n} \right) = \vec{\rho}_n \quad , \quad \vec{\rho}_{-n} = -\vec{\rho}_n \, .$$

A feszültségvektor összetevői, koordinátái:

 \vec{n} - az elemi felület normálisa,

l, \vec{m} - az elemi felület síkjába eső egységvektorok.

Összetevők:

- Normál feszültségvektor:

$$\vec{\sigma}_n = \underbrace{\left(\vec{n} \cdot \vec{\rho}_n\right)}_{\sigma_n} \vec{n} \ .$$

- Csúsztató feszültségvektor:

$$\vec{\tau}_n = \vec{\rho}_n - \sigma_n \vec{n} = (\vec{n} \times \vec{\rho}_n) \times \vec{n}$$

Koordináták:

- Normál feszültség: $\vec{\sigma}_n = \vec{n} \cdot \vec{\rho}_n = \vec{\rho}_n \cdot \vec{n}$.

- Csúsztató feszültségek: $\vec{\tau}_{nn} = \vec{m} \cdot \vec{\rho}_n = \vec{m} \cdot \vec{\tau}_n$, $\vec{\tau}_{ln} = \vec{l} \cdot \vec{\rho}_n = \vec{l} \cdot \vec{\tau}_n$.

Mértékegység: $\frac{N}{m^2} = Pascal$, $\frac{N}{mm^2} = \frac{MN}{m^2} = MPa$.

Feszültségi tenzor:

A test *P* pontjában a $\vec{\rho}_n$ feszültségvektor az \vec{n} lineáris, homogén függvénye : $\vec{\rho}_n = \underline{\underline{F}} \cdot \vec{n}$. Előállítása:

Az $\underline{\underline{F}}$ feszültségi tenzor mátrixa 6 darab független skalár mennyiséggel adható meg.

A feszültségvektorok koordinátái:

$$\vec{\rho}_{x} = \underline{\underline{F}} \cdot \vec{e}_{x} = \sigma_{x} \vec{e}_{x} + \tau_{yx} \vec{e}_{y} + \tau_{zx} \vec{e}_{z} ,$$

$$\vec{\rho}_{y} = \underline{\underline{F}} \cdot \vec{e}_{y} = \tau_{xy} \vec{e}_{x} + \sigma_{y} \vec{e}_{y} + \tau_{zy} \vec{e}_{z} ,$$

$$\vec{\rho}_{z} = \underline{\underline{F}} \cdot \vec{e}_{z} = \tau_{xz} \vec{e}_{x} + \tau_{yz} \vec{e}_{y} + \sigma_{z} \vec{e}_{z} .$$

Előírt irányokhoz tartozó feszültségkoordináták számítása:

$$\vec{\rho}_n = \underline{\underline{F}} \cdot \vec{n} ,$$

$$\sigma_n = \vec{n} \cdot \vec{\rho}_n = \vec{n} \cdot \underline{\underline{F}} \cdot \vec{n} ,$$

$$\tau_{mn} = \tau_{nm} = \vec{m} \cdot \vec{\rho}_n = \vec{\rho}_n \cdot \vec{m} = \vec{m} \cdot \underline{\underline{F}} \cdot \vec{n} = \vec{n} \cdot \underline{\underline{F}} \cdot \vec{m} .$$

A P ponti feszültségi állapot szemléltetése:

Feszültségi főtengelyek, főfeszültségek:

Ha az \vec{e} egységvektorra merőleges elemi felületen $\vec{\tau}_e = \vec{0}$ és \Rightarrow $\vec{\rho}_e = \sigma_e \vec{e}$

akkor, az \vec{e} feszültségi főtengely (feszültségi főirány), $\vec{\sigma}_e$ főfeszültség és az \vec{e} -re merőleges elemi felület síkja főfeszültségi sík.

Megjegyzések:

 $-\sigma_e$ is lehet zérus $\Rightarrow \vec{\rho}_e = 0.$

 Minden P pontban létezik legalább három főirány, melyek kölcsönösen merőlegesek egymásra.

Feszültségi állapot a főtengelyek koordinátarendszerében:

	σ_1	0	0	
$\left[\underline{\underline{F}}\right] =$	0	σ_{2}	0	
(1,2,3)	0	0	σ_{3}	

 σ_1 σ_1 \vec{e}_2 \vec{e}_2

Megállapodás:

 $-\sigma_e$ is lehet zérus $\Rightarrow \vec{\rho}_e = 0.$

3.5.1. Főtengely problémafőfeszültségek, feszültségi főirányok

A főtengely probléma matematikai szempontból sajátérték feladatnak tekinthető.

A feladat célkitűzése:

$$\rho_{e} = \sigma_{e} \vec{e}, \qquad \vec{\alpha}_{e} = \varepsilon_{e} \vec{e}, \\ \underline{\underline{F}} \cdot \vec{e} = \sigma_{e} \underline{\underline{E}} \cdot \vec{e}, \qquad \underline{\underline{A}} \cdot \vec{e} = \varepsilon_{e} \underline{\underline{E}} \cdot \vec{e}, \\ (\underline{\underline{F}} - \sigma_{e} \underline{\underline{E}}) \cdot \vec{e} = \vec{0}. \qquad (\underline{\underline{A}} - \varepsilon_{e} \underline{\underline{E}}) \cdot \vec{e} = \vec{0}.$$

A főtengely probléma azonos módon írható fel a feszültségi és az alakváltozási állapot esetén. Kérdés: van-e olyan \vec{e} irány, mely kielégíti a fenti egyenleteket ?

Válasz: van, legalább három.

<u>Elnevezés:</u> \vec{e} – főirány/főtengely irány egységvektora, σ_e – főfeszültség, ε_e – főnyúlás.

Az \vec{e} egységvektor koordinátáira nézve homogén, lineáris algebrai egyenletrendszert kapunk.

A nemtriviális megoldás feltétele (csak a feszültségi állapotra mutatjuk be a megoldást):

 $\det \left| \underline{F} - \sigma_e \underline{E} \right| = 0 \; .$

A determináns részletesen felírva: $\begin{vmatrix} (\sigma_x - \sigma_e) & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & (\sigma_y - \sigma_e) & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & (\sigma_z - \sigma_e) \end{vmatrix} = 0.$

A determinánst kifejtve \Rightarrow karakterisztikus egyenlet:

$$\sigma_e^3 - F_I \sigma_e^2 + F_{II} \sigma_e - F_{III} = 0$$

A karakterisztikus egyenlet megoldásai: $\sigma_1 \ge \sigma_2 \ge \sigma_3$ főfeszültségek.

A karakterisztikus egyenlet együtthatói, a feszültségi tenzor skaláris invariánsai:

 $F_I = \sigma_x + \sigma_y + \sigma_z$ - első skalár invariáns,

$$F_{II} = \begin{vmatrix} \sigma_y & \tau_{yz} \\ \tau_{zy} & \sigma_z \end{vmatrix} + \begin{vmatrix} \sigma_x & \tau_{xz} \\ \tau_{zx} & \sigma_z \end{vmatrix} + \begin{vmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{vmatrix} - \text{második skalár invariáns,}$$
$$F_{III} = \begin{vmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{vmatrix} - \text{harmadik skalár invariáns.}$$

Invariáns: olyan mennyiség, amely a koordináta transzformáció során nem változik.

Főirányok meghatározása:

A σ_1 , σ_2 , σ_3 főfeszültségeket visszahelyettesítjük a homogén, lineáris algebrai egyenletrendszerbe és megoldjuk az egyenletrendszert az irányvektor koordinátáira.

$$\sigma_1 \rightarrow \vec{e}_1, \quad \sigma_2 \rightarrow \vec{e}_2, \quad \sigma_3 \rightarrow \vec{e}_3.$$

A három egyenlet nem független egymástól \Rightarrow csak az \vec{e}_i irányvektor koordinátáinak aránya határozható meg.

Az egyértelmű megoldáshoz szükséges a pótlólagos feltétel: $e_{ix}^2 + e_{iy}^2 + e_{iz}^2 = 1$, (i = 1, 2, 3).

A feltétel geometriai tartalma, hogy az \vec{e}_i legyen egységvektor, $|\vec{e}_1| = \sqrt{e_{1x}^2 + e_{1y}^2 + e_{1z}^2} = 1$.

3.5.2. Deviátor és gömbi tenzorok

Feszültségi deviátor tenzor:

$$\underline{\underline{F}}_{d} = \underline{\underline{F}} - \sigma_{k} \underline{\underline{E}}. \qquad \underline{\underline{A}}_{d} = \underline{\underline{A}} - \varepsilon_{k} \underline{\underline{E}}.$$

Közepes feszültség:

$$\sigma_k = \frac{\sigma_x + \sigma_y + \sigma_z}{3} = \frac{F_I}{3}.$$

$$\underline{\underline{A}}_{d} = \underline{\underline{A}} - \varepsilon_{k} \underline{\underline{\underline{E}}}$$

Közepes nyúlás:

$$\varepsilon_k = \frac{\varepsilon_x + \varepsilon_y + \varepsilon_z}{3} = \frac{A_I}{3}.$$

A feszültségi és az alakváltozási tenzor is felbontható tiszta torzulási (deviátoros) és tiszta térfogatváltozási (gömbi) részre.

A deviátor tenzorok tulajdonságai : $F_{d_1} = 0$, $A_{d_1} = 0$.

A deviátor tenzorok első skalár invariánsa zérus.

3.5.3. Mohr-féle feszültségi kördiagram

A kördiagram a P pontbeli feszültségi állapotot szemlélteti a σ_n , $|\tau_n|$ síkon.

Legyen: $\vec{e}_1, \vec{e}_2, \vec{e}_3$ feszültségi főirány

A szemléltetés alapja: $\vec{\rho}_n \rightarrow N$ a $\sigma_n, |\tau_n|$ síkon.

Bizonyítható:

- A γ = állandó normálisok $\vec{\rho}_n$ feszültségvektoraihoz tartozó N pontok a σ_n , $|\tau_n|$ síkon félkörívet alkotnak.
- Ez a megállapítás az α = állandó és β = állandó feltételek esetén is igaz.
- A főfeszültségi síkokba eső normálisok $\vec{\rho}_n~$ feszültségvektoraihoz tartozóN pontok a
 - σ_n , $|\tau_n|$ síkon félkörívet alkotnak. Például: az $(\vec{e}_1 \vec{e}_2)$ sík normálisai: $\gamma = 90^0$.

<u>Kördiagram</u>

A tetszőleges \vec{n} irányhoz tartozó $\vec{\rho}_n$ feszültségvektornak megfelelő N pontok a folytonos félkörívekkel határolt tartományon belül vannak.

Kördiagram szerkesztése, ha egy főfeszültség (például a $\vec{\sigma}_z$) ismert:

A szerkesztés gondolatmenete:

a) Felvesszük az *X*, *Y* pontokat.

b) Meghatározzuk a félkör O_2 középpontját : $O_2 \rightarrow \frac{\sigma_x + \sigma_y}{2}$.

c) Megrajzoljuk a félkört $\rightarrow \sigma_1, \sigma_3$.

d) A $\sigma_1, \sigma_2, \sigma_3$ főfeszültségek ismeretében megrajzoljuk a másik két félkört.

Főfeszültségek meghatározása a diagramból:

$$\sigma_{1} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}},$$

$$\sigma_{2} = \sigma_{z},$$

$$\sigma_{3} = \frac{\sigma_{x} + \sigma_{y}}{2} - \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}.$$

Főirányok meghatározása:

A kördiagramból:
$$tg2\alpha = \frac{2|\tau_{xy}|}{|\sigma_x - \sigma_y|}$$

A τ csúsztató feszültségek mindig a σ növekedésének irányában mutatnak.

1J

Az α szög felmérésének iránya.

3.6. Energia állapot

3.6.1. Alakváltozási energia

a) Fajlagos alakváltozási energia (egységnyi térfogat alakváltozási energiája):

$$u(\vec{r}) = \frac{1}{2} \underbrace{\underline{F}}_{=} \cdots \underbrace{\underline{A}}_{=} = \frac{1}{2} \left(\vec{\rho}_x \circ \vec{e}_x + \vec{\rho}_y \circ \vec{e}_y + \vec{\rho}_z \circ \vec{e}_z \right) \cdots \left(\vec{\alpha}_x \circ \vec{e}_x + \vec{\alpha}_y \circ \vec{e}_y + \vec{\alpha}_z \circ \vec{e}_z \right) =$$
$$= \frac{1}{2} \left(\vec{\rho}_x \cdot \vec{\alpha}_x + \vec{\rho}_y \cdot \vec{\alpha}_y + \vec{\rho}_z \cdot \vec{\alpha}_z \right) = \frac{1}{2} \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{xz} \gamma_{xz} \right)$$

 $u \ge 0.$ A fajlagos alakváltozási energia pozitív skaláris mennyiség.

Az alakváltozási energia felbontása:

$$u = \underbrace{u_T}_{\text{tiszta}} + \underbrace{u_V}_{\text{tiszta}}_{\text{torzulás}}$$
térfogatváltozás

Fajlagos torzulási energia:

$$u_T = \frac{1}{12G} \Big[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2) \Big]$$

 $u_T \ge 0$. A fajlagos torzulási energia pozitív skaláris mennyiség.

Fajlagos térfogatváltozási energia:

$$u_V = \frac{1}{6} A_I F_I = \frac{1}{12G} \frac{1-2\nu}{1+\nu} F_I^2.$$

 $u_V \ge 0$. A fajlagos térfogatváltozási energia pozitív skaláris mennyiség.

Határeset: tökéletesen összenyomhatatlan anyag (nem képes térfogatváltozásra).

Például: kaucsuk, gumi

$$u_V = 0 \implies 1 - 2v = 0 \implies v = 0,5$$

A többi anyagra: $u_V > 0 \implies v < 0.5$.

b) Test alakváltozási energiája:

$$U = \int u \, dV , \text{ ahol } V \text{ a test terfogata.}$$
$$\begin{pmatrix} V \\ \end{pmatrix}$$

3.6.2. Mechanikai energia tétel

Csak a mechanikai hatásokból származó energiákat vesszük figyelembe.

$$E_2 - E_1 = W_K + W_B$$

E – kinetikai energia, 1 – terhelés előtti állapot, 2 - terhelés utáni állapot.

 $W_{\rm K}$ – a külső erők munkája
, $W_{\rm B}$ – a belső erők munkája .

Szilárdságtan/rugalmasságtan: test a terhelés előtt és után is tartós nyugalomban van.

$$E_{1} = E_{2} \equiv 0 \implies W_{K} + W_{B} \equiv 0.$$

$$W_{K} = -W_{B} = \underbrace{U}_{\text{rugalmas}} + \underbrace{W_{D}}_{\text{disszipációs}}$$

$$\underset{(\text{visszanyerhető}}{\text{rész}} (\text{nem visszanyerhető} \text{rész})$$

Rugalmas alakváltozás:

A külső munka teljes egészében visszanyerhető : $W_K = -W_B = U$. Fontos tulajdonság: az energia pozitív skaláris mennyiség.

4. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

Méretezés, ellenőrzés célkitűzése:

Annak elérése, hogy a szerkezet rendeltetésszerű használat esetén előírt ideig és előírt biztonsággal az adott terhelést elviselje anélkül, hogy benne károsodás lépne fel.

Statikus terhelés : a terhelés időben nem változik.

Méretezés, ellenőrzés statikus terhelésnél

Pontbeli jellemző alapján (feszültségcsúcsra)

Szerkezeti jellemző alapján (teherbírásra, alakváltozásra)

4.1. Méretezés, ellenőrzés feszültségcsúcsra

<u>Károsodás:</u>	Anyag/szilárdsági jellemző:
-maradó (képlékeny) alakváltozás,	$R_{P0,2}$ – folyáshatár,
- törés, szakadás.	R_m – szakítószilárdság.

Ezek az anyagjellemzők szakító kisérlettel határozhatóak meg.

a) Speciális eset: egytengelyű feszültségi állapot.

 $\sigma_z \leq \sigma_{meg} = \frac{\sigma_{jell}}{n}$, ahol *n* a biztonsági tényező,

 σ_{iell} a károsodáshoz tartozó szilárdsági jellemző.

Itt nincs probléma, mert csak egy főfeszültség koordináta nem nulla : $\sigma_z \neq 0$.

Az anyagjelemzők is az egytengelyű feszültségi állapotra állnak rendelkezésre, például:

b) <u>Általános eset:</u> tetszőleges térbeli feszültségi állapot

$$\begin{bmatrix} \underline{F} \end{bmatrix} = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix} \xrightarrow{\text{Probléma}} : \text{ nem tudjuk, hogy melyik feszültségi koordinátát hasonlítsuk össze a } \sigma_{meg} \text{ -el !}$$

Redukált feszültség / egyenértékű feszültség / összehasonlító feszültség

<u>Definíció</u> : Olyan feszültség, amely a pontbeli feszültdégi állapotot a károsodás szempontjából egyértelműen jellemzi.

A redukált feszültség bevezetésével a tetszőleges tetszőleges térbeli feszültségi állapotot egytengelyű feszültségi állapotra vezetjük vissza. A redukált feszültség kiszámítására különböző elméletek vannak.

 α) <u>Rideg anyagok:</u>

<u>Coulomb elmélet:</u> egy feszültségi állapot akkor nem okoz károsodást, ha a feszültségi állapothoz tartozó legnagyobb normál feszültség kisebb az anyag szakítószilárdságánál.

Főfeszültségek jelölése: $\sigma_1 \ge \sigma_2 \ge \sigma_3$.

A pontban fellépő legnagyobb normálfeszültség: $\sigma_{\text{max}} = \max(|\sigma_1|, |\sigma_3|).$

Coulomb féle redukált feszültség: σ_{red} (Coulomb) = $\sigma_{max} = max(|\sigma_1|, |\sigma_3|)$.

Méretezés, ellenőrzés:

 $\sigma_{red}(Coulomb) \le \sigma_{meg} = \frac{R_m}{n}$, ahol *n* az előírt biztonsági tényező.

 β) <u>Alakítható anyagok</u>

Alakítható anyag : képlékeny alakváltozásra képes.

A törés csak a rugalmas alakváltozás után következik be.

Például a fémek, acél, alumínium, stb.

<u>Mohr elmélet:</u> egy pontbeli feszültségi állapot akkor nem okoz károsodást, ha a feszültségi állapothoz tartozó legnagyobb Mohr kör átmérője kisebb, mint a megengedett feszültség.

Mohr-féle redukált feszültség : $\sigma_{red} (Mohr) = \sigma_1 - \sigma_3$.

Méretezés, ellenőrzés:

$$\sigma_{red}(Mohr) \leq \sigma_{meg} = \frac{\sigma_{jell}}{n},$$

ahol $\sigma_{jell} = R_{p0,2}$, vagy $\sigma_{jell} = R_m$ és az *n* az előírt biztonsági tényező.

Huber-Mises-Hencky elmélet:

Két feszültségi állapot a károsodás szempontjából akkor egyformán veszélyes, ha a torzulási alakváltozási energiájuk megegyezik:

$$u_{T_1} = u_{T_2}$$

A Huber-Mises-Hencky elmélet szerinti redukált feszültség arányos az u_T torzulási energiával.

$$\sigma_{red}(HMH) = \sqrt{6 G u_T} = \sqrt{\frac{1}{2} \left[\left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_2 - \sigma_3 \right)^2 + \left(\sigma_3 - \sigma_1 \right)^2 \right]},$$

$$\sigma_{red}(HMH) = \sqrt{\frac{1}{2} \left[\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + \left(\sigma_z - \sigma_x \right)^2 + 6 \left(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2 \right) \right]}$$

Méretezés, ellenőrzés:

$$\sigma_{red}(HMH) \leq \sigma_{meg} = \frac{\sigma_{jell}}{n}.$$

A Mohr és a HMH szerint redukált feszültség csak kis mértékben tér el egymástól.

