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Abstract 
In this case study a fully symbolic design and modelling method are presented for blood 
glucose control  of diabetic patiens under intensive care. The analysis is based on a modified 
two-compartment model proposed by Bergman et al. [1]. The applied feedback control law 
decoupling even the nonlinear model leads to a fully symbolic solution of the closed loop 
equations. The effectivity of the applied symbolic procedures being mostly built-in the new 
version of Control System Professional Suite (CSPS) Application of Mathematica - have been 
demonstrated for controller design in case of a glucose control for treatment of diabetes 
mellitus. The results are in good agreement with the earlier presented symbolic-numeric 
analysis by Benyo et al. [7]. This research has been supported by Hungarian National 
Research Fund, Grants No. OTKA T029830, T042990 and by Hungarian Ministry of 
Education Grant No. 200/2001. 
 
Introduction 
Treatment of diabetes mellitus can be represented by outer control loop to replace the 
partially or totally failing blood-glucose-control system of the human body. To maintain the 
glucose level in a diabetic under intensive care is currently an actively researched topic in the 
field of Biomedical Engineering. Many different models and strategies have been designed 
and applied to the problem Sano [6], Fischer [3], Candas [2], Juhász [4] and Benyó et al. [7]. 
The authors orientated on Benyó [7], considering as the best appropriate model. Symbolic 
computation was used to design multivariable modal control based on the space 
representation of a verified nonlinear model. Computations were carried out and the article 
was written in Mathematica Version 4.2, and presented as a live worksheet. 

Method 
Insulin-glucose interaction in human body was modelled with a two-compartment nonlinear 
model : 
 

deq1 = p1 X[t] + p2h[t] = X’[t];   
deq2 = (p3-X[t])Y[t]+ i[t]+ p4 = Y’[t]; 
 

The terms h(t) and i(t) as exogenous insulin and glucose, take the impacts on glucose level 
into consideration, X(t) and Y(t) stand for the concentration of glucose in the plasma and that 
of the insulin remote from plasma, respectively. 
 
To design the control for this system, it should be linearized. Loading the CSPS Application, 
the linearization will be carried out at the steady state (X0, Y0, h0, i0): 
 

 



 
or its representation on frequency domain: 
 

ControlObjectTF = TransferFunction[s, ControlObjectSS] // Simplify 
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The steady state values are  The X[0]=0, h[0]=0, i[0]=0 and Y[0]=Y0. We need to 
compute Y0.  
Now, the linearized model is: 
 

ControlObjectSS // EquationForm 
 

 
 

Introducing A and B for the matrices as usual, the equilibrium is stable ( p1 and p3 < 0). 

Let us consider the 1λ , 2λ , as the eigenvalues of the matrix A-KB, where K is the gain matrix. 
Then K can be computed as: 

 
K = Inverse[B].(A-DiagonalMatrix[{λ1, λ2}]) // Simplify; MatrixForm[K] 
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Special case of the control, when 21 p=λ  and 32 p=λ . This is a feasible control, because 
both of the model parameters are negative. 
 
Greater absolute value of 1λ , 2λ , make the system reach the steady state faster. So the quality 
of the control will be improved with the increase of the absolute value of the λ ’s, however in 
real cases, the dynamical performance ability of the actuators can be the bottle-neck. So, we 
were able to get symbolic results for control design of our system and could draw certain 
conclusions concerning the control performance, which demonstrate one of the unique 
features of the CSPS. Now, we continue our study with further symbolic computations. 

Nonlinear closed loop model. The variables of the linearized model represent the deviations 
from the steady state instead of the total values. Therefore to get the nonlinear closed loop 
model, one should take into consideration the steady values. So, the control vector is: 

 
{h[t], i[t]} = {h0, i0} – K.{X[t]-X0, Y[t]-Y0} 

{
2

1

p
tXp1 ][)( +λ−

− , 







++λ−−− ][)(][

tY
p
p

p2
p
tXp

3

4
3

3

4 } 



 



Then our model equations are: 
p1X[t] - (-λ1 + p1)X[t