Általában : $\sigma_{red}(HMH) < \sigma_{red}(Mohr)$.

c) Méretezés, ellenőrzés általános gondolatmenete rúdszerkezetek esetén:

- A rúdszerkezet veszélyes keresztmetszetének megkeresése.

ahol legnagyobbak az igénybevételek

- A veszélyes keresztmetszen a veszélyes pontok megkeresése. ahol σ_{red} legnagyobb

- A veszélyes pontokban a méretezés, ellenőrzés elvégzése: $\sigma_{red \max} \leq \sigma_{meg}$.

4.2. Méretezés, ellenőrzés szerkezeti jellemzők alapján

a) Teherbírásra:

- Húzás-nyomás esetén:

Méretezés, ellenőrzés

 $N \le N_{\text{meg}} = \frac{N_K}{n_K}$, n_K -előírt biztonsági tényező.

- Egyenes hajlítás esetén:

 M_{hx} növelés

tönkremenetel

Hajlítónyomaték: $M_{hx} = \int_{A} y \sigma_z dA$.

A tönkremenetelhez tartozó határ hajlítónyomaték :

$$M_{K} = \int_{(A)} y \sigma_{z} dA = R_{p0,2} \underbrace{\int_{(A')} y dA + (-R_{p0,2})}_{S_{x}(A')} \underbrace{\int_{(A'')} y dA}_{S_{x}(A'')}.$$

 $M_{K} = R_{p0,2} \Big[S_{x} \big(A' \big) - S_{x} \big(A'' \big) \Big].$

Tiszta hajlítás \Rightarrow a feszültségeloszlásból nem származhat eredő erő \Rightarrow A' = A''. Például:

Kétszeres szimmetrikus keresztmetszet:

Méretezés, ellenőrzés: $M_{hx} \le M_{meg} = \frac{M_K}{n_K}$, n_K -előírt biztonsági tényező.

- Csavarás (kör , körgyűrű) esetén:

Határnyomaték:

$$M_{cK} = \int_{\left(A\right)} R \ \tau_F \ dA = \tau_F \ \int_{\left(A\right)} R \ dA \quad ,$$
$$\underbrace{\left(A\right)}_{S_P}$$

S_P – poláris statikai nyomaték.

$$M_{cK} = \tau_F S_P$$

Méretezés, ellenőrzés: $M_c \leq M_{cmeg} = \frac{M_{cK}}{n_K}$, n_K – előírt biztonsági tényező.

b) Alakváltozásra

Például: húzás – nyomás

Alakváltozásra kell méretezni például: megmunkáló gépeket, hidakat, zsilipeket, nagyméretű csőelzárókat, stb.

5. RUGALMASSÁGTANI EGYENLETEK

Rugalmas test állapotának jelemzői:

$-\vec{u}=\vec{u}(x,y,z)$	elmozdulási vektormező,
$-\underline{\underline{A}} = \underline{\underline{A}}(x, y, z)$	alakváltozási tenzormező,
$-\underline{\underline{F}} = \underline{\underline{F}}(x, y, z)$	feszültségi tenzormező,
-u=u(x,y,z)	fajlagos alakváltozási energia mező.

Kérdés: milyen általános összefüggések állnak fent ezen állapotjellemzők között ?

↓

Rugalmasságtani egyenletek.

A rugalmasságtani feladat megfogalmazása:

Adott: - a test alakja és méretei,

- a test anyagi viselkedését jellemző mennyiségek,
- terhelés és megtámasztás.

Keresett: \vec{u} , \underline{F} , \underline{A} , u.

Feladat: a rugalmasságtani egyenletek megoldása.

5.1. Egyensúlyi egyenletek – feszültségi állapot

A testből kiragadunk egy olyan (V) térfogatot, mely teljes egészében a test belsejében van.

A (V) környezetének mechanikai hatásait erőkkel vesszük figyelembe:

- térfogaton megoszló: $d\vec{F} = \vec{q} dV$,

- felületen megoszló: $d\vec{F} = \vec{\rho} \, dA = \underline{F} \cdot \vec{n} \, dA$.

A(V) testrész egyensúlyban van.

Az egyensúly feltétele: a) $\vec{F} = \vec{0}$

b)
$$\vec{M}_0 = 0$$

a) Egyensúlyi egyenletek:

$$\vec{F} = \vec{0} = \int_{(V)} \vec{q} \, dV + \int_{(A)} \underline{F} \cdot \vec{n} \, dA$$

Gauss-Osztrogradszkij –féle integrál átalakítási tétel : $\int_{(A)} \underline{\underline{F}} \cdot \vec{n} \, dA = \int_{(V)} \underline{\underline{F}} \cdot \nabla \, dV.$

Hamilton-féle differenciál operátor :

- derékszögű descartesi koordináta-rendszerben (DDKR-ben)

$$\nabla = \frac{\partial}{\partial x} \vec{e}_x + \frac{\partial}{\partial y} \vec{e}_y + \frac{\partial}{\partial z} \vec{e}_z \quad ,$$

- henger koordináta-rendszerben (HKR-ben)

$$\nabla = \frac{\partial}{\partial R} \vec{e}_R + \frac{1}{R} \frac{\partial}{\partial \varphi} \vec{e}_{\varphi} + \frac{\partial}{\partial z} \vec{e}_z \,.$$

Alkalmazva a Gauss-Osztrogradszkij tételt: $\vec{F} = \vec{0} = \int_{(V)} (\vec{q} + \vec{F} \cdot \nabla) dV$.

Az integrálnak bármely (V) választás esetén el kell tünnie \Rightarrow az integrandusz zérus.

 $\vec{q} + \vec{F} \cdot \nabla = \vec{0}$ egyensúlyi egyenlet(ek).

(1 vektor egyenlet = 3 darab skalár egyenlet)

A feszültségi tenzor diadikus alakja: $\underline{F} = \vec{\rho}_x \circ \vec{e}_x + \vec{\rho}_y \circ \vec{e}_y + \vec{\rho}_z \circ \vec{e}_z$.

A térfogaton megoszló terhelés sűrűségvektora: $\vec{q} = q_x \vec{e}_x + q_y \vec{e}_y + q_z \vec{e}_z$.

A skalár egyensúlyi egyenletek előállítása a DDKR-ben:

$$\left(\vec{\rho}_x \circ \vec{e}_x + \vec{\rho}_y \circ \vec{e}_y + \vec{\rho}_z \circ \vec{e}_z\right) \cdot \left(\frac{\partial}{\partial x}\vec{e}_x + \frac{\partial}{\partial y}\vec{e}_y + \frac{\partial}{\partial z}\vec{e}_z\right) + \vec{q} = \vec{0}$$

$$\frac{\partial\vec{\rho}_x}{\partial x} + \frac{\partial\vec{\rho}_y}{\partial y} + \frac{\partial\vec{\rho}_z}{\partial z} + \vec{q} = \vec{0}.$$

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + q_x = 0$$

$$\frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \sigma_y}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} + q_y = 0$$

$$\frac{\partial \tau_{zx}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \frac{\partial \sigma_z}{\partial x} + q_z = 0$$

$$\frac{\partial \tau_{zx}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \frac{\partial \sigma_z}{\partial x} + q_z = 0$$

b) A feszültségi tenzor szimmetriája:

$$\vec{M}_0 = \vec{0} = \int_{(V)} \vec{r} \times \vec{q} \, dV + \int_{(A)} \vec{r} \times \underline{\underline{F}} \cdot \vec{n} \, dA \, .$$

Átalakítás a Gauss-Osztrogradszkij féle integrál átalakítási tétellel:

$$\vec{0} = \int_{\left(V\right)} \left(\vec{r} \times \vec{q} + \vec{r} \times \underline{\underline{F}} \cdot \nabla\right) dV$$

Az integrálnak bármely (V) választása esetén el kell tünnie \Rightarrow az integrandusz zérus.

A szorzat differenciálását elvégezve:

$$\vec{0} = \vec{r} \times \underbrace{\left(\vec{q} + \underbrace{\vec{F}} \cdot \nabla\right)}_{=\vec{0} \text{ egyensúlyi}} + \vec{r} \times \underline{F} \cdot \nabla$$

$$=\vec{0} \text{ egyensúlyi}$$
egyenlet
$$\vec{r} \times \underline{F} \cdot \nabla = \left(\frac{\partial \vec{r}}{\partial x} \times \underline{F}\right) \cdot \vec{e}_x + \left(\frac{\partial \vec{r}}{\partial y} \times \underline{F}\right) \cdot \vec{e}_y + \left(\frac{\partial \vec{r}}{\partial z} \times \underline{F}\right) = 0.$$

$$\underbrace{\vec{e}_x \quad \vec{p}_x \quad \vec{p}_x \quad \vec{e}_y \quad \vec{p}_y \quad \vec{e}_z \quad \vec{p}_z}_{\vec{e}_z \quad \vec{p}_z} = \underbrace{\vec{e}_z \quad \vec{p}_z}_{\vec{e}_z \quad \vec{p}_z}$$

A feszültségi tenzor vektorinvariánsa: $\vec{F}_x = -\frac{1}{2} \left(\vec{\rho}_x \times \vec{e}_x + \vec{\rho}_y \times \vec{e}_y + \vec{\rho}_z \times \vec{e}_z \right).$

Invariáns: koordináta-rendszertől független (koordináta transzmormációval szemben változatlan, állandó).

Például az \vec{F}_x vektor x irányú koordinátája:

$$0 = -\vec{F}_x \cdot \vec{e}_x = \frac{1}{2} \Big[\underbrace{(\vec{\rho}_x \times \vec{e}_x) \cdot \vec{e}_x}_{=0 \text{ vegyes}} + (\vec{\rho}_y \times \vec{e}_y) \cdot \vec{e}_x + (\vec{\rho}_z \times \vec{e}_z) \cdot \vec{e}_x \Big]$$

$$\begin{split} 0 &= \vec{\rho}_y \cdot \vec{e}_z + \vec{\rho}_z \cdot \vec{e}_y \\ 0 &= -\tau_{zy} + \tau_{yz} \implies \tau_{zy} = \tau_{yz} \,. \end{split}$$

Ugyanezzel a gondolatmenettel elő lehet állítani az \vec{F}_x többi koordinátáját is:

$$\tau_{xz} = \tau_{zx} \quad , \ \tau_{xy} = \tau_{yx} \, .$$

Az <u>F</u> feszültségi tenzor szimmetrikus.

Tétel: Minden szimmetrikus tenzor vektorinvariánsa zérus.

c) Az eredmények összefoglalása :

$$\vec{F} = \vec{0} \implies \underline{F} \cdot \nabla + \vec{q} = \vec{0}$$
 – egyensúlyi egyenlet.

$$\vec{M}_0 = \vec{0} \implies \underline{F} = \underline{F}^T$$
 – a feszültségi tenzor szimmetrikus.

Egyensúlyi egyenletek: kapcsolat a térfogati terhelés és a belső erőrendszer feszültségi állapota között.

5.2. Kinematikai /geometriai/ kompatibilitási egyenletek

5.2.1. Az elmozdulásmező derivált tenzora

A test egy tetszőleges *P* pontjának elemi környezetét vizsgáljuk meg.

A Q a P pont elemi környezetében helyezkedik el.

$$d\vec{r} = dx\,\vec{e}_x + dy\,\vec{e}_y + dz\,\vec{e}_z$$

$$\vec{u} = \vec{u}(x, y, z) = u(x, y, z)\vec{e}_x + v(x, y, z)\vec{e}_y + w(x, y, z)\vec{e}_z,$$

$$\Delta \vec{u} = \vec{u}_O - \vec{u}_P = \vec{u} - \vec{u}_P$$

Sorfejtés:

$$\vec{u} = \vec{u}_{p} + \frac{\partial \vec{u}}{\partial x}\Big|_{p} dx + \frac{\partial \vec{u}}{\partial y}\Big|_{p} dy + \frac{\partial \vec{u}}{\partial z}\Big|_{p} dz + (((\dots,\dots,\dots,\dots,\dots,\dots,\dots,\dots,)))$$

Lineáris közelítés esetén: $\Delta \vec{u} \approx d\vec{u}$.

Ha
$$dy = dz = 0 \implies \Delta \vec{u} = \vec{u}_x dx$$
,
Ha $dx = dz = 0 \implies \Delta \vec{u} = \vec{u}_y dy$,
Ha $dx = dy = 0 \implies \Delta \vec{u} = \vec{u}_z dz$.

Relatív elmozdulás vektorok:

$$\vec{u}_{x} = \frac{\partial \vec{u}}{\partial x} = \frac{\partial u}{\partial x}\vec{e}_{x} + \frac{\partial v}{\partial x}\vec{e}_{y} + \frac{\partial w}{\partial x}\vec{e}_{z},$$

$$\vec{u}_{y} = \frac{\partial \vec{u}}{\partial y} = \frac{\partial u}{\partial y}\vec{e}_{x} + \frac{\partial v}{\partial y}\vec{e}_{y} + \frac{\partial w}{\partial y}\vec{e}_{z},$$

$$\vec{u}_{z} = \frac{\partial \vec{u}}{\partial z} = \frac{\partial u}{\partial z}\vec{e}_{x} + \frac{\partial v}{\partial z}\vec{e}_{y} + \frac{\partial w}{\partial z}\vec{e}_{z}.$$

Az elmozdulásmező hely szerinti megváltozása lineáris közelítés esetén:

$$\Delta \vec{u} \approx d\vec{u} = \frac{\partial \vec{u}}{\partial x} \Big|_{p} dx + \frac{\partial \vec{u}}{\partial y} \Big|_{p} dy + \frac{\partial \vec{u}}{\partial z} \Big|_{p} dz$$

$$\underbrace{\vec{e}_{x} \cdot d\vec{r}}_{\vec{v}_{x} \circ \vec{e}_{x}} \cdot d\vec{r} + \underbrace{\vec{e}_{y} \cdot d\vec{r}}_{\vec{v}_{y} \circ \vec{e}_{y}} \cdot d\vec{r} + \underbrace{\vec{e}_{z} \cdot d\vec{r}}_{\vec{v}_{z} \circ \vec{e}_{z}} \cdot d\vec{r}$$

$$d\vec{u} = \left(\vec{u}_{x} \circ \vec{e}_{x} + \vec{u}_{y} \circ \vec{e}_{y} + \vec{u}_{z} \circ \vec{e}_{z}\right) \cdot d\vec{r} = \left(\frac{\partial \vec{u}}{\partial x} \circ \vec{e}_{x} + \frac{\partial \vec{u}}{\partial y} \circ \vec{e}_{y} + \frac{\partial \vec{u}}{\partial z} \circ \vec{e}_{z}\right) \cdot d\vec{r} = \underline{D} \cdot d\vec{r}$$

$$d\vec{u} = \underline{D} \cdot d\vec{r}$$

Az elmozdulásmező derivált tenzora:

$$\underline{\underline{D}} = \left(\vec{u}_x \circ \vec{e}_x + \vec{u}_y \circ \vec{e}_y + \vec{u}_z \circ \vec{e}_z\right), \quad \underline{\underline{D}} = \frac{\partial \vec{u}}{\partial x} \circ \vec{e}_x + \frac{\partial \vec{u}}{\partial y} \circ \vec{e}_y + \frac{\partial \vec{u}}{\partial z} \circ \vec{e}_z.$$

 $\underline{D} = \vec{u} \circ \nabla$. Nem szimmetrikus tenzor !

A derivált tenzor mátrixa az xyz koordináta-rendszeben:

$$\begin{bmatrix} \underline{D} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$$
Az elmozdulásmező skaláris koordinátái:
$$u = u(x, y, z),$$
$$v = v(x, y, z),$$
$$w = w(x, y, z).$$

A derivált tenzor felbontása: $\underline{\underline{D}} = \underbrace{\frac{1}{2} \left(\underline{\underline{D}} + \underline{\underline{D}}^T\right)}_{\text{szimmetrikus}} + \underbrace{\frac{1}{2} \left(\underline{\underline{D}} - \underline{\underline{D}}^T\right)}_{\text{ferdeszimmetrikus}}$

5.2.2. Az alakváltozási tenzor

$$\underline{\underline{A}} = \frac{1}{2} \left(\underline{\underline{D}} + \underline{\underline{D}}^T \right) = \frac{1}{2} \left(\vec{u} \circ \nabla + \nabla \circ \vec{u} \right).$$

Kis alakváltozások esetén ez a tenzoregyenlet a kinematikai/geometriai egyenlet. Ez az egyenlet az \vec{u} elmozdulásmező és az \underline{A} alakváltozási (tenzor) mező kapcsolatát adja meg.

Az alakváltozási tenzor elemeinek jelölése:

$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \varepsilon_x & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{yx} & \varepsilon_y & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{zx} & \frac{1}{2}\gamma_{zy} & \varepsilon_z \end{bmatrix}$$
Szimmetrikus tenzor.
$$\vec{\alpha}_x \quad \vec{\alpha}_y \quad \vec{\alpha}_z$$

A derivált tenzor felhasználásával az alakváltozási tenzor koordinátái:

$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \end{bmatrix}$$
$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) & \frac{\partial w}{\partial z} \end{bmatrix}$$

A kinematikai /geometriai egyenletek skaláris alakja:

$$\begin{split} \varepsilon_{x} &= \frac{\partial u}{\partial x} , \qquad & \gamma_{xy} = \gamma_{yx} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} , \\ \varepsilon_{y} &= \frac{\partial v}{\partial y} , \qquad & \gamma_{yz} = \gamma_{zy} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} , \\ \varepsilon_{z} &= \frac{\partial w}{\partial z} , \qquad & \gamma_{xz} = \gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} . \end{split}$$

5.2.3. A forgató tenzor

$$\underline{\Psi} = \frac{1}{2} \left(\underline{\underline{D}} - \underline{\underline{D}}^T \right) = \frac{1}{2} \left(\vec{u} \circ \nabla - \nabla \circ \vec{u} \right)$$

$$\begin{bmatrix} \underline{\Psi} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) & 0 & \frac{1}{2} \left(\frac{\partial v}{\partial z} - \frac{\partial w}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial w}{\partial x} - \frac{\partial u}{\partial z} \right) & \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) & 0 \end{bmatrix}$$

A forgató tenzornak a szilárdságtanban / rugalmasságtanban nincs további szerepe.

A forgató tenzor az elemi környezet merevtestszerű szögelforfulását jellemzi.

5.3. Anyagegyenletek – lineárisan rugalmas anyag

Anyagegyenlet: összefüggés az alakváltozási és a feszültségi állapot között.

5.3.1. Általános Hooke-törvény izotróp anyagra

$$\alpha) \underline{A} = \frac{1}{2G} \left(\underline{E} - \frac{v F_I}{1 + v} \underline{E} \right)$$
, ahol
$$\beta) \underline{E} = 2G \left(\underline{A} + \frac{v A_I}{1 - 2v} \underline{E} \right)$$
, ahol
$$\alpha - csúsztató rugalmassági modulus v - Poisson tényező$$
 anyagjellemzők.

A feszültségi/alakváltozási tenzor első skalár invariánsai:

 $F_I = \sigma_x + \sigma_y + \sigma_z = \sigma_1 + \sigma_2 + \sigma_3, \qquad A_I = \varepsilon_x + \varepsilon_y + \varepsilon_z = \varepsilon_1 + \varepsilon_2 + \varepsilon_3.$

Invariáns: a koordináta-transzformációval szemben változatlan, állandó. Az α) alak skaláris egyenletei:

$$\begin{split} \varepsilon_{x} &= \frac{1}{2G} \bigg[\sigma_{x} - \frac{\nu}{1+\nu} \big(\sigma_{x} + \sigma_{y} + \sigma_{z} \big) \bigg], & \qquad \frac{1}{2} \gamma_{yx} = \frac{1}{2} \tau_{yx} \implies \gamma_{xy} = \frac{\tau_{yx}}{G}, \\ \varepsilon_{y} &= \frac{1}{2G} \bigg[\sigma_{y} - \frac{\nu}{1+\nu} \big(\sigma_{x} + \sigma_{y} + \sigma_{z} \big) \bigg], & \qquad \frac{1}{2} \gamma_{yz} = \frac{1}{2} \tau_{yz} \implies \gamma_{yz} = \frac{\tau_{yz}}{G}, \\ \varepsilon_{z} &= \frac{1}{2G} \bigg[\sigma_{z} - \frac{\nu}{1+\nu} \big(\sigma_{x} + \sigma_{y} + \sigma_{z} \big) \bigg], & \qquad \frac{1}{2} \gamma_{xz} = \frac{1}{2} \tau_{xz} \implies \gamma_{xz} = \frac{\tau_{xz}}{G}. \end{split}$$

A β) alak skaláris egyenletei:

_

_

$$\begin{split} \sigma_{x} &= 2G \bigg[\varepsilon_{x} + \frac{\nu}{1 - 2\nu} \big(\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} \big) \bigg], \\ \sigma_{y} &= 2G \bigg[\varepsilon_{y} + \frac{\nu}{1 - 2\nu} \big(\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} \big) \bigg], \\ \sigma_{z} &= 2G \bigg[\varepsilon_{z} + \frac{\nu}{1 - 2\nu} \big(\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} \big) \bigg], \\ \end{split} \qquad \begin{aligned} \tau_{xy} &= G \gamma_{xy}, \\ \tau_{xz} &= G \gamma_{xz}. \end{aligned}$$

Más anyagállandók bevezetése:

a) Egyszerű Hooke- törvény – egytengelyű feszültségi állapot (húzás-nyomás/hajlítás):

<u>Egyszerű Hooke-törvény:</u> $\sigma_z = E \varepsilon_z$.

Általános Hooke- törvény:

$$\sigma_{z} = 2G \left[\varepsilon_{z} + \frac{v}{1 - 2v} \left(\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} \right) \right] =$$

$$= 2G \left[\varepsilon_{z} + \frac{v}{1 - 2v} \left(-v\varepsilon_{z} - v\varepsilon_{z} + \varepsilon_{z} \right) \right] = 2G \left[\varepsilon_{z} + v\varepsilon_{z} \right] = 2G \left[1 + v \right] \varepsilon_{z}.$$

$$2G = \frac{E}{1 + v} \implies E = 2G \left(1 + v \right), \text{ abol } E \text{ a Young féle rugalmassági modulus.}$$

b) Összefüggés az első skalár invariánsok között:

$$A_{I} = \varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} = \frac{1}{2G} \left[\underbrace{\sigma_{x} + \sigma_{y} + \sigma_{z}}_{F_{I}} - 3 \frac{v}{1 + v} F_{I} \right],$$

$$A_{I} = \frac{1}{2G} \frac{1 - 2\nu}{1 + \nu} F_{I} = \frac{1}{3K} F_{I} .$$

K- térfogati rugalmassági modulus (nem független anyagállandó).

$$3K = 2G\frac{1+\nu}{1-2\nu} = \frac{E}{1-2\nu}$$

c) Fajlagos térfogatváltozás:

$$\frac{dV}{V} = \frac{(1 + \varepsilon_x)(1 + \varepsilon_y)(1 + \varepsilon_z) - 1 \cdot 1 \cdot 1}{1 \cdot 1 \cdot 1} \approx \varepsilon_x + \varepsilon_y + \varepsilon_z = A_I \quad (\approx \rightarrow \text{ lineáris közelítéssel })$$

Lineárisan rugalmas, izotróp anyag anyagállandói: E, v, G, K – ezek közül kettő függetelen. <u>Megjegyzés:</u> $A_{dI} = 0$, $F_{dI} = 0$ mert a deviátor tenzorok a test tiszta torzulását jellemzik.

Az izotróp anyagra vonatkozó Hooke- törvény felírása mátrix alakban:

$$\varepsilon_{x} = \frac{1}{2G} \left[\sigma_{x} - \frac{\nu}{1+\nu} \left(\sigma_{x} + \sigma_{y} + \sigma_{z} \right) \right],$$

Felhasználva a: $\frac{1}{2G} = \frac{1+\nu}{E} \text{ összefüggést}$ $\varepsilon_x = \frac{1+\nu}{E} \left[\sigma_x - \frac{\nu}{1+\nu} (\sigma_x + \sigma_y + \sigma_z) \right] = \frac{1}{E} \sigma_x - \frac{\nu}{E} \sigma_y - \frac{\nu}{E} \sigma_z,$ $\varepsilon_y = \frac{1+\nu}{E} \left[\sigma_y - \frac{\nu}{1+\nu} (\sigma_x + \sigma_y + \sigma_z) \right] = \frac{1}{E} \sigma_y - \frac{\nu}{E} \sigma_x - \frac{\nu}{E} \sigma_z,$ $\varepsilon_z = \frac{1+\nu}{E} \left[\sigma_z - \frac{\nu}{1+\nu} (\sigma_x + \sigma_y + \sigma_z) \right] = \frac{1}{E} \sigma_z - \frac{\nu}{E} \sigma_x - \frac{\nu}{E} \sigma_y,$ $\gamma_{xy} = \frac{1}{G} \tau_{xy}, \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}, \quad \gamma_{xz} = \frac{1}{G} \tau_{xz}.$

Mátrixos alak:

\mathcal{E}_{x}		$\frac{1}{E}$	$-\frac{\nu}{E}$	$-\frac{\nu}{E}$				σ_x
\mathcal{E}_{y}		$-\frac{\nu}{E}$	$\frac{1}{E}$	$-\frac{\nu}{E}$		<u>0</u>	-	σ_x
\mathcal{E}_{z}	=	$-\frac{\nu}{E}$	$-\frac{\nu}{E}$	$\frac{1}{E}$				σ_y
γ_{xy}					$\frac{1}{G}$	0	0	$ au_{xy}$
γ_{yz}			<u>0</u>		0	$\frac{1}{G}$	0	$ au_{yz}$
γ_{xz}		_			0	0	$\left \frac{1}{G}\right $	τ_{xz}

Két független anyagállandó van .

Tömören: $\underline{\varepsilon} = \underline{C} \underline{\sigma}$, \underline{C} anyagállandók mátixa.

5.3.2. Általános Hooke-törvény ortopróp anyagra

Anizotróp anyag: az anyagi tulajdonságok (viselkedés) irányától függő.

<u>Ortotróp anyag:</u> az anizotróp anyag speciális esete, az anyagi viselkedés egymásra merőleges irányokban vett anyagjellemzőkkel leírható.

Azért foglalkozunk ezzel az esettel, mert a gyakorlatban elterjedt szálerősítésű műanyag kompozitok közül sok ezzel az anyagmodellel leírható.

Kompzit anyag: többféle, eltérő tulajdonságú anyagból összetett anyag.

Részei: - erősítés : üvegszál, szénszál, aramid szál, stb.

- mátrix (ágyazó anyag) epoxi, poliészter, poliamid, stb.

Tapasztalat: a kompozit anyag sok esetben jobb mechanikai tulajdonságokkal rendelkezik, mint az alkotórészei.

Fő előnyök: nagy szilárdság, kis tömegsűrűség (önsúly), korrózió állóság, stb.

Példa: egy irányban futó, párhuzamos hosszú szálakkal erősített műanyag

1, 2, 3 a kompozit anyagi főirányai (az anyag természetes / anyagi KR-e).

Valóság: az anyag nem homogén (a szálak és a mátrix anyaga eltérő tulajdonságú).

Mechanikai modell:

Egy olyan homogén, ortotróp anyag, amely nem alkalmas a szálakban, vagy a mátrixban fellépő mechanikai jellemzők (alakváltozások, feszültségek) meghatározására, hanem csak a komopzit anyag egy olyan kisebb tartományának átlagos jellemzői határozhatók meg vele, amelyben elegendően sok szál van.

Áltános Hooke-törvény ortotróp anyagra:

$$\begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{13} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{1}} & -\frac{\nu_{21}}{E_{2}} & -\frac{\nu_{31}}{E_{3}} & & & \\ -\frac{\nu_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{\nu_{32}}{E} & & \underline{0} \\ -\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & & & \\ & & & & \frac{1}{G_{12}} & 0 & 0 \\ & & & & & 0 & \frac{1}{G_{23}} & 0 \\ & & & & & 0 & 0 & \frac{1}{G_{13}} \end{bmatrix} \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \tau_{12} \\ \tau_{23} \\ \tau_{13} \end{bmatrix}$$

 $E_{\!1}$, $E_{\!2}$, $E_{\!3}$ – az 1,2,3 irányú húzáshoz tartozó rugalmassági modulus ,

 ${\it G}_{\rm 12}$, ${\it G}_{\rm 23}$, ${\it G}_{\rm 31}$ – a csúsztató rugalmassági modulusok ,

 v_{12} , v_{23} , $v_{31}\,$ – a Poisson tényezők .

Például: v_{12} – az 1 irányú húzáshoz tartozó 2 irányú kontrakció : $\varepsilon_2 = -v_{12} \varepsilon_1$.

 $\underline{\varepsilon} = \underline{C} \underline{\sigma}$. Az ortotróp Hooke-törvény mátrixos felírás esetén formailag ugyanolyan alakban írható fel, mint az izotróp Hooke-törvény.

Az anyagtörvény izotróp és ortotróp esetre formailag azonos, különbség a \underline{C} anyagállandó mátrixban van.

Közös tulajdonság: C szimmetrikus mátrix (energetikai okokból következően)

Szimmetria : $\frac{V_{21}}{E_2} = \frac{V_{12}}{E_1}$, $\frac{V_{32}}{E_3} = \frac{V_{23}}{E_2}$, $\frac{V_{31}}{E_3} = \frac{V_{13}}{E_1}$.

A lineárisan rugalmas ortotróp anyag viselkedése 9 független anyagállandóval írható le: $E_1, E_2, E_3 \mid v_{12}, v_{23}, v_{13} \mid G_{12}, G_{23}, G_{13}$.

5.4. Peremfeltételek

Dinamikai peremfeltétel: $\underline{F} \cdot \vec{n} = \vec{p}_0$ az $A_p - n$. Kinematikai peremfeltétel: $\vec{u} = \vec{u}_0$ az $A_u - n$. A \vec{p}_0 ismert felületi terhelés. Az \vec{u}_0 ismert elmozdulás.

5.5. A rugalmasságtan egyenletrendszere

 $\underline{\underline{F}} \cdot \nabla + \vec{q} = \vec{0} \quad \text{egyensúlyi egyenlet (3db)}.$ $\underline{\underline{A}} = \frac{1}{2} (\vec{u} \circ \nabla + \nabla \circ \vec{u}) \quad \text{kompatibilitási egyenlet (6 db)}.$

 $\underline{\underline{\varepsilon}} = \underline{\underline{C}} \underline{\underline{\sigma}}$ any age gyenlet (6db).

$$\begin{array}{c} \underline{F} \cdot \vec{n} \Big|_{A_p} = \vec{p}_0 \quad \text{dinamikai} \\ \vec{u} \Big|_{A_1} = \vec{u}_0 \quad \text{kinematikai} \end{array} \right\} \text{ peremfeltételek} \quad \begin{array}{c} (3 \text{ db}) \\ (3 \text{ db}) \end{array}$$

<u>Ismeretlenek:</u> \vec{u} , $\underline{\underline{A}}$, $\underline{\underline{F}}$.

- <u>Bebizonyítható:</u> a rugalmasságtan egyenletrendszerének adott peremfeltételek mellett egy , és csakis egy megoldás létezik (egzisztencia és unicitás).
- <u>Egzakt megoldás:</u> A keresett \vec{u} , \underline{A} , \underline{F} mezők az egyenletrendszer és a peremfeltételek minden egyenletét kielégítik.

<u>Közelítő megoldás:</u> A keresett \vec{u} , \underline{A} , \underline{F} mezők az egyenletrendszer és a peremfeltételek nem minden egyenletét elégítik ki.

5.6. A kompatibilitási egyenlet más alakjai

Az 5.2.2. szerinti geometriai egyenletből indulunk ki: $\underbrace{A}_{=}=\frac{1}{2}(\vec{u} \circ \nabla + \nabla \circ \vec{u}).$

Átalakítás: szorzás jobbról és balról vektoriálisan ∇ -val \Rightarrow Saint-Venant –féle kompatibilitási egyenlet.

5.6.1. Saint-Venant -féle kompatibilitási egyenlet

 $\nabla \times \underline{A} \times \nabla = \underline{0}$ (tenzor egyenlet).

Skalár egyenletek a DDKR-ben:

$$\frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}, \qquad \qquad \frac{\partial}{\partial x} \left(\frac{\partial \gamma_{xy}}{\partial z} + \frac{\partial \gamma_{xz}}{\partial y} - \frac{\partial \gamma_{yz}}{\partial x} \right) = 2 \frac{\partial^{2} \varepsilon_{x}}{\partial y \partial z},$$

$$\frac{\partial^{2} \gamma_{yz}}{\partial y \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}}, \qquad \qquad \frac{\partial}{\partial y} \left(\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xy}}{\partial z} - \frac{\partial \gamma_{yz}}{\partial y} \right) = 2 \frac{\partial^{2} \varepsilon_{y}}{\partial z \partial x},$$

$$\frac{\partial^{2} \gamma_{xz}}{\partial z \partial x} = \frac{\partial^{2} \varepsilon_{z}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial z^{2}}, \qquad \qquad \frac{\partial}{\partial z} \left(\frac{\partial \gamma_{yz}}{\partial y} + \frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{yy}}{\partial z} \right) = 2 \frac{\partial^{2} \varepsilon_{x}}{\partial z \partial x},$$

Átalakítás: a Saint-Venant egyenlet + izotróp Hooke-törvény + $\vec{q} = \vec{0}$. \Rightarrow Beltrami-Michell - féle kompatibilitási egyenlet.

5.6.2. Beltrami-Michell -féle kompatibilitási egyenlet

 $(1+\nu)\Delta \underline{\underline{F}} + \nabla \circ \nabla F_I = \underline{\underline{0}}$ (tenzor egyenlet).

Laplace – féle differenciál operátor: $\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. Skalár egyenletek:

$$(1+\nu)\Delta\sigma_{x} + \frac{\partial^{2}F_{I}}{\partial x^{2}} = 0, \qquad (1+\nu)\Delta\tau_{xy} + \frac{\partial^{2}F_{I}}{\partial x\partial y} = 0,$$

$$(1+\nu)\Delta\sigma_{y} + \frac{\partial^{2}F_{I}}{\partial y^{2}} = 0, \qquad (1+\nu)\Delta\tau_{yz} + \frac{\partial^{2}F_{I}}{\partial y\partial z} = 0,$$

$$(1+\nu)\Delta\sigma_{z} + \frac{\partial^{2}F_{I}}{\partial z^{2}} = 0, \qquad (1+\nu)\Delta\tau_{xz} + \frac{\partial^{2}F_{I}}{\partial x\partial z} = 0.$$

6. RÚDFELADATOK

6.1. Síkgörbe rudak Grashof-féle elmélete

Síkgörbe rúd: a rúd középvonala (S ponti szála) síkgörbe. Jelölések, előjelek:

A középvonal egy pontját az s ívhosszal azonosítjuk.

A *P* pontban (*P* ponthoz tartozó keresztmetszetben) helyi koordináta-rendszert veszünk fel: $\vec{e}_x = \vec{e}_{\xi}, \vec{e}_{\eta}, \vec{e}_{\zeta}$.

 $\begin{array}{c} \rho_0 \\ \rho \end{array} \right\} \text{ a középvonal görbületi sugara } \begin{cases} \text{alakváltozás előtt.} \\ \text{alakváltozás után.} \end{cases}$

<u>Előjel:</u> Ha az ívhossz irányában haladva a görbületi középpont jobbkézre esik, akkor $\rho_0 > 0$, ha balkézre esik $\rho_0 < 0$.

A rúd terhelése : $\vec{f} = f_t \vec{t} + f_n \vec{n}$ vonalmenti (a középvonal mentén megoszló) terhelés.

Egyensúlyi egyenletek síkgörbe rudakra:

 $\frac{dN}{ds} - \frac{T_{\eta}}{\rho_0} + f_t = 0,$ $\frac{N}{\rho_0} + \frac{dT_{\eta}}{ds} - f_n = 0,$ $\Rightarrow \text{ Az } N(s) \text{ rúderő és a } T_{\eta}(s) \text{ nyíróerő nem független egymástól.}$ $\frac{dM_{hx}}{ds} + T_{\eta} = 0.$

Az M_{hx} hajlítónyomaték és a T_{η} nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.

Igénybevételek: a terhelés ismeretében az igénybevételek az értelmezés szerint meghatározhatók.

Megoldandó feladat:

- az alakváltozási jellemző(k) meghatározása,

- a rúd keresztmetszetein ébredő feszültség (eloszlás) meghatározása.

6.1.1. Az alakváltozási jellemzők előállítása

Kiinduló feltélezések:

- a rúd középvonala terhelés előtt ρ_0 sugarú körív,

- a rúd prizmatikus, továbbá egyes keresztmetszetei az η tengelyre szimmetrikusak,

- a rúd igénybevétele tiszta hajlítás,
- a rúdban egytengelyű feszültségi állapot lép fel.

Alakváltozási feltételezések:

- alakváltozás után a keresztmetszetek síkok maradnak és merőlegesek maradnak a deformálódott középvonalra,
- az alakváltozás során a ρ_0 sugarú középvonal ρ sugarú körívvé görbül az M_{hx} nyomaték hatására.

A középvonaltól η távolságra lévő koncentrikus körív hosszának fajlagos megváltozása:

$$\mathcal{E}_{\zeta} = \frac{(\rho + \eta)\Phi - (\rho_0 + \eta)\Phi_0}{(\rho_0 + \eta)\Phi_0}.$$

A feszültségi állapot egytengelyű: $\sigma_{\zeta} = E \varepsilon_{\zeta} = E \left(\frac{(\rho + \eta)}{(\rho_0 + \eta)} \frac{\Phi}{\Phi_0} - I \right).$

 $\sigma_{\zeta} = \sigma_{\zeta}(\eta) \text{ hiperbola.}$ Ha $M_{hx} > 0$, akkor $\rho < \rho_0$ és $\Phi > \Phi_0$.

A hiperbola aszimptótái:

A feszültségeloszlás szemléltetése:

6.1.2. A feszültség és az igénybevétel kapcsolata (feszültségi eredők = igénybevételek)

a) $\vec{F}_{S} = \int_{(A)} \vec{\rho}_{\zeta} dA = \vec{e}_{\zeta} \int_{(A)} \sigma_{\zeta} dA = \vec{0}.$ * $\int_{(A)} \sigma_{\zeta} dA = \vec{0} \implies \sigma_{\max}$ általában a görbületi középpont felé eső szélső szálban van. (A)

b)
$$\vec{M}_{S} = \int \vec{R} \times \vec{\rho}_{\zeta} dA = \int \left(\zeta \vec{e}_{\zeta} + \eta \vec{e}_{\eta} \right) \times \sigma_{\zeta} \vec{e}_{\zeta} dA = M_{hx} \vec{e}_{\zeta}.$$

(A) (A)

Skalár egyenletek:

 $\int_{(A)} \xi \sigma_{\zeta} dA = 0 \qquad \text{ez az egyenlet identikusan teljesül, ha az } \eta \text{ a keresztmetszet szimmetria-tengelye,}$

*
$$\int_{(A)} \eta \sigma_{\zeta} dA = M_{hx}$$
.

A * -al jelölt egyenletekből ρ és Φ kifejezhető az M_{hx} -el:

Grashoff formula:
$$\sigma_{\zeta} = \frac{M_{hx}}{\rho_0 A} + \frac{M_{hx}}{I_{red}} \frac{\rho_0}{\rho_0 + \eta} \eta$$
.
Jelölés: $\sigma_0 = \frac{M_{hx}}{\rho_0 A}$,

 $I_{red} = \int \frac{\rho_0}{\rho_0 + \eta} \eta^2 dA - a \text{ keresztmetszet } \xi \text{ tengelyére számolt redukált másod-rendű nyomaték (általában <math>I_{red} > I_{\xi}$).

Előjel:

6.1.3. Redukált másodrendű nyomaték

A hasonló háromszögek alapján:

$$\frac{a}{\rho_0 + \eta} = \frac{a^*}{\rho_0} \implies a^* = \frac{\rho_0}{\rho_0 + \eta} a .$$
$$I_{red} = \int_{(A)} \frac{\rho_0}{\rho_0 + \eta} \eta^2 \underbrace{a \, d\eta}_{dA} = \int_{(A)} \eta^2 \underbrace{a^* \, d\eta}_{dA^*} = I_{\xi}^*$$

Egy módosított (szaggatott vonallal megrajzolt) keresztmetszet $x = \xi$ tengelyre számított I_{ξ} másodrendű nyomatékát kell meghatározni.

 $e_{\max} = \max(e_{1} e_{2}),$ $\frac{\rho_{0}}{e_{\max}} - \text{hányados a rúd görbültségére jellemző mennyiség.}$ Ha a $\frac{\rho_{0}}{e_{\max}}$ hányados kicsi, akkor a rúd nagyon görbült. Ha a $\frac{\rho_{0}}{e_{\max}}$ nagy, akkor a rúd enyhén görbült.

6.1.4. Az elmélet alkalmazhatósága

- Ha $\frac{\rho_0}{e_{\text{max}}} < 3-4$, akkor a Grashoff formulátés az I_{red} et használjuk.
- Ha $3-4 < \frac{\rho_0}{e_{\max}} < 8-10$, akkor a Grashoff formulát és az $I_{red} \approx I_{\xi}$ -t használjuk.

Ha
$$\frac{\rho_0}{e_{\text{max}}} > 8 - 10$$
, akkor a görbe rúd egyenes rúdként kezelhető: $\sigma_{\zeta} = \frac{M_{hx}}{I_{\zeta}}\eta$.

6.1.5. A középvonal alakváltozási jellemzői

A középvonal görbületének megváltozása : $\frac{l}{\rho} - \frac{l}{\rho_0} = \frac{M_{hx}}{I_{red} E}$.

A szélső keresztmetszetek egymással bezárt szögének megváltozása:

$$\psi = \Phi - \Phi_0 = \frac{M_{hx}}{I_{red} E} \rho_0 \Phi_0 = \frac{M_{hx}}{I_{red} E} l, \text{ ahol } l \text{ a rúd középvonalának hossza}$$

6.1.6. Az eredmények általánosítása

A Grashoff-féle elmélet akkor is használható, ha

- A síkgörbe rúd igénybevétele tetszőleges síkbeli igénybevétel : N, T_{η}, M_{hx} .
- A középvonal nem körív, de feltételezzük hogy a görbületi sugár csak kismértékben és lassan változik a rúd középvonala mentén.
- A rúd nem prizmatikus, de feltételezzük hogy a keresztmetszet csak kismértékben és lassan változik a rúd középvonala mentén.

Közelítő megoldás (szuperpozíció elve):

Hajlítás:
$$\sigma_{\zeta}' = \frac{M_{hx}}{A \rho_0} + \frac{M_{hx}}{I_{red}} \frac{\rho_0}{\rho_0 + \eta} \eta$$
,
Húzás/nyomás: $\sigma_{\zeta}'' = \frac{N}{A}$
Nyírás: $\tau_{\eta\zeta} = -\frac{T_\eta S_{\xi}(\eta)}{I_{\xi} a(\eta)}$
egyenes rudakra vonatkozó összefüggés

Erősen görbült rudaknál a húzás/nyomásból és a nyírásból származó feszültségek nem számíthatók az egyenes rudakra érvényes összefüggésekből.

Alakváltozási energia:

Rúdszerkezeteknél általában a hajlítási energia domináns: $U \approx U_{hail}$.

$$U \approx \frac{l}{2} \int \frac{M_{hx}}{(l)} \frac{I_{red}}{I_{red}} E \, ds \, .$$

A szilárdságtan munkatételei (Betti, Castiglianó) ugyanúgy érvényesek, mint egyenes és törtvonalú tartószerkezeteknél.

6.2. Prizmatikus rudak szabad csavarása

Szabad csavarás: a rúd pontjainak elmozdulását semmi sem akadályozza.

<u>Gátolt csavarás:</u> a rúd pontjai nem mozdulhatnak el szabadon a tengely irányában. A gátolt csavarásnak a vékonyszelvényű rudaknál van jelentősége.

6.2.1. Egzakt megoldás

A rúd keresztmetszetének alakja tetszőleges.

Feltételezések: - $\vec{q} = \vec{0}$,

- a H palást terheletlen ,
-
$$\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = 0$$
,
- $\int_{(A)} \vec{\rho}_z \, dA = \vec{0}$, $\int_{(A)} \vec{R} \times \vec{\rho}_z dA = M_C \vec{e}_z$.

Dinamikai peremfeltételek:

- a (*H*) palást terheletlen
$$\rightarrow \vec{\rho}_n = \vec{0}$$
.
- (*A_l*) A rúd igénybevétele csavarás $\rightarrow \int_{(A)} \vec{\rho}_z dA = \vec{0}$, $\int_{(A)} \vec{R} \times \vec{\rho}_z dA = M_c \vec{e}_z$.

- (A_0) A rúd igénybevétele csavarás \rightarrow ugyanaz, mint az (A_l) -en.

Feszültségi állapot:

$$\begin{bmatrix} \underline{F} \\ \underline{F} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \tau_{xz} \\ 0 & 0 & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{bmatrix}, \quad \text{ahol} \quad \begin{array}{c} \tau_{xz} = \tau_{xz} (x, y), \\ \tau_{yz} = \tau_{yz} (x, y). \end{array}$$

Egyensúlyi egyenletek:

$$\left.\begin{array}{ccc}
0 &+& 0 &+ \frac{\partial \tau_{xz}}{\partial z} = 0, \\
0 &+& 0 &+ \frac{\partial \tau_{yz}}{\partial z} = 0, \\
\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + & 0 &= 0.
\end{array}\right\} \text{ teljesülnek !}$$

A 3. egyensúlyi egyenlet teljesülését egy U(x, y) feszültségfüggvény bevezetésével érjük el.

Prandtl-féle feszültségfüggvény:

U(x, y) - az x, y helykoordinátának legalább kétszeresen differenciálható függvénye. A feszültségek származtatása:

$$\tau_{zx} = \tau_{xz} = \frac{\partial U}{\partial y}$$
 és $\tau_{zy} = \tau_{yz} = -\frac{\partial U}{\partial x}$.

Behelyettesítve a 3. egyensúlyi egyenletbe: $\frac{\partial^2 U}{\partial x \partial y} - \frac{\partial^2 U}{\partial x \partial y} = 0$ identikusan teljesül.

A feszültségvektor: $\vec{\rho}_z = \tau_{xz}\vec{e}_x + \tau_{yz}\vec{e}_z = \vec{\tau}_z$.

$$\vec{\rho}_{z} = \frac{\partial U}{\partial y} \vec{e}_{x} - \frac{\partial U}{\partial x} \vec{e}_{y} = \underbrace{\left(\frac{\partial U}{\partial x} \vec{e}_{x} - \frac{\partial U}{\partial y} \vec{e}_{y}\right)}_{(\nabla U)} \times \vec{e}_{z} = (\nabla U) \times \vec{e}_{z}$$

Az U(x, y) -nak még ki kell elégítenie:

- a peremfeltételeket,
- a Hooke törvényt,

- a Hooke törvenyt,
- a kompatibilitási egyenletet.

Beltrami-Michell kompatibilitási egyenletek.

Peremfeltételek kielégítése:

- a palást terheletlen :
$$\vec{\rho}_n = \underline{F} \cdot \vec{n} = \vec{0}$$
 , $\vec{\rho}_n = \begin{bmatrix} 0 & 0 & \tau_{xz} \\ 0 & 0 & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{bmatrix} \begin{bmatrix} n_x \\ n_y \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \tau_{zx} & n_x + \tau_{zy} & n_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

 $\begin{aligned} \tau_{zx} n_x + \tau_{zy} n_y = 0, \\ \vec{\tau}_z \cdot \vec{n} = 0. \end{aligned}$ A paláston a $\vec{\tau}_z$ érintő irányú.

Átalakítás:

$$\vec{\tau}_z \cdot \vec{n} = (\nabla U) \times \vec{e}_z \cdot \vec{n} = (\nabla U) \cdot \underbrace{(\vec{e}_z \times \vec{n})}_{\vec{t}} = \underbrace{\nabla U \cdot \vec{t}}_{\text{(iránymenti derivált)}} = \frac{\partial U}{\partial s} = 0.$$

 (g_0) U=állandó=0.

önkényes (célszerű) választás

Az (A_0) és az (A_l) rúdvégeken :

- Az eredő erő:
$$\vec{F} = \int_{(A_l)} \vec{\rho}_z \, dA = \vec{0}$$
.
Bizonyítás: $\int_{(A_l)} \vec{\rho}_z \, dA = \int_{(A_l)} (\nabla U) \times \vec{e}_z \, dA$.

 (A_l) (A_l) Átalakítás: a Gauss-féle integrál átalakítási tétellel

$$\int_{a} \nabla \otimes \underline{C} dA = \oint_{a} \underline{C} \otimes \vec{n} ds .$$

$$(A) \qquad (g_0)$$

$$A \otimes \text{szorzás a} \begin{cases} \cdot \\ \circ \\ 0 \end{cases} \text{szorzások közül bármelyik lehet}$$

$$\int_{(A_l)} (\nabla U) \times \vec{e}_z \, dA = \oint_{\mathcal{B}_0} \vec{e}_z \times U \vec{n} \, ds = \oint_{\mathcal{B}_0} U \vec{t} \, ds = 0 \text{, mert } U \Big|_{\mathcal{B}_0} = 0 \text{.}$$

Az $\vec{F} = \vec{0}$ feltétel teljesül, ha keresztmetszet peremgörbéjén az $U = \hat{a}$ llandó= 0 (előző perem feltétel).

- A keresztmetszet S pontjára számított nyomaték: $\vec{M}_{S} = \int_{(A_{l})} \vec{R} \times \vec{\rho}_{z} dA = M_{c}\vec{e}_{z}$.

$$\begin{aligned} &\text{\acute{A}talakit\acute{a}s:} \\ &M_c \, \vec{e}_z = \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} \vec{R} \times (\nabla U \times \vec{e}_z) dA = \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} \left[(\nabla U) \underbrace{\vec{R} \cdot \vec{e}_z}_{=0} - \vec{e}_z \left(\vec{R} \cdot \nabla U \right) \right] dA = \\ &= -\vec{e}_z \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} (\vec{R} \cdot \nabla U) dA = \vec{e}_z \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} \left[(\nabla \cdot \vec{R}U) - (\nabla \cdot \vec{R}) U \right] dA = \\ &= -\vec{e}_z \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} (\nabla \cdot \vec{R}U) dA + \vec{e}_z \int\limits_{\begin{pmatrix} A_l \end{pmatrix}} (\nabla \cdot \vec{R}) U dA. \\ &\underbrace{(A_l)} & \downarrow \text{Gauss} \end{aligned}$$

$$\int_{(g_0)} (\vec{n} \cdot \vec{R}U) ds = 0, \text{ mert } U|_{g_0} = 0.$$

$$M_c = \int_{(A_l)} (\nabla \cdot \vec{R}) U dA = \int_{(A_l)} 2U dA$$

$$\text{mert } \nabla \cdot \vec{R} = \left(\frac{\partial}{\partial x} \vec{e}_x + \frac{\partial}{\partial y} \vec{e}_y\right) \cdot \left(x \vec{e}_x + y \vec{e}_y\right) = l + l = 2.$$

$$M_c = 2 \int_{(A)} U dA \cdot A \text{ csavarónyomaték is kiszámítható az } U \text{ feszültségfüggvényből.}$$

$$(A)$$

A Beltrami-Michell -féle kompatibilitási egyenletek kielégítése:

Behelyettesítés:

$$\Delta \tau_{xz} = \Delta \left(\frac{\partial}{\partial y} \right) = \frac{\partial}{\partial y} (\Delta U) = 0$$

$$\Delta \tau_{yz} = \Delta \left(\frac{\partial}{\partial x} \right) = \frac{\partial}{\partial x} (\Delta U) = 0$$

$$\Rightarrow \Delta U = \text{állandó.}$$

A Hooke törvény és a kinemetikai egyenletek felhasználásával:

 $\Delta U = -2G\vartheta$ – Poisson-féle differenciál egyenlet.

ahol: G - csúsztató rugalmassági modulus,

$$\begin{array}{l} \mathcal{G} \quad \text{-fajlagos szögelfordulás.}\\ \underline{Az \text{ elmozdulásmező előállítása:}}\\ \varepsilon_x = \frac{\partial u}{\partial x} = 0 \quad \Rightarrow \quad u = u(y, z),\\ \varepsilon_y = \frac{\partial v}{\partial y} = 0 \quad \Rightarrow \quad v = v(x, z),\\ \varepsilon_z = \frac{\partial w}{\partial z} = 0 \quad \Rightarrow \quad w = w(x, y).\\ \text{Ha}\\ u = -y f(z)\\ v = x f(z) \\ \end{array} \right\} \quad \Rightarrow \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = -f + f = 0.\\ \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = -y \frac{df}{dz} + \frac{\partial w}{\partial x} = \gamma_{xz} (x, y) = \frac{\tau_{xz} (x, y)}{G}, \end{array}$$
$\frac{\partial \gamma_{xz}}{\partial z} = \theta = -y \frac{d^2 f}{dz^2} + \theta \implies f(z) = \vartheta z, \text{ ahol } \vartheta = \text{állandó (fajlagos szögelfordulás).}$ $\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \xrightarrow[\text{az előzővel megegyező gondolatmenetből}]} f(z) = \vartheta z.$

Az elmozdulásmező koordináták:

 $\begin{array}{c} u(y,z) = - \vartheta y z \\ v(x,z) = - \vartheta x z \\ w(x,y) = w(x,y) \end{array}$ kielégítik az összes kinematikai feltételt.

Az elmozdulásvektor:

$$\vec{u}(x, y, z) = \underbrace{\vartheta z \vec{e}_z \times \vec{R}}_{a \text{ km. } \psi_z = \vartheta z} + \underbrace{w(x, y) \vec{e}_z}_{a \text{ km. } \psi_z = \vartheta z}$$
a km. pontjai tengely
szöggel elfordul irányban is elmozdulnak

 $\psi_z = \Im z$ - a tetszőleges z helyen levő keresztmetszet szögelfordulása a z=0 keresztmetszethez képest.

Az eredményeket összefoglalva:

Prizmatikus rudak szabad csavarási feladata visszavezethető egy U(x,y) feszültségfüggvény meghatározására.

U(x,y) – a Prandtl-féle feszültségfüggvény nem tetszőleges.

1) Ki kell elégítenie:

 $\Delta U = -2G\mathcal{B}$, a Poisson-féle differenciál egyenletet, $U|_{\mathcal{B}_0} = 0$, a peremfeltételt.

2) Igénybevétel, feszültség származtatása:

$$M_{C} = 2 \int_{(A)} U(x, y) dA, \quad \tau_{z} = (\nabla U) \times \vec{e}_{z}.$$

Tisztán geometriai tartalmú feszültségfüggvény bevezetése:

 $U(x,y) = G \,\vartheta U_0(x,y).$ $U_0(x,y)$ csak a keresztmetszet geometriájától függ.

Az $U_0(x, y)$ -ra vonatkozó egyenletek:

1) $\Delta U_0 = -2$, $U_0|_{g_0} = 0$.

2) $M_c = 2G \mathscr{G} \int U_0(x, y) dA = G \mathscr{G} I_c,$ (A) ahol $I_c = 2 \int U_0(x, y) dA$ a keresztmetszet csavarási másodrendű nyomatéka. (A)

$$\vec{\tau}_z = G \, \vartheta \big(\nabla U_0 \big) \times \vec{e}_z$$

A fajlagos szögelfordulás: $\vartheta = \frac{M_c}{GI_c}$.

A szögelfordulás: $\psi_z = \frac{M_c}{GI_c} z.$

A Prandtl-féle membrán analógia:

Az analógia a feszültségfüggvény és a megfeszített és felfújt membrán alakja között áll fenn. Az analógia alapja:

- a differenciál egyenlet azonossága .
- a peremfeltétel

A membrán alakjának differenciálegyenlete: $\Delta \zeta = -\frac{p(x, y)}{N_0}$. Peremfeltétel: $\zeta|_{g_0} = 0$.

Feszültségfüggvény többszörösen összefüggő tartomány esetén:

6.2.2. Közelítő megoldás

Vékonyszelvényű rudak szabad csavarására közelítő megoldást állítunk elő.

a) Nyitott vékony szelvényű rudak

- Vékonyfalú téglalap

Peremfeltételek: $x = \pm \frac{v}{2}$ U = 0 teljesül, $y = \pm \frac{b}{2}$ $U \neq 0$. Feszültségek:

$$\tau_{xz} = \frac{\partial U}{\partial y} = 0$$
, $\tau_{yz} = -\frac{\partial U}{\partial x} = 2 G \vartheta x$ (lineáris eloszlás).

Csavarónyomaték:

$$M_{c} = 2\int U dA \cong 2G \mathscr{G}$$
$$\int_{x=-\frac{v}{2}}^{\frac{v}{2}} \left(\frac{v^{2}}{4} - x^{2}\right) dx = G \mathscr{G} \frac{bv^{3}}{\frac{3}{I_{c}}}.$$
$$M_{c} = G \mathscr{G} I_{c}$$

A kereszetmetszet csavarási másodrendű nyomatéka: $I_c = \frac{bv^3}{3}$.

Feszültségek \Rightarrow a $G \mathcal{P} = \frac{M_c}{I_c}$ helyettesítés után:

$$\tau_{xz} = 0, \qquad \tau_{yz} = \frac{M_c}{I_c} 2x \implies \tau_{\max} = \frac{M_c}{I_c} v.$$

- Összetett nyitott vékonyfalú szelvény (a vékony téglalap eredményeinek általánosítása)

- Görbe középvonalú nyitott vékonyfalú szelvény

A többi összefüggés változatlan alakú.

 β) Zárt vékonyszelvényű szelvényű rudak

Közelítő feszültségfüggvény:

$$U(\xi,\eta) = -\frac{U_1}{v}\xi + h$$

Feltételezük, hogy az U a szelvény

x vastagsága mentén lineárisan változik. Feszültség: $\tau_{sz} = -\frac{\partial U}{\partial \xi} = \frac{U_l}{v} =$ állandó. A feszültségeloszlás a szelvény vastagsága ξ mentén állandó.

A lineáris U függvény "lépcsős "közelítése:

$$M_{C} = 2 \int U \, dA \cong 2 \, A_{k} \, U_{I} \implies U_{I} = \frac{M_{C}}{2 \, A_{k}}$$
$$\tau_{xy} = \frac{U_{I}}{v} = \frac{M_{C}}{2 \, A_{k} \, v} \quad \text{Bredt formula.}$$

A keresztmetszet csavarási másodrendű nyomatéka:

$$I_c = \frac{4 A_k^2}{\oint \frac{l}{h} ds}$$

7. A RUGALMASSÁGTAN 2D FELADATAI

A 2D (két dimenziós) feladatok közös jellemzői:

- két skalár elmozdulásmező különbözik nullától,

- minden mechanikai mennyiség két helykoordinától függ.

A 2D feladatok típusai :

-sík alakváltozási feladatok (SA), -általánosított síkfeszültségi feladat (ASF), síkfeladatok ,

- forgásszimmetrikus/tengelyszimmetrikus feladatok (FSZ).

7.1. Sík alakváltozás (SA)

<u>Definíció:</u> Sík alakváltozásról beszélünk, ha a vizsgált testnek van egy kitüntetett síkja, amelylyel párhuzamos valamennyi sík alakváltozása azonos és a síkok távolsága sem változik.

 $\vec{u} = u \vec{e}_x + v \vec{e}_y$.

Az elmozdulásmező skaláris koordinátái:

$$u = u(x, y),$$

$$v = v(x, y),$$

$$w = 0.$$

Feltételek:

- A kitüntetett síkra merőleges méret lényegesen nagyobb, mint a másik kettő.
- Például: vastagfalú cső, alagút, a folyó gátja, stb.
- A terhelés párhuzamos a kitüntetett síkkal és a legnagyobb kiterjedés (a z tengely) irányában nem változik.
- A síkok távolságának változatlanságát külső kényszer biztosítja (ezt az ábrán sraffozott vonal jelöli).

Alakváltozási állapot:

$$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \varepsilon_x & \frac{1}{2}\gamma_{xy} & 0 \\ \frac{1}{2}\gamma_{yx} & \varepsilon_y & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{ahol} \quad \begin{array}{c} \varepsilon_x = \frac{\partial u}{\partial x} = \varepsilon_x(x,y), \\ \varepsilon_x = \frac{\partial v}{\partial y} = \varepsilon_y(x,y), \\ \gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = \gamma_{xy}(x,y). \end{array}$$

Feszültségi állapot (az általános Hooke-törvényből):

$$\sigma_{x}(x,y) = 2G\left[\varepsilon_{x} + \frac{\varepsilon_{x} + \varepsilon_{y}}{l - 2\nu}\right]\nu, \qquad \sigma_{y}(x,y) = 2G\left[\varepsilon_{y} + \frac{\varepsilon_{x} + \varepsilon_{y}}{l - 2\nu}\right]\nu,$$

$$\tau_{xy}(x,y) = G\gamma_{xy} = \frac{E}{2(l + 2\nu)}\gamma_{xy}, \qquad \varepsilon_{z} = 0 \implies \sigma_{z} = \nu(\sigma_{x} + \sigma_{y}),$$

$$\tau_{xz} = \tau_{yz} = 0.$$

$$\begin{bmatrix}\underline{F}\\\underline{F}\end{bmatrix} = \begin{bmatrix}\underline{F}(x,y)\end{bmatrix} \begin{bmatrix} \sigma_x & \tau_{xy} & 0\\ \tau_{yx} & \sigma_y & 0\\ 0 & 0 & \sigma_z \end{bmatrix}.$$

Egyensúlyi egyenletek:

$$DDKR \qquad HKR$$

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + q_x = 0, \qquad \frac{\partial \sigma_R}{\partial R} + \frac{\sigma_R - \sigma_{\varphi}}{R} + \frac{1}{R} \frac{\partial \tau_{R\varphi}}{\partial \varphi} + q_R = 0,$$

$$\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + q_y = 0, \qquad \frac{\partial \tau_{\varphi R}}{\partial R} + 2 \frac{\tau_{\varphi R}}{R} + \frac{1}{R} \frac{\partial \sigma_{\varphi}}{\partial \varphi} + q_{\varphi} = 0.$$

A 3. egyenletből következően : $q_z \equiv 0$.

7.2. Általánosított sík feszültségi feladat (ÁSF)

<u>Elnevezés:</u> Általános sík feszültségi feladat \equiv tárcsa feladat \equiv a saját síkjában terhelt lemez feladata.

<u>Tárcsa:</u> Olyan test, melynek egyik mérete lényegesen kisebb mint a másik kettő. Az értelmezhető középsík és a terhelés vastagság mentén vett eredője a középsíkba esik.

Feltételezések:

- *b* << a test más méreteinél,
- a z = 0 a középfelületi sík,
- a terhelésben nincsenek z irányú erők,
- az xy síkkal párhuzamos erők eredője az xy síkba esik,
- a $z = \pm b/2$ felületek terheletlenek.

A feszültségre vonatkozó feltételezések:

- a $z = \pm b/2$ felületek terheletlenek

ha a *b* méret kicsi, akkor σ_z≈0 nemcsak a felületeken, hanem a többi helyen is fennáll.
a σ_x, σ_y, τ_{xy} a z páros függvényei,
a τ_{zx}, τ_{zy} a z páratlan függvényei.

 $\Rightarrow \sigma_z \big|_{z \, = \, \pm \, b/2} \, = 0 \, ,$

Átlagos feszültségek:

$$\overline{\sigma}_{x} = \frac{l}{b} \int_{(b)} \sigma_{x} dz , \quad \overline{\sigma}_{y} = \frac{l}{b} \int_{(b)} \sigma_{y} dz , \quad \overline{\tau}_{xy} = \frac{l}{b} \int_{(b)} \tau_{xy} dz ,$$

$$\overline{\sigma}_{z} = \frac{l}{b} \int_{(b)} \sigma_{z} dz = 0 , \quad \overline{\tau}_{xz} = \frac{l}{b} \int_{(b)} \tau_{xz} dz = 0 , \quad \overline{\tau}_{yz} = \frac{l}{b} \int_{(b)} \tau_{yz} dz = 0 .$$
Az átlagfeszültségi tenzor: $\left[\overline{\underline{F}}\right] = \left[\overline{\underline{F}}(x, y)\right] = \begin{bmatrix} \overline{\sigma}_{x} & \overline{\tau}_{xy} & 0 \\ \overline{\tau}_{yx} & \overline{\sigma}_{y} & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Felületi feszültségek/élerők:

 $N_x = b \overline{\sigma}_x, \quad N_y = b \overline{\sigma}_y, \quad N_{xy} = b \overline{\tau}_{xy}.$

A felületi feszültségi tenzor: $\begin{bmatrix} \underline{N} \end{bmatrix} = \begin{bmatrix} \underline{N}(x, y) \end{bmatrix} \begin{bmatrix} N_x & N_{xy} & 0 \\ N_{yx} & N_y & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

Általános Hooke-törvény:

$$\begin{split} \overline{\sigma}_{x} &= \frac{E}{l - v^{2}} \Big(\overline{\varepsilon}_{x} + v \,\overline{\varepsilon}_{y} \Big), \qquad \overline{\sigma}_{y} = \frac{E}{l - v^{2}} \Big(\overline{\varepsilon}_{y} + v \,\overline{\varepsilon}_{x} \Big), \qquad \overline{\tau}_{xy} = G \,\overline{\gamma}_{xy} = \frac{E}{2 (l + v)} \overline{\gamma}_{xy} \,. \\ \overline{\sigma}_{z} &= 0 \implies \overline{\varepsilon}_{z} = -\frac{v}{l - v} \Big(\overline{\varepsilon}_{x} + \overline{\varepsilon}_{y} \Big), \qquad \overline{\tau}_{xz} = \overline{\tau}_{yz} = 0 \,. \end{split}$$

Átlagos alakváltozások:

$$\begin{split} \overline{\varepsilon}_{x} &= \frac{l}{b} \int_{(b)} \varepsilon_{x} \, dz \quad , \quad \overline{\varepsilon}_{y} = \frac{l}{b} \int_{(b)} \varepsilon_{y} \, dz \quad , \quad \overline{\gamma}_{xy} = \frac{l}{b} \int_{(b)} \gamma_{xy} \, dz \quad , \quad \overline{\varepsilon}_{z} = -\frac{\nu}{1-\nu} \left(\overline{\varepsilon}_{x} + \overline{\varepsilon}_{y}\right) \\ \\ \left[\underline{\underline{A}}\right] &= \left[\underline{\underline{A}}(x, y)\right] \begin{bmatrix} \overline{\varepsilon}_{x} & \frac{l}{2} \overline{\gamma}_{xy} & 0 \\ \frac{l}{2} \overline{\gamma}_{yx} & \overline{\varepsilon}_{y} & 0 \\ 0 & 0 & \overline{\varepsilon}_{z} \end{bmatrix} \quad \text{ \acute{A}tlagos alakváltozási tenzor } . \\ \\ \overline{\varepsilon}_{z} &= -\frac{\nu}{1-\nu} \left(\overline{\varepsilon}_{x} + \overline{\varepsilon}_{y}\right). \end{split}$$

Átlagos elmozdulások:

$$\overline{u}(x,y) = \frac{l}{b} \int_{(b)} u \, dz \quad , \ \overline{v}(x,y) = \frac{l}{b} \int_{(b)} v \, dz \quad , \ \overline{w} = 0$$

Egyensúlyi egyenletek:

Geometriai egyenletek:

$$\frac{\partial \overline{\sigma}_x}{\partial x} + \frac{\partial \overline{\tau}_{xy}}{\partial \varphi} + \overline{q}_x = 0 , \qquad \qquad \overline{\varepsilon}_x = \frac{\partial \overline{u}}{\partial x} , \quad \overline{\varepsilon}_y = \frac{\partial \overline{v}}{\partial y} ,$$
$$\frac{\partial \overline{\tau}_{yx}}{\partial x} + \frac{\partial \overline{\sigma}_y}{\partial y} + \overline{q}_y = 0 . \qquad \qquad \overline{\gamma}_{xy} = \frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} .$$

7.3. Forgásszimmetrikus/tengelyszimmetrikus feladat (FSZ)

Definíció: a vizsgált test geometriája és terhelése is szimmetrikus. Következmény: a test pontjai a test meridián síkjában mozdulnak el.

 R, z, φ henger koordinátarendszerben dolgozunk. Tengelyszimmetria

∜

A mechanikai mennyiségek nem függnek a φ -től.

1

Elmozdulásmező:

 $\overline{u}=u\,\vec{e}_{\scriptscriptstyle R}+v\,\vec{e}_{\scriptscriptstyle z}+w\,\vec{e}_{\scriptscriptstyle \varphi}\,,\quad u=u\left(R,z\right)\,,=v=v\left(R,z\right)\,,\,w\equiv 0.$ Minden pont a saját meridián síkjában mozdul el.

Alakváltozási állapot:

Feszültségi állapot az általános Hooke-törvényből:

$$\sigma_{R}(R,z) = 2G \left[\varepsilon_{R} + \frac{v}{l-2v} \right] A_{I},$$

$$\sigma_{z}(R,z) = 2G \left[\varepsilon_{z} + \frac{v}{l-2v} \right] A_{I},$$

$$\Rightarrow \left[\underline{F}_{Rz\varphi} = \left[\underline{F}_{Rz\varphi}(R,z) \right] = \left[\sigma_{R} \quad \tau_{Rz} \quad 0 \\ \tau_{zR} \quad \sigma_{z} \quad 0 \\ 0 \quad 0 \quad \sigma_{\varphi} \right]$$
ahol $A_{I} = \varepsilon_{R} + \varepsilon_{z} + \varepsilon_{\varphi}$

$$au_{Rz} = G \gamma_{Rz}$$
 , $au_{\varphi z} = au_{R\varphi} = 0$.

7.4. Síkfeladatok (SA, ÁSF) feladat megoldása feszültségfüggvény bevezetésével

Hasonlóság az SA és az ÁSF feladatok között:

- a két elmozdulásmező $u(x,y), v(x,y) / u(R,\varphi), v(R,\varphi)$,

- a három független alakváltozási jellemző $\varepsilon_x(x,y), \varepsilon_y(x,y), \gamma_{xy}(x,y),$

$$/ \varepsilon_{R}(R,\varphi), \varepsilon_{\varphi}(R,\varphi), \gamma_{R,\varphi}(R,\varphi),$$

- a három független feszültségi jellemző $\sigma_x(x, y), \sigma_y(x, y), \tau_{xy}(x, y),$

$$/ \sigma_{R}(R, \varphi), \sigma_{\varphi}(R, \varphi), \tau_{R, \varphi}(R, \varphi),$$

- minden mennyiség csak az $x, y/R, \varphi$ hányados függvénye,

- a geometriai és egyensúlyi egyenletek alakja.

Különbözőség az SA és az ÁSF feladatok között:

- az SA-nál a pontbeli jellemzők, az ÁSF-nél a vastagság menti (átlagos) jellemzők,
- $\left. \begin{array}{l} \left. \begin{array}{l} \operatorname{SA:} \sigma_z \neq 0 \\ \operatorname{\acute{ASF:}} \varepsilon_z \neq 0 \end{array} \right\} \text{ nem független jellemzők ,} \end{array} \right\}$

- az anyagegyenletek alakja.

A megoldás kiinduló feltételezései:

 $q_x = q_y = 0$ (SA) és $\overline{q}_x = \overline{q}_y = 0$ (ÁSF).

Jelölés: a továbbiakban a felülvonás jelölést elhagyjuk.

Feszültségfüggvény bevezetése:

 $\begin{array}{c} U(x,y) \\ U(R,\varphi) \end{array}$ Airy - féle feszültségfüggvény

Úgy vesszük fel, hogy a belőle számított feszültségek kielégítsék az egyensúlyi egyenleteket.

A feszültségek származtatása:

$$DDKR \qquad HKR$$

$$\sigma_{x} = \frac{\partial^{2}U}{\partial y^{2}}, \qquad \sigma_{R} = \frac{1}{R} \frac{\partial U}{\partial R} + \frac{1}{R^{2}} \frac{\partial^{2}U}{\partial \varphi^{2}},$$

$$\sigma_{y} = \frac{\partial^{2}U}{\partial x^{2}}, \qquad \sigma_{\varphi} = \frac{\partial^{2}U}{\partial R^{2}},$$

$$\tau_{xy} = -\frac{\partial^{2}U}{\partial x \partial y}, \qquad \tau_{R\varphi} = -\frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial U}{\partial \varphi}\right).$$

Ezek az összefüggések az SA-ra és az ÁSF-re is érvényesek.

 $Feszültségek \Rightarrow Anyagegyenlet \Rightarrow Alakváltozások \Rightarrow Kompatibilitási egyenlet:$

 $\Delta \Delta U = 0$ biharmonikus differenciál egyenlet.

U(x, y) - biharmonikus függvény – ki kell elégítenie a biharmonikus differenciál egyenletet.

A Laplace-féle differenciál operátor kétváltozós (síkbeli) esetben: $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$

A biharmonikus differenciál egyenlet alakja a DDKR-ben: $\frac{\partial^4 U}{\partial x^4} + 2 \frac{\partial^4 U}{\partial x^2 \partial y^2} + \frac{\partial^4 U}{\partial y^4} = 0$.

7.5. Forgásszimmetrikus síkbeli feladatok

Tengelyszimmetria : a mennyiségek nem függnek a φ -től.

Elmozdulásmező: $\vec{u} = u(R)\vec{e}_R$.

Feszültségfüggvény: U=U(R).

Példák forgásszimmetrikus síkfeladatokra:

SA (vastagfalú cső)

 p_B – belső terhelés, p_K – külső terhelés

Alakváltozási jellemzők: $\varepsilon_R = \frac{du}{dR}$, $\varepsilon_{\varphi} = \frac{u}{R}$, $\gamma_{R\varphi} = 0$.

Alakváltozási tenzor:

$$\begin{array}{ccc} \mathbf{SA} & \mathbf{ASF} \\ \begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \underline{A}(R) \end{bmatrix} = \begin{bmatrix} \varepsilon_{R} & 0 & 0 \\ 0 & \varepsilon_{\varphi} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} \underline{A}(R) \end{bmatrix} = \begin{bmatrix} \varepsilon_{R} & 0 & 0 \\ 0 & \varepsilon_{\varphi} & 0 \\ 0 & 0 & \varepsilon_{z} \end{bmatrix}, \quad \text{abol} \quad \varepsilon_{z} = -\frac{v}{I - v} (\varepsilon_{R} + \varepsilon_{\varphi}). \end{array}$$

Hooke-törvény:

$$\frac{1}{SA} \qquad \text{ÁSF}$$

$$\varepsilon_{R} = \frac{l}{2G} \Big[\sigma_{R} - v \big(\sigma_{R} + \sigma_{\varphi} \big) \Big], \qquad \varepsilon_{R} = \frac{l}{E} \big(\sigma_{R} - v \sigma_{\varphi} \big),$$

$$\varepsilon_{\varphi} = \frac{l}{2G} \Big[\sigma_{\varphi} - v \big(\sigma_{R} + \sigma_{\varphi} \big) \Big], \qquad \varepsilon_{\varphi} = \frac{l}{E} \big(\sigma_{\varphi} - v \sigma_{R} \big),$$

$$\varepsilon_{z} = -\frac{v}{E} \big(\sigma_{\varphi} + \sigma_{R} \big).$$

Biharmonikus differenciál egyenlet: $\Delta \Delta U = 0$.

Biharmonikus differenciál egyenlet tengelyszimmetrikus esetre:

$$\frac{1}{R}\frac{d}{dR}\left\{R\frac{d}{dR}\left[\frac{1}{R}\frac{d}{dR}\left(R\frac{dU}{dR}\right)\right]\right\}=0.$$

Ez egy homogén, közönséges negyedrendű Euler-féle differenciál egyenlet . Az Euler-féle differenciál egyenlet ismert formája :

$$x^{4}y^{"'} + x^{3}y^{"} + x^{2}y^{"} + xy^{'} = 0 \rightarrow \text{megoldás}: y_{k}(x) = x^{n}.$$

A biharmonikus (Euler tinusú) differenciál egyenlet megoldása

A biharmonikus (Euler tipusú) differenciál egyenlet megoldása:

$$U(R) = \frac{A}{2}R^{2} + B\ln R + C + DR^{2}\ln R$$

Mivel a $DR^2 lnR$ -es tag nem ad egyértékű elmozdulásmezőt kör, körgyűrű tartományban a megoldás végső alakja:

$$U(R) = \frac{A}{2}R^2 + B\ln R + C.$$

Feszültségek:

$$\sigma_{R}(R) = \frac{1}{R} \frac{dU}{dR} = A + \frac{B}{R^{2}},$$

$$\sigma_{\varphi}(R) = \frac{d^{2}U}{dR^{2}} = A - \frac{B}{R^{2}},$$

$$\sigma_{z} = \begin{cases} \nu(\sigma_{R} + \sigma_{\varphi}) & SA \\ 0 & ASF \end{cases} \text{ esetén.}$$

Az A, B állandók a dinamikai peremfeltételekből határozhatóak meg.

7.6. Vastagfalú csövek

7.6.1. Egyszerű vastagfalú cső

Megoldás: SA + húzás/nyomás szuperpozíciója.

A σ''_z -nek akkorának kell lennie, hogy a σ'_z -hez hozzáadva a fenti értékek adódjanak ki.

Csődiagram:

Új változó bevezetése: $\psi = \frac{R_B^2}{R^2}$, $\psi_K = \frac{R_B^2}{R_K^2}$, $\psi_B = I$, $\psi_K < \psi < I$.

Az állandók meghatározása a peremfeltételekből:

$$\sigma_{R} = a - b\psi \qquad \sigma_{R} (R = R_{B}) = \sigma_{R} (\psi = l) = -p_{B},$$

$$\sigma_{\varphi} = a + b\psi \qquad \sigma_{R} (R = R_{K}) = \sigma_{R} (\psi = \psi_{K}) = -p_{K}.$$

Behelyettesitve:

$$\begin{array}{c} a-b=-p_B\\ a-b\psi_K=-p_K \end{array} \right\} \Rightarrow \begin{array}{c} b=\frac{p_B-p_K}{1-\psi_K}=tg\vartheta_{K}\\ \Rightarrow \\ a=\frac{p_B\psi_K-p_K}{1-\psi_K}. \end{array}$$

Diagram:

A csődiagram megrajzolásának gondolatmenete:

- A peremfeltételek figyelembevételével a $\psi = \psi_K$ és a $\psi = 1$ helyen felmérjük a $\sigma_R(\psi)$ függvényértékeket: $-p_K$, $-p_B$.
- A két végpontot összekötő egyenes a $\sigma_R(\psi)$ függvény.
- A $\sigma_R(\psi)$ és a $\sigma_{\varphi}(\psi)$ függvény a koordinátarendszer függőleges tengelyét az *a* helyen metszi, iránytangensük azonos nagyságú, de ellentétes előjelű.
- A $\sigma_{\varphi}(\psi)$ függvényt úgy kapjuk, hogy a $\sigma_{R}(\psi)$ függvényt tükrözzük a $\sigma = a$ vízsintes egyenesre.
- A $\sigma_z(\psi)$ állandó, amelynek értéke attól függ, hogy nyitott, vagy zárt csőről van szó.

Nyitott cső: $\sigma_z = 0$.

Zárt cső:
$$\sigma_z = \frac{p_B R_B^2 - p_K R_K^2}{R_K^2 - R_B^2} = \frac{p_B \psi_K - p_K}{l - \psi_K} = a =$$
állandó

$$\begin{split} & \underline{\text{M\acute{e}retez\acute{e}s, ellenőrz\acute{e}s}}_{A \text{ főfeszültségek: } \sigma_{l} = \sigma_{\varphi} , \quad \sigma_{2} = \sigma_{z} , \quad \sigma_{3} = \sigma_{R} . \\ & \text{A redukált feszültség Mohr szerint: } \\ & \sigma_{red} \left(Mohr \right) = \sigma_{l} - \sigma_{3} = \sigma_{\varphi} - \sigma_{R} , \\ & \sigma_{red \max} \left(Mohr \right) = \left(\sigma_{\varphi} - \sigma_{R} \right)_{max} = \left(\sigma_{\varphi} - \sigma_{R} \right)_{\psi = l} = 2b , \\ & \sigma_{red \max} \left(Mohr \right) = 2b = 2 \frac{p_{B} - p_{K}}{l - \psi_{K}} . \end{split}$$

Méretezés, ellenőrzés: $\sigma_{red max} \leq \sigma_{meg}$.

Példa: egyszerű nyitott, vagy zárt vastagfalú cső méretezése

<u>Adott:</u> p_B , p_K , R_B . <u>Keresett:</u> R_K .

Méretezés: $\sigma_{red max} = 2 \frac{p_B - p_K}{1 - \psi_K} \le \sigma_{meg}$ $2\frac{p_B - p_K}{\sigma_{meg}} \le l - \psi_K$

 $\psi_{K} = \frac{R_{B}^{2}}{R_{K}^{2}} \le 1 - 2\frac{p_{B} - p_{K}}{1 - \psi_{K}}$ $R_{K} \ge \frac{R_{B}}{\sqrt{1 - 2\frac{p_{B} - p_{K}}{1 - \sigma_{meg}}}}$

Megjegyzés: a nyomáskülönbség nem növelhető minden határon túl.

Megoldás: csökkenteni kell a nyomáskülönbséget, például a p_K növelésével.

7.6.2. Kettős falú csövek

Mindig túlfedéssel illesztettek: a belső cső külső felületén nyomásnövekedést hozunk létre.

88

Túlfedés: $\delta = \rho_B - \rho_K$.

Megvalósítás: a külső csövet felmelegítve ráhúzzuk a belső csőre, majd lehűtjük.

 p^* - a lehűtés után fellépő nyomás,

$$p^* = p^*(\delta).$$

A p^* nagysága a δ túlfedéstől függ.

Feltételezés: $\delta \ll \rho_B$, $\rho_K \Rightarrow \rho_B \approx \rho_K$.

Új változó:
$$\psi = \frac{R_B^2}{R^2}$$
, $\overline{\psi}_K = \frac{R_B^2}{\rho_B^2} = \frac{R_B^2}{\rho_K^2}$, $\psi_K = \frac{R_B^2}{R_K^2}$.

7.6.2.1. A túlfedés következtében kialakuló állapot

A csövön nincs külső/belső nyomási terhelés.

 p^{\ast} - a túlfedés következtében fellépő nyomás.

Csődiagram:

A csődiagram megrajzolásának gondolatmenete:

- A peremfeltételek figyelembevételével felmérjük a $\sigma_{R}(\psi)$ függvény értékeit:

A $\psi = \psi_K$ helyen $p_K = 0$ -át, $\psi = \overline{\psi}_K$ helyen $-p^*$ -ot és $\psi = 1$ helyen $p_B = 0$ -át.

- Az így kapott pontokat összekötve kapjuk meg külön-külön a belső, illetve a külső csőre a $\sigma_R(\psi)$ egyeneseket.

- Ezek az egyenesek a függőleges tengelyt az a_k , illetve az a_b pontokban metszik.
- A $\sigma_{\varphi}(\psi)$ függvényeket (egyeneseket) úgy kapjuk, hogy a $\sigma_{R}(\psi)$ egyeneseket tükrözzük a $\sigma = a_{b}$, illetve a $\sigma = a_{k}$ vízszintes egyenesekre.

Maximális redukált feszültségek:

$$\frac{\sigma_{red \max B}}{2} = \frac{p^*}{1 - \overline{\psi}_K} I, \qquad \frac{\sigma_{red \max K}}{2} = \frac{p^*}{\overline{\psi}_K - \psi_K} \overline{\psi}_K.$$

7.6.2.2. Kettős falú vastag cső külső terheléssel

Csődiagram:

 p^* – a túlfedésből származó nyomás,

p' – a túlfedés helyén fellépő tényleges nyomás.

A diagram megrajzolása a 7.6.1. és a 7.6.2.1. pontban részletesen leírt gondolatmenettel történt.

Maximális redukált feszültségek:

$$\frac{\sigma_{red \max B}}{2} = \frac{p_B - p'}{1 - \overline{\psi}_K}, \qquad \frac{\sigma_{red \max K}}{2} = \frac{p' - p_K}{\overline{\psi}_K - \psi_K} \overline{\psi}_K.$$

Méretezés: ha például adottak az R_B , $\rho_B \approx \rho_K$, p_B , p_K paraméterek, akkor a fenti összefüggésekből meghatározhatóak a p' és a ψ_K értékek (azaz R_K).

7.6.2.3. A túlfedés meghatározása

Túlfedés: $\delta = \rho_B - \rho_K$.

$$\rho = \rho_{K} + u_{K} = \rho_{B} + u_{B}$$

$$\delta = \rho_{B} - \rho_{K} = u_{K} - u_{B} = \rho_{K} \varepsilon_{\varphi K} - \rho_{B} \varepsilon_{\varphi B}$$
Közelítés: $\rho_{K} \approx \rho_{B}$

$$\delta = \rho_{B} \left(\varepsilon_{\varphi K} - \varepsilon_{\varphi B} \right) \Big|_{R = \rho_{B} = \rho_{K}}$$
Hooke-törvény: $\varepsilon_{\varphi} = \frac{1}{2G} \left[\sigma_{\varphi} - \nu \left(\sigma_{R} + \sigma_{\varphi} \right) \right]_{R = \rho_{B} = \rho_{K}}$

$$\delta = \rho_B \frac{l}{2G} \left[\sigma_{\varphi K} - \sigma_{\varphi B} - \nu \left(\sigma_{\varphi K} - \sigma_{\varphi B} \right) \right] \Big|_{R = \rho_B}$$

7.6.2.4. Optimális csőméretek

<u>Adott:</u> R_B , R_K , p_K , σ_{megB} , σ_{megK} .

<u>Kérdés:</u> hogyan kell $\rho_K \approx \rho_B$ -t (vagyis $\overline{\psi}_K$ -t) megválasztani, hogy p_B maximális legyen.

A kettősfalú cső méretezésére szolgáló összefüggések:

$$\frac{p_{B} - p'}{1 - \overline{\psi}_{K}} = \frac{\sigma_{red \ maxB}}{2} \le \frac{\sigma_{megB}}{2} \qquad \Rightarrow p_{B} = \frac{\sigma_{megB}}{2} (1 - \overline{\psi}_{K}) + p'.$$

$$\frac{p' - p_{K}}{\overline{\psi}_{K} - \psi_{K}} \overline{\psi}_{K} = \frac{\sigma_{red \ maxK}}{2} \le \frac{\sigma_{megK}}{2} \qquad \Rightarrow p' = \frac{\overline{\psi}_{K} - \psi_{K}}{2\overline{\psi}_{K}} \sigma_{megK} + p_{K}.$$

$$p_{B} = \frac{\sigma_{megB}}{2} (1 - \overline{\psi}_{K}) + \frac{\overline{\psi}_{K} - \psi_{K}}{2\overline{\psi}_{K}} \sigma_{megK} + p_{K} = p_{B}(\overline{\psi}_{K}).$$

Keressük a p_B szélsőértékét (maximumát):

$$\frac{dp_B}{d\overline{\psi}_K} = 0 = -\frac{\sigma_{megB}}{2} + \frac{\sigma_{megK}}{2}\frac{\psi_K}{\overline{\psi}_K^2}$$
$$\overline{\psi}_K = \sqrt{\frac{\sigma_{megK}}{\sigma_{megB}}\psi_K} .$$

 $\frac{dp_B}{d\overline{\psi}_K^2} = -\sigma_{meg\,K} \frac{\psi_K}{\overline{\psi}_K^3} < 0 \,. \quad \text{A szélsőérték maximum.}$ $\overline{\psi}_K^2 = \frac{R_B^4}{\rho_B^4} = \frac{\sigma_{meg\,K}}{\sigma_{meg\,B}} \frac{R_B^2}{R_K^2} \quad \Rightarrow \quad \rho_B \approx \rho_K = \sqrt{\left(\frac{\sigma_{meg\,K}}{\sigma_{meg\,B}}\right)^{\frac{1}{2}} R_B R_K} \,.$

Azonos anyag esetén az optimális közbülső sugár: $\rho_K \approx \rho_B = \sqrt{R_B R_K}$.

7.7. Gyorsan forgó tengelyek, csőtengelyek

Feltételezés: - ω = állandó, - súlyerő ≈ 0 , - $p_B = p_K = 0$. A szilárdságtani állapotokat henger

koordináta-rendszerben írjuk le.

Forgás \Rightarrow a gyorsulásból származó, a térfogaton megoszló erőrendszer:

$$\vec{q} = q_R \vec{e}_R = \rho R \omega^2 \vec{e}_R = \frac{\gamma}{g} R \omega^2 \vec{e}_R.$$

$$\rho - \text{tömegsűrűség} \left[\text{kg/m}^3 \right]$$

$$\gamma - \text{fajsúly} \left[\text{N/m}^3 \right]$$

$$g - \text{gravitációs gyorsulás} \left[\text{m/s}^2 \right]$$

A $\vec{q} = q_R \vec{e}_R$ a tengely/csőtengely keresztmetszetének síkjába esik, ezért az alakváltozás során a keresztmetszetek síkok maradnak.

<u>Megoldás:</u> SA+ tiszta húzás-nyomás $\Rightarrow \underline{\underline{F}} = \underline{\underline{F}}' + \underline{\underline{F}}''$.

a) Sík alakváltozás

Ebben az esetben a biharmonikus egyenlet nem homogén, a jobboldalon megjelenik az ω . Biharmonikus differenciál egyenlet: $\Delta\Delta U = -2\frac{l-2v}{l-v}\rho\omega^2$. Tengelyszimmetrikus esetben: $\frac{l}{R}\frac{d}{dR} \left\{ R\frac{d}{dR} \left[\frac{l}{R}\frac{d}{dR} \left(R\frac{dU}{dR} \right) \right] \right\} = 2\frac{l-2v}{l-v}\frac{\gamma}{g}\omega^2 =$ állandó. Megoldás: $U(R) = U_h + U_p$. $U = \frac{A}{2}R^2 + B\ln R + C + \left(DR^2\ln R \right) + 2\frac{l-2v}{l-v}\frac{\gamma}{g}\omega^2 \frac{R^4}{64} = \frac{A}{2}R^2 + B\ln R + C + 2\frac{l-2v}{l-v}\frac{\gamma}{g}\omega^2 \frac{R^4}{64}$

Megjegyzés: a $(DR^2 \ln R)$ -es tagot elhagyjuk, mert nem ad egyértékű elmozdulásmezőt kör és körgyűrű tartományban.

Új változó bevezetése: $\lambda = \frac{R^2}{R_K^2}$.

Az U = U(R) függvényből származtatott feszültségek:

$$\sigma_{R}' = a - \frac{b}{\lambda} - \sigma_{\omega 0} \lambda$$
Konstansok:

$$\sigma_{\varphi}' = a + \frac{b}{\lambda} - \mu_{l} \sigma_{\omega 0} \lambda$$
Konstansok:

$$\sigma_{\omega 0} = \frac{3 - 2v}{l - v} \frac{\rho}{8} (R_{K} \omega)^{2},$$

$$\mu_{l} = \frac{l + 2v}{3 - 2v} < 1.$$

b) <u>Tiszta húzás</u>

Tiszta húzás esetén olyan nagyságúra kell felvenni, hogy a szuperpozíció zérus tengely irányú erőt eredményezzen.

$$N = N' + N'' = 0.$$

$$N = \int_{R_B}^{R_K} \sigma'_z 2R \pi \, dR + N'' = 0. \quad \sigma'_z = v \left(\sigma'_R + \sigma'_\varphi\right) = v \, 2a - v \, \sigma_{\omega 0} \left(1 + \mu\right) \lambda.$$

$$N'' = -2\pi a v \left(R^2_{\ K} - R^2_{\ B}\right) + v \, \sigma_{\omega 0} \left(1 - \mu_I\right) \pi R_K^2 \int_{\lambda_B}^{I} \lambda \, d\lambda , \quad d\lambda = 2R \frac{I}{R_K^2} dR$$

$$N'' = -2\pi a v \left(R^2_{\ K} - R^2_{\ B}\right) + v \, \sigma_{\omega 0} \left(1 - \mu_I\right) \pi \frac{I}{2} \left(1 - \lambda_B^2\right) R_K^2.$$

$$\sigma''_z = \frac{N''}{A}.$$

c) <u>Szuperpozíció:</u> forgó csőtengely/tengely

$$\sigma_{R} = \sigma_{R}' = a - \frac{b}{\lambda} - \sigma_{\omega 0} \lambda,$$

$$\sigma_{\varphi} = \sigma_{\varphi}' = a + \frac{b}{\lambda} - \mu_{I} \sigma_{\omega 0} \lambda,$$

$$\sigma_{z} = \sigma_{z}' + \sigma_{z}'' = \mu_{2} \sigma_{\omega 0} \left(1 + \lambda_{B} - 2\lambda \right).$$
Konstansok:

$$\mu_{2} = \frac{2v}{3 - 2v} < 1, \quad \mu_{2} < \mu_{I}.$$

Konstansok meghatározása a peremfeltételekből:

$$R = R_{B} \left(\lambda = \lambda_{B} \right) \sigma_{R} = 0 = a - \frac{b}{\lambda} - \sigma_{\omega 0} \lambda$$

$$R = R_{K} \left(\lambda = 1 \right) \sigma_{R} = 0 = a - \frac{b}{\lambda} - \sigma_{\omega 0}$$

$$\Rightarrow Az \ a \ és \ a \ b \ paraméterek \ ebből \ meghatározhatók.$$

$$h_{R} = a - \frac{b}{\lambda}$$

$$h_{p} = a + \frac{b}{\lambda}$$
hiperbolák.
$$h_{\varphi} = a + \frac{b}{\lambda}$$

A hiperbolák aszimptotái: ha $\lambda \to 0$, akkor $h_R \to -\infty$, $h_{\varphi} \to \infty$, ha $\lambda \to \infty$, akkor $h_R \to a$, $h_{\varphi} \to a$.

Egy tetszőleges szelő egyenes a hiperbolán és az aszimptotán levő pontjainak távolsága azonos.

A csődiagram megrajzolásának gondolatmenete:

- Megrajzoljuk a $\sigma_{\omega_0}\lambda$ egyenest.
- Felvesszük a h_R és h_{φ} hiperbola aszimptótáit: σ és a $\sigma = a$ vízszintes egyeneseket.
- A peremfeltételekből ($\lambda = l n$ él $\sigma_R = 0$ és $\lambda_B n$ él $\sigma_R = 0$) meghatározzuk a h_R hiperbola két pontját, majd felrajzoljuk a h_R hiperbolát.
- Berajzoljuk a h_{ω} hiperbolát és a $\mu_{l}\sigma_{\omega_{0}}\lambda$ egyenest.

Peremfeltételek: $\sigma_R|_{\lambda_B} = 0 = a - \frac{b}{\lambda_B} - \sigma_{\omega 0} \lambda_B$, $\sigma_R|_{\lambda = I} = 0 = a - b - \sigma_{\omega 0}$.

A második peremfeltételből: $a = b + \sigma_{\omega 0}$. Behelyettesítve az első peremfeltételbe:

$$0 = b - \frac{b}{\lambda_B} + \sigma_{\omega 0} \left(I + \lambda_B \right),$$

$$0 = -\frac{b}{\lambda_B} \left(I - \lambda_B \right) + \sigma_{\omega 0} \left(I + \lambda_B \right) \implies b = \lambda_B \sigma_{\omega 0}.$$

Visszahelyettesítve a második peremfeltételbe: $a = (1 + \lambda_B)\sigma_{\omega 0}$.

A forgó csőtengely tetszőleges P pontjának feszültségállapota:

$$\begin{bmatrix} \underline{F} \end{bmatrix} = \begin{bmatrix} \underline{F}' \end{bmatrix} = \begin{bmatrix} \underline{F}' \end{bmatrix} = \begin{bmatrix} \sigma_R & 0 & 0 \\ 0 & \sigma_{\varphi} & 0 \\ 0 & 0 & \sigma_z \end{bmatrix}, \text{ abol } \sigma_R, \sigma_{\varphi}, \sigma_z \text{ főfeszültségek.}$$

Maximális redukált feszültség:

$$\sigma_{red max}(Mohr) = (\sigma_1 - \sigma_3) = \sigma_{\varphi}(\lambda_B) = a + \frac{b}{\lambda_B} - \mu_1 \sigma_{\omega 0} \lambda_B.$$

A peremfeltételekből kiszámított a, b értéket behelyettesítve:

$$\sigma_{red max} (Mohr) = (I + \lambda_B) \sigma_{\omega 0} + \lambda_B \sigma_{\omega 0} \frac{I}{\lambda_B} (-\mu_I \sigma_{\omega 0} \lambda_B) ,$$

$$\sigma_{red max} (Mohr) = \sigma_{\omega 0} (2 + \lambda_B - \mu_I \lambda_B) .$$

7.7.2. Gyorsan forgó tengely diagramja

Tömör/furat nélküli tengely: $R_B = 0 \ (\lambda_B = 0)$.

Tapasztalat: R=0 $(\lambda = 0)$ -nál is véges nagyságúak a feszültségek $\Rightarrow b=0$.

Feszültségek: $\sigma_R = a - \sigma_{\omega 0} \lambda$, $\sigma_{\varphi} = a - \mu \sigma_{\omega 0} \lambda$, $\sigma_z = \mu_2 \sigma_{\omega 0} (1 - 2\lambda)$.

Peremfeltétel: $R = R_K (\lambda = l)$ $\sigma_R = 0 = a - \sigma_{\omega 0} \implies a = \sigma_{\omega 0}$.

Mohr szerint számított redukált feszültség:

$$\sigma_{red} (Mohr) \Big|_{\lambda=0} = (\sigma_R - \sigma_z) \Big|_{\lambda=0} = \sigma_{\omega 0} (1 - \mu_2),$$

$$\sigma_{red} (Mohr) \Big|_{\lambda=1} = (\sigma_{\varphi} - \sigma_z) \Big|_{\lambda=1} = \sigma_{\omega 0} (1 - \mu_1 + \mu_2).$$

7.8. Kör és körgyűrű alakú tárcsák

Megoldás: általánosított sík feszültségi állapot. Változó: $\psi = \frac{R_B^2}{R^2}$.

7.8.1. Furatos tárcsa

Feszültségek :
$$\overline{\sigma}_R = a - b\psi$$

 $\overline{\sigma}_{\varphi} = a + b\psi$
 $\overline{\sigma}_z = \overline{0}$, $\overline{\tau}_{R\varphi} = \overline{0}$.
Peremfeltételek : $\overline{\sigma}_R(\psi = l) = a - b = -p_B$,
 $\overline{\sigma}_R(\psi = \psi_K) = a + b\psi_K = -p_K$.
Az első egyenletből: $a = b - p_B$,
A második egyenletből: $b - p_B - b\psi_K = -p_K \implies b = \frac{p_B - p_K}{l - \psi_K}$
Visszahelyettesítve:
 $a = b - p_B = \frac{p_B - p_K - p_B(l - \psi_K)}{l - \psi_K} = \frac{p_B \psi_K - p_K}{l - \psi_K}$.

Furatos tárcsa diagramja:

Redukált feszültség:

$$\overline{\sigma}_{red} (Mohr) = \overline{\sigma}_{\varphi} - \overline{\sigma}_{R},$$
$$\overline{\sigma}_{red max} (Mohr) = 2 \frac{p_{K} - p_{B}}{l - \psi_{K}}.$$

7.8.2. Túlfedéssel illesztett kettős furatos tárcsa

Tárcsa diagram:

 $\delta = \frac{\rho_B}{E} \left(\bar{\sigma}_{\varphi K} - \bar{\sigma}_{\varphi B} \right) \bigg|_{R = \rho_B = \rho_K}$

A tárcsa diagramból:

$$\overline{\sigma}_{\varphi K} = \overline{\sigma}_{red max} - p' = 2 \frac{p' - p_K}{\overline{\psi}_K - \psi_K} \overline{\psi}_K - p'$$

$$Ezek az \quad R = \rho_B = \rho_K \text{ helyen vett \'ett\'ekek.}$$

$$\overline{\sigma}_{\varphi B} = 2 \frac{p_B - p'}{l - \psi_K} \overline{\psi}_K - p'$$

Túlfedés: $\delta = \rho_B - \rho_K$. Feltételezés: $\delta << \rho_B, \rho_K \Rightarrow \rho_B \approx \rho_K$.

Változók:

$$\psi = \frac{R_B^2}{R^2}, \quad \overline{\psi}_K = \frac{R_B^2}{\rho_B^2} = \frac{R_B^2}{\rho_K^2}, \quad \psi_K = \frac{R_B^2}{R_K^2}$$

Feltételezés: $p_B > p_K$. Maximális redukált feszültségek:

$$\overline{\sigma}_{red \max B} = \frac{p_B - p'}{1 - \overline{\psi}_K},$$
$$\overline{\sigma}_{red \max K} = \frac{p' - p_K}{\overline{\psi}_K - \psi_K} \overline{\psi}_K.$$

Túlfedés meghatározása: $\delta = \rho_B \left(\overline{\varepsilon}_{\varphi K} - \overline{\varepsilon}_{\varphi B} \right) \Big|_{R = \rho_B = \rho_K}$

Hooke-törvény:

$$\overline{\varepsilon}_{\varphi} = \frac{l}{E} \left(\overline{\sigma}_{\varphi} - \nu \, \overline{\sigma}_{R} \right)_{=-p'}$$

7.9. Gyorsan forgó kör és körgyűrű alakú tárcsák

7.9.1. Gyorsan forgó furatos tárcsa

A forgó tárcsa diagramja:

 $\overline{\sigma}_{red max}(Mohr) = \overline{\sigma}_{\varphi}(\lambda_B) = \sigma_{\omega_0}(2 + \lambda_B) - \mu_3 \sigma_{\omega_0} \lambda_B.$

7.9.2. Gyorsan forgó tömör tárcsa

Tömör tárcsa: $R = R_B = 0$ $(\lambda_B = 0)$. Tapasztalat: R = 0 $(\lambda = 0)$ -nál is véges nagyságúak a feszültségek $\Rightarrow b = 0$. Feszültségek: $\overline{\sigma}_R = a - \overline{\sigma}_{o0}\lambda$ $\overline{\sigma}_{\varphi} = a - \mu_3\overline{\sigma}_{o0}\lambda$ Peremfeltétel: $\sigma_R(\lambda = 1) = p_K$. $\overline{\sigma}_R$ a $formation \overline{\sigma}_R$ a $formation \overline{\sigma}_R$ $formation \overline{\sigma}_R$ formation

 $\varphi(\gamma) = \varphi(\gamma) = \varphi(\gamma)$

7.9.3. Gyorsan forgó egyenszilárdságú tömör tárcsa

<u>Kérdés:</u> Milyen b = b(R) tárcsavastagsággal érhető el a $\overline{\sigma}_R = \overline{\sigma}_{\varphi} = \overline{\sigma}_0$ = állandó feltétel teljesülése ?

A forgó tárcsa térfogati terhelése: $q_R = \rho \omega^2 R$.

Egyensúlyi egyenlet ÁSF esetén henger koordináta-rendszerben:

 $\frac{d(\bar{\sigma}_R b)}{dR} + \frac{(\bar{\sigma}_R - \bar{\sigma}_{\varphi})b}{R} + bq_R = 0.$ $\bar{\sigma}_R - \bar{\sigma}_{\varphi} = 0 \rightarrow \text{ ezt akarjuk elérni!}$

 $\overline{\sigma}_{0} \frac{db}{dR} + bq_{R} = 0,$ $\frac{db}{dR} + \underbrace{\frac{\rho \omega^{2}}{\overline{\sigma}_{0}}}_{K} Rb = 0 \text{ szétválasztható tipusú differenciál egyenlet.}$

A differenciál egyenlet megoldása:

$$\frac{d b}{b} = -KR dR \implies \int_{b_0}^{b} \frac{d b}{b} = -K \int_{R=0}^{K} R dR, \text{ alol } b_0 \text{ a tárcsavastagság az } R_0 = 0 \text{ helyen}$$
$$ln \frac{b}{b_0} = -KR^2 \implies b = b(R) = b_0 e^{-\frac{K}{2}R^2}.$$

Ez az egyenszilárdságú gyorsan forgó tömör tárcsa meridián görbéjének egyenlete.

A görbe inflexiós pontjának megkeresése:

$$\frac{db}{dR} = -b(KR),$$

$$\frac{d^{2}b}{dR^{2}} = \frac{db}{dR}(-KR) - bK = bK^{2}R^{2} - bK = b(K^{2}R^{2} - K) = 0,$$

ahol $\frac{db}{dR} = b_{0}e^{-\frac{K}{2}R^{2}}2(-\frac{K}{2})R = -bKR,$
 $\frac{d^{2}b}{dR} = K(KR^{2} - I) = 0$

$$\frac{d^2b}{dR^2} = K\left(KR^2 - I\right) = 0,$$

A görbe inflexiós pontjában a második derivált nulla:

$$\frac{d^2b}{dR^2} = KR^2 - I = 0,$$

$$R_i = \sqrt{\frac{1}{K}} = \sqrt{\frac{\overline{\sigma_0}}{\rho \,\omega^2}} \quad \text{az inflexiós hely sugara.}$$

A megoldás $R \rightarrow \infty$ esetre érvényes.

Gyakorlatilag R_K -nál elvágjuk és itt működtetünk egy $p_K = \overline{\sigma}_0$ felületi terhelést.

<u>Gyakorlati példa:</u> Gázturbina forgórésze, $p_K = \overline{\sigma}_0$ a lapátozás forgás következtében fellépő hatása.

8. VÉKONY FORGÁSHÉJAK MEMBRÁN ELMÉLETE

8.1. Alapfogalmak, egyenletek

<u>Héj:</u> olyan test, amelynek egyik mérete (a vastagsága) lényegesen kisebb mint a másik kettő, értelmezhető a középfelület és ez nem sík.

Középfelület: a vastagsági méret felezési pontjai által alkotott felület.

Gyakorlati példa héjra: csővezetékek, tartályok, nyomástartó edények, stb.

Közös jellemző: a tárolt, szállított közeg (folyadék, gáz) a héj felületére merőleges felületi terhelést hoz létre.

Forgásszimmetrikus héj:

- a héj középfelülete forgásfelület (egy meridiángörbe tengely körüli forgatásával állítható elő,
- a héj terhelése is forgásszimmetrikus.

Következmény: a mechanikai mennyiségek nem függnek a φ -től.

Meridián metszet: a forgástengelyre illeszkedő síkkal előállított metszet.

 P_0 - a középfelület pontja,

 \vec{e}_s - a meridiángörbe érintő irányú egységvektora,

 $\vec{n} = \vec{e}_z$ - a meridiánfelület normális egységvektora,

 \vec{e}_s , \vec{e}_{φ} , \vec{e}_z - a meridián felülethez kötött koordináta-

rendszer egységvektorai,

 $\vec{e}_z \ \vec{e}_s$ - merdiánsík,

 R_s - a meridiángörbe görbületi sugara,

 \vec{e}_{φ} \vec{e}_{z} - normál sík,

 R_{ω} - a normál metszet görbéjének görbületi sugara.

<u>Membrán állapot:</u> a feszültségek a héj vastagsága mentén nem változnak \Rightarrow a mechanikai mennyiségek csak az s ívhossztól függnek.

$$\sigma_{s} = \text{állandó,} \\ \sigma_{\varphi} = \text{állandó,} \\ \tau_{s\varphi} = \text{állandó.}$$
 a vastagság mentén
$$\begin{bmatrix} \underline{F} \\ \underline{F} \end{bmatrix} = \begin{bmatrix} \underline{F}(s) \end{bmatrix} = \begin{bmatrix} \sigma_{s} & \tau_{s\varphi} & 0 \\ \tau_{\varphi s} & \sigma_{\varphi} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\sigma_z = \tau_{sz} = \tau_{\varphi z} = 0.$$

Vastagság mentén vett feszültségi eredők:

Membrán állapot esetén zérustól különböző élerők.

Élerő: vonal mentén megoszló belső erő [N/mm].

Igénybevétel:

Rudak: a keresztmetszetre számított eredők. (Elnevezés: igénybevételek). Héjak: a héj vastagságára számított eredők. (Elnevezés: élerők, élnyomatékok).

Egyensúlyi egyenlet (forgásszimmetrikus héj, membrán állapot):

 $\frac{N_s}{R_s} + \frac{N_{\varphi}}{R_{\varphi}} = p_z$, ebben az esetben csak egy skaláris egyensúlyi egyenlet marad.

Forgásszimmetrikus héj membrán feszültségi állapota egyensúlyi egyenletekkel határozható meg.

8.2. Példák membrán állapot meghatározására

a) Körhengerhéj – hengeres tartály

A henger héj középső szakaszán (a végektől kb. R_0 távolságra) membrán állapot alakul ki.

A héjat átmetszük:

Forgástengely irányú egyensúlyi egyenlet:

$$2R_0 \pi N_s - R_0^2 \pi p = 0$$
$$N_s = \frac{R_0 p}{2} = \text{állandó}.$$

Egyensúlyi egyenlet:

$$\frac{N_s}{R_s} + \frac{N_{\varphi}}{R_{\varphi}} = p_z \implies \left(R_s \to \infty \ , \ R_{\varphi} = R_0 \ , \ p_z = p\right).$$

$$N_{\varphi} = p R_0 =$$
állandó.

Feszültségek:

$$\sigma_{s} = \frac{N_{s}}{b} = \frac{R_{0}}{2b} p = \text{állandó},$$

$$\sigma_{\varphi} = \frac{N_{\varphi}}{b} = \frac{R_{0}}{b} p = \text{állandó, kazán formula.}$$

 $R_s = R_0, \quad R_{\varphi} = R_0 + \frac{l}{\sin \theta},$

Elmetszés: a P ponton átmrnő, a tórusz tengelyére merőleges síkra, egy R = l sugarú hengerrel.

A P pont sugara: $R = l + R_0 \sin \vartheta$. Az R = l sugarú hengerfelületen:

- N_{s0} önmagában is egyensúlyi erőrendszer,

- p önmagában is egyensúlyi erőrendszer.

Tengelyirányú egyensúlyi egyenlet:

$$2R\pi N_{s} \sin \vartheta - (R^{2} - l^{2})\pi p = 0.$$

Átalakítás: $R = l + R_{0} \sin \vartheta$,
 $2(l + R_{0})N_{s} \sin \vartheta - (l^{2} + 2lR_{0} \sin \vartheta + R_{0}^{2} \sin^{2} \vartheta - l^{2})p = 0,$
 $2(l + R_{0})N_{s} \sin \vartheta - (2l + R_{0} \sin \vartheta)R_{0} \sin \vartheta p = 0.$
 $N_{s} = \frac{R_{0}p}{2}\frac{2l + R_{0} \sin \vartheta}{l + R_{0} \sin \vartheta}.$

Egyensúlyi egyenlet: $\frac{N_s}{R_s} + \frac{N_{\varphi}}{R_{\varphi}} = p_z$.

$$N_{\varphi} = R_{\varphi}p_z - N_s \frac{R_{\varphi}}{R_s} = \left(R_0 + \frac{l}{\sin\theta}\right)p - \frac{R_0p_z}{2}\frac{2l + R_0\sin\theta}{l + R_0\sin\theta} \frac{\left(R_0 + \frac{l}{\sin\theta}\right)}{R_0} =$$

$$= \left(R_0 + \frac{l}{\sin \vartheta}\right) \left(1 - \frac{l}{2} \frac{2l + R_0 \sin \vartheta}{l + R_0 \sin \vartheta}\right) p = \frac{p}{\sin \vartheta} \left(R_0 \sin \vartheta + l\right) \left(\frac{2l + 2R_0 \sin \vartheta - 2l - R_0 \sin \vartheta}{2\left(l + R_0 \sin \vartheta\right)}\right)$$
$$N_{\varphi} = \frac{pR_0}{2} = \text{állandó.}$$

c) Kúpos héj

- A feszültségállapot meghatározása:
- 1) $0 \le x \le x_0$ szakaszon N_s p R N_s N_s

A folyadék súlya:
$$G_k = \gamma \frac{R^2 \pi}{3} x = \gamma \frac{\pi}{3} tang^2 \alpha x^3$$

Tengelyirányú vetületi egyenlet:
 $2R \pi N_s \sin \theta - R^2 \pi p - G_k = 0$,
 $N_s = \frac{\gamma}{6} \frac{tang \alpha}{cos \alpha} (3x_0 x - 2x^2)$.
Egyensúlyi egyenlet: $\frac{N_s}{R_s} + \frac{N_{\varphi}}{R_{\varphi}} = p_z$.

A teljes folyadék súlya: $G = \gamma \frac{\pi}{3} tang^2 \alpha x^3$. Tengelyirányú vetületi egyenlet: $2(H tang \alpha) \pi N_s sin \vartheta - G = 0$, $N_s = \frac{\gamma}{6} \frac{tang \alpha}{cos \alpha} x_0^2 \frac{1}{x}$. Egyensúlyi egyenlet: $N_{\varphi} = R_{\varphi} p_z$.

9. LEMEZFELADATOK

9.1.Alapfogalmak

Lemez: Olyan test, amelynek egyik mérete lényegesen kisebb, mint a másik kettő. Értelmezhető a középsík, továbbá a terhelés a középsíkra merőleges.

A középfelület pontjainak elmozdulása: $\vec{u} = w_0 \vec{e}_z$,

$$w_0 = w_0(x, y), \quad w_0 = w_0(R, \varphi).$$

9.2. Kirchoff-féle lemezelmélet

<u>Kirchoff-féle hipotézis:</u> A középfelület normálisai az alakváltozott középfelület normálisai maradnak és a normálisokon lévő pontok távolsága nem változik.

Kirchoff-féle hipotézis következménye: $\gamma_{xz} = \gamma_{yz} = 0$,

 $\varepsilon_z = 0.$

Alakváltozási állapot:

$$\varepsilon_x = \frac{\partial u}{\partial x} = \frac{\partial \chi_y}{\partial x} z = -\frac{\partial^2 w_0}{\partial x^2} z, \quad \varepsilon_y = \frac{\partial v}{\partial y} = \frac{\partial \chi_x}{\partial y} z = -\frac{\partial^2 w_0}{\partial y^2} z,$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = -2 \frac{\partial^2 w_0}{\partial x \partial y} z.$$

<u>Görbületek a DDKR-ben:</u> $\kappa_x = -\frac{\partial^2 w_0}{\partial x^2}, \quad \kappa_y = -\frac{\partial^2 w_0}{\partial y^2}, \quad \kappa_{xy} = \frac{\partial^2 w_0}{\partial x \partial y}.$

A lemez alakváltozását a középsík görbületei határozzák meg.

Görbületek a HKR-ben:
$$\kappa_R = -\frac{\partial^2 w_0}{\partial R^2}, \quad \kappa_{\varphi} = -\left(\frac{1}{R}\frac{\partial w_0}{\partial R} + \frac{1}{R^2}\frac{\partial^2 w_0}{\partial \varphi^2}\right), \quad \kappa_{R\varphi} = \left(\frac{1}{R}\frac{\partial w_0}{\partial \varphi}\right).$$

Alakváltozási jellemzők:

DDKR	HKR
$\mathcal{E}_x = \mathcal{K}_x \mathcal{Z}$,	$\mathcal{E}_R = \mathcal{K}_R Z$,
$\varepsilon_y = \kappa_y z$,	$\mathcal{E}_{\varphi} = \mathcal{K}_{\varphi} Z$,
$\gamma_{xy} = -2 \kappa_{xy} z$,	$\gamma_{R\varphi} = -2\kappa_{R\varphi} z.$

<u>Kiegészítő feltételezés:</u> $\sigma_z \ll \sigma_x, \sigma_y \implies \sigma_z \approx 0.$ <u>Általános Hooke törvény:</u>

1.

$$\begin{split} \varepsilon_{x} &= \kappa_{x} \, z = \frac{l}{E} \Big(\sigma_{x} - \nu \sigma_{y} \Big) , \ \varepsilon_{y} = \kappa_{y} \, z = \frac{l}{E} \Big(\sigma_{y} - \nu \sigma_{y} \Big), \\ \gamma_{xy} &= -2\kappa_{xy} \, z = \frac{l}{G} \tau_{xy} = 2 \frac{l+\nu}{E} \tau_{xy}. \end{split}$$

Az egyenleteket átrendezve és bevezetve az E_1 jelölést:

$$E_{I} = \frac{E}{1-\nu^{2}}$$
, $2G = \frac{E}{(1+\nu)} = (1-\nu)E_{I}$.

A lemez alakváltozását a középsík görbületei jellemzik, ezért a továbbiakban a görbületeket tekintjük alakváltozási jellemzőnek.

$$\begin{split} \sigma_{x} &= E_{I} \left(\kappa_{x} + \nu \kappa_{y} \right) z = -E_{I} \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + \nu \frac{\partial^{2} w_{0}}{\partial y^{2}} \right) z, \quad \sigma_{y} = E_{I} \left(\nu \kappa_{x} + \kappa_{y} \right) z = -E_{I} \left(\nu \frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}} \right) z, \\ \tau_{xy} &= -2G \kappa_{xy} z = -E_{I} \left(I - \nu \right) \frac{\partial^{2} w_{0}}{\partial x \partial y} z. \end{split}$$

Egyensúlyi egyenletek, ha $\vec{q} = q_z \vec{e}_z$:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0,$$

$$\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = 0,$$

$$\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_z}{\partial z} = -q_z.$$

Az első két egyenletbe behelyettesítve a σ_x , σ_y és τ_{xy} – t és figyelembe véve a dinamikai peremfeltételt:

$$z = \pm \frac{b}{2}$$
, $\tau_{xz} = \tau_{yz} = 0$ $(\tau_{zx} = \tau_{zy} = 0)$.

$$\tau_{zx} = -\frac{1}{2} E_I \frac{\partial}{\partial x} \left(\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} \right) \left(\frac{b^2}{4} - z^2 \right), \quad \tau_{zy} = -\frac{1}{2} E_I \frac{\partial}{\partial y} \left(\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} \right) \left(\frac{b^2}{4} - z^2 \right).$$

Feszültségeloszlás a vastagság mentén:

A feszültségek redukciója a középsíkba:

$$\vec{F}_{x} = \left(\int_{(b)} \tau_{zx} dz\right) \vec{e}_{z} = -Q_{x} \vec{e}_{z}$$

$$\vec{F}_{y} = \left(\int_{(b)} \tau_{zy} dz\right) \vec{e}_{z} = -Q_{y} \vec{e}_{z}$$
Eredő erők (élerők).

Eredő nyomatékok (élnyomatékok):

$$M_{x} = \int_{(b)} z \sigma_{x} dz$$
hajlító nyomatékok,
$$M_{y} = \int_{(b)} z \sigma_{y} dz$$
hajlító nyomatékok,
$$M_{xy} = \int_{(b)} z \tau_{xy} dz$$
csavaró nyomatékok.

Szemléltetés:

Integrálokat kiszámítva:
$$M_{x} = \int_{(b)} z \,\sigma_{x} \, dz = -E_{I} I_{I} \left(\frac{\partial^{2} w_{0}}{\partial x^{2}} + v \frac{\partial^{2} w_{0}}{\partial y^{2}} \right)$$
$$M_{y} = \int_{(b)} z \,\sigma_{y} \, dz = -E_{I} I_{I} \left(v \frac{\partial^{2} w_{0}}{\partial x^{2}} + \frac{\partial^{2} w_{0}}{\partial y^{2}} \right)$$
$$M_{xy} = M_{yx} = \int_{(b)} z \,\tau_{yx} \, dz = -E_{I} I_{I} \left(1 - v \right) \frac{\partial^{2} w_{0}}{\partial x \partial y}$$
ahol $I_{I} = \frac{b^{3}}{12}$.

Összefüggés a feszültségek és a nyomatékok között:

$$\sigma_{x} = \frac{M_{x}}{I_{I}}z , \ \sigma_{y} = \frac{M_{y}}{I_{I}}z , \ \tau_{xy} = \frac{M_{xy}}{I_{I}}z , \ \tau_{xz} = -\frac{Q_{x}}{2I_{I}}\left(\frac{b^{2}}{4} - z^{2}\right), \ \tau_{zy} = -\frac{Q_{y}}{2I_{I}}\left(\frac{b^{2}}{4} - z^{2}\right).$$
Equencised encoded and the encoded of the encoded encoded of the encoded e

Egyensulyi egyenletek.

$$\begin{split} &\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = p_z ,\\ &\frac{\partial M_{yx}}{\partial x} + \frac{\partial M_y}{\partial y} + Q_y = 0 ,\\ &\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} + Q_x = 0 .\\ &\text{Az } M_x , M_y , M_{xy} - \text{t a } 2 . , 3. \text{ egyenletbe behelyettes/tve.} \end{split}$$

A 2. , 3. egyenletből Q_x , Q_y -t behelyettesítve az 1. egyenletbe:

$$\Delta\Delta w_0 = \frac{p_z(x, y)}{I_1 E_1}$$
. Lemezegyenlet.

Laplace-féle differenciál operátor:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \quad \Delta = \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial \varphi^2}$$

Lemezegyenlet a DDKR-ben:

$$\frac{\partial^4 w_0}{\partial x^4} + 2 \frac{\partial^4 w_0}{\partial x^2 \partial y^2} + \frac{\partial^4 w_0}{\partial y^4} = \frac{p_z(x, y)}{I_I E_I}$$

Peremfeltételek:

a) egyszerű alátámasztás (csuklós alátámasztás)

9.3. Tengelyszimmetrikus terhelésű kör és körgyűrű alakú lemezek

A geometria a terhelésés a megtámasztás is tengelyszimmetrikus/forgásszimmetrikus. A tengelyszimmetria miatt minden mennyiség csak az R helykoordinátától függ. Például: $w_0 = w_0(R)$, $p_z = p_z(R)$.

a) Egyenletek forgásszimmetrikus esetben:

- Kinematikai egyenletek

$$\begin{aligned} \mathcal{G} &= -\chi_R = -\frac{dw_0}{dR} , \ \kappa_R = \frac{d\mathcal{G}}{dR} = -\frac{d^2 w_0}{dR^2}, \\ \chi_{\varphi} &= 0, \qquad , \ \kappa_{\varphi} = \frac{\mathcal{G}}{R} = -\frac{1}{R} \frac{dw_0}{dR}, \quad \kappa_{R\varphi} = 0. \end{aligned}$$
- Anyagegyenletek

$$\begin{split} M_{R} &= E_{I}I_{I}\left(\kappa_{R} + v\kappa_{\varphi}\right) = E_{I}I_{I}\left(\frac{d\vartheta}{dR} + v\frac{\vartheta}{R}\right), \\ M_{\varphi} &= E_{I}I_{I}\left(v\kappa_{\varphi} + \kappa_{R}\right) = E_{I}I_{I}\left(v\frac{d\vartheta}{dR} + \frac{\vartheta}{R}\right), \\ M_{R} &= M_{\varphi} = 0. \\ Q_{R} &= -E_{I}I_{I}\frac{d}{dR}\left(\frac{1}{R}\frac{d}{dR}(R\vartheta)\right), \quad Q_{\varphi} = 0. \\ \text{Egyensúlyi egyenletek} \end{split}$$
 ahol $I_{I} = \frac{b^{3}}{12}, \quad E_{I} = \frac{E}{1 - v^{2}}. \end{split}$

$$\frac{d(RQ_R)}{dR} = R p_z,$$

$$\frac{dM_R}{dR} + \frac{1}{R} (M_R - M_{\varphi}) + Q_R = 0.$$
- Lemez egyenlet
$$\Delta \Delta w_0 (R) = \frac{p_z(R)}{I_1 E_1},$$

$$\left(\frac{d^2}{dR^2} + \frac{1}{R}\frac{d}{dR}\right) \left(\frac{d^2}{dR^2} + \frac{1}{R}\frac{d}{dR}\right) w_0 (R) = \frac{p_z(R)}{I_1 E_1}.$$

- b) Kör és körgyűrű alakú lemezfeladatok megoldása
 - $w_0(R) = w_{\theta_h}(R) + w_{\theta_p}(R).$

Homogén megoldás: $w_{0_h}(R) = \frac{A}{2}R^2 + B\ln R + C + DR^2\ln R.$

Partikuláris megoldás $p_z(R) = p_0 =$ állandó esetén: $w_{0_p}(R) = \frac{p_0}{I_1 E_1} \frac{R^4}{64}$.

<u>Probléma:</u> ha a $p_z(R)$ nem folytonos függvény Például:

<u>Példa:</u> nem folytonos $p_z(R)$ terhelésre

Terhelés: $0 < R < R_0$ $p_z = p_0$, $R_0 < R < R_K$ $p_z = 0$. Megoldás szuperpozícióval:

 $R = R_0 - nál$ 4 illesztési feltételt kell figyelembe venni. Ez eléggé nehézkes eljárás. - <u>Megoldás a terhelési függvények módszerével:</u>

A homogén megoldás ugyanúgy állítható elő, mint az előző esetben. Ez a módszer a partikuláris megoldás előállítását egyszerűsíti le szakadásos $p_z(R)$ terhelés esetén.

A megoldás első lépése: az első skaláris egyensúlyi egyenlet integrálása:

$$\frac{d(RQ_R)}{dR} = R p_z / \int_{R_B}^{R} \dots dR,$$

$$RQ_R(R) - R_B Q_{RB} = \int_{R=R_B}^{R} R p_z(R) dR,$$

$$Q_R(R) = \frac{I}{R} \left(R_B Q_{RB} + \int_{R_B}^{R} R p_z(R) dR \right).$$

<u>Példa:</u> $Q_R(R)$ meghatározására

Adott: p_0 , f_1 , R_B , R_I , $R_A R_K$. Keresett: $Q_R(R)$.

A támasztóerők meghatározása a z irányú vetületi egyensúlyi egyenletből:

$$p_0 \left(R_K^2 - R_B^2 \right) \pi + f_1 2 R_I \pi + f_A 2 R_A \pi,$$

$$f_A = -\frac{p_0}{2} \frac{\left(R_K^2 - R_B^2 \right)}{R_A} - f_I \frac{R_I}{R_2} \quad (\uparrow).$$

 $Q_R(R)$ meghatározása a z irányú vetületi egyensúlyi egyenletből: a) $R_B < R < R_I$

$$p_0 \left(R^2 - R_B^2 \right) \pi + f_1 2 R_1 \pi - Q_R 2 R \pi = 0$$
$$Q_R \left(R \right) = \frac{p_0}{2} R - \frac{p_0}{2} \frac{R_B^2}{R} + f_1 \frac{R_1}{R}.$$

c) $R_A < R < R_K$

A megoldás további gondolatmenete:

A nyíróerő és a $\mathcal{G} = -\frac{dw_0}{dR}$ szögelfordulás kapcsolata: $Q_R = -E_I I_I \frac{d}{dR} \left(\frac{1}{R} \frac{d}{dR} (R \mathcal{G}) \right).$

Homogén megoldás: $R^2 \mathcal{G}'' + R \mathcal{G}' - \mathcal{G} = 0$,

$$\mathcal{G}_{h}(R) = R^{n}.$$

Behelyettesítve:
$$R^{2}n(n-1)R^{n-2} + RnR^{n-1} - R^{n} = 0,$$

$$n(n-1) + n - 1 = 0,$$

$$(n-1)(n+1) = 0 \implies n = \pm 1,$$

$$\mathcal{G}_{h}(R) = C_{1}R + C_{2}\frac{1}{R}.$$

Partikuláris megoldás a differenciál egyenlet (*) -al jelölt alakjának integrálásával:

$$\frac{1}{R}\frac{d}{dR}\left(R\,\mathcal{B}_{p}\right) = -\frac{1}{E_{I}I_{I}}\int_{R_{B}}^{R}Q_{R}\left(R\right)dR,$$

$$R\,\mathcal{B}_{p} = -\frac{1}{I_{I}E_{I}}\int_{\frac{R_{B}}{U'}}^{R}R\left(\int_{\frac{\xi=R_{B}}{U'}}^{R}Q_{R}d\xi\right)dR,$$

$$u = \frac{R^{2}}{2} \quad v' = Q_{R}. \text{ Parciális integrálás.}$$

$$R\,\mathcal{B}_{p} = -\frac{1}{I_{I}E_{I}}\left\{\left[\frac{R^{2}}{2}\int_{\xi=R_{B}}^{R}Q_{R}d\xi\right]_{R_{B}}^{R} - \int_{\xi=R_{B}}^{R}\frac{R^{2}}{2}Q_{R}d\xi\right\},$$

$$\mathcal{B}_{p} = -\frac{1}{2I_{I}E_{I}}\left\{R\int_{\xi=R_{B}}^{R}Q_{R}d\xi - \frac{1}{R}\int_{\xi=R_{B}}^{R}R^{2}Q_{R}d\xi\right\}.$$

Általános megoldás :

$$\mathcal{G}(R) = \mathcal{G}_h(R) + \mathcal{G}_p(R) = C_1 R + C_2 \frac{l}{R} - \frac{l}{2I_1 E_1} \left\{ R \int_{R_B}^R Q_R dR - \frac{l}{R} \int_{R_B}^R R^2 Q_R dR \right\}.$$

Az általános Hooke-törvény felhasználásával a nyomatékok:

$$M_{R}(R) = I_{I}E_{I}\left(\frac{d\theta}{dR} + v\frac{\theta}{R}\right) = I_{I}E_{I}\left\{(1+v)C_{I} - (1-v)\frac{C_{2}}{R^{2}}\right\} - \underbrace{\frac{1+v}{2}\int_{R_{B}}^{R}Q_{R}dR}_{K_{0}(R)} + \underbrace{\frac{1-v}{2}\frac{1}{R^{2}}\int_{R_{B}}^{R}R^{2}Q_{R}dR}_{K_{2}(R)}$$

Új változót bevezetve: $\lambda = \frac{R^2}{R_K^2}$. $M_R(\lambda) = A - \frac{B}{\lambda} - K_R(\lambda)$ $M_{\varphi}(\lambda) = A + \frac{B}{\lambda} - K_{\varphi}(\lambda)$ Az *A*, *B* konstansok a peremfeltételekből határozhatóak meg.

Terhelési függvények: $K_R(\lambda) = K_0(\lambda) + K_2(\lambda),$ $K_n(\lambda) = K_n(\lambda) - K_n(\lambda)$

$$K_{\varphi}(\lambda) = K_{0}(\lambda) = K_{2}(\lambda).$$

$$K_{0} = \frac{1+\nu}{2} \int_{R_{B}}^{R} Q_{R} dR = \frac{1+\nu}{4} \int_{\lambda_{B}}^{\lambda} \frac{R_{K} Q_{R}}{\sqrt{\lambda}} d\lambda,$$

$$K_{2} = \frac{1-\nu}{2} \frac{1}{R^{2}} \int_{R_{B}}^{R} R^{2} Q_{R} dR = \frac{1-\nu}{4} \frac{1}{\lambda} \int_{\lambda_{B}}^{\lambda} R_{K} Q_{R} \sqrt{\lambda} d\lambda$$

A terhelési függvények közvetlenül a terhelésből határozhatók meg. A szögelfordulás meghatározása az általános Hooke-törvényből:

$$\mathcal{G} = \frac{l}{I_1 E_1} \frac{l}{l - v^2} \left(M_{\varphi} - v M_R \right) = \frac{l}{I_1 E} \left(M_{\varphi} - v M_R \right).$$

A lehajlás a szögelfordulásból integrálásával állítható elő:

$$-\frac{dw_0}{dR} = \mathcal{G} \implies w_0(R) = w_{0_B} - \int_{R_B}^{R} \mathcal{G}(R) dR.$$

c) Kör, körgyűrű alakú lemezek méretezése, ellenőrzése:

- A $\mathcal{G}(R)$ meghatározása z irányú vetületi egyenletből

- Az $M_R(R)$, $M_{\varphi}(R)$ előállítása a terhelési függvények módszerével

$$M_{R}(\lambda) = A - \frac{B}{\lambda} - K_{R}(\lambda)$$

$$M_{\varphi}(\lambda) = A + \frac{B}{\lambda} - K_{\varphi}(\lambda)$$

$$\lambda = \frac{R^{2}}{R_{K}^{2}}.$$

Az A, B állandók a peremfeltételekből határozhatók meg.

A leggyakrabban használt peremfeltételek:

lpha) Egyszerű alátámasztás

 γ) Terhelt perem

- Veszélyes hely megkeresése \rightarrow lemezdiagram.

$$M_{R}(\lambda) = A - \frac{B}{\lambda} - K_{R}(\lambda) \qquad K_{R}(\lambda) = K_{0}(\lambda) + K_{2}(\lambda),$$

$$M_{\varphi}(\lambda) = A + \frac{B}{\lambda} - K_{\varphi}(\lambda) \qquad K_{\varphi}(\lambda) = K_{0}(\lambda) - K_{2}(\lambda).$$

Példa: a lemezdiagram megrajzolása

Peremfeltétel:

$$\begin{split} \lambda &= \lambda_B \ , \ M_R = \mu_B \ \implies \ h_R(\lambda) = \mu_B + K_R(\lambda_B), \\ \lambda &= I \ , \ M_R = \mu_K \ \implies \ h_R(\lambda = I) = \mu_K + K_R(\lambda_B = I). \end{split}$$

Ebben az esetben $M_R > 0$, $M_{\varphi} > 0$.

A lemezdiagramból meghatározható a lemez veszélyes sugara. Ebben az esetben a veszélyes sugár $\lambda_B \to R_B$.

- Feszültségek számítása:

$$\sigma_R = \frac{M_R}{I_I} z, \qquad \sigma_{\varphi} = \frac{M_{\varphi}}{I_I} z, \qquad \tau_{zR} = -\frac{Q_R}{2I_I} \left(\frac{b^2}{4} - z^2\right),$$

$$\sigma_z = 0.$$

- Lemezhajlításnál: σ_{Rmax} , $\sigma_{\varphi max} \gg \tau_{Rzmax}$. Veszélyes hely a $z = \pm \frac{b}{2}$ felületek.

- A redukált feszültség maximuma:

$$R = R_B$$
 és $z = \pm \frac{\sigma}{2}$ helyen $\sigma_{red max} = (\sigma_{\varphi} - \sigma_z)_{max} = \sigma_{\varphi}(\lambda_B).$

- Méretezés, ellenőrzés: $\sigma_{\rm red\,max} << \sigma_{\rm meg}$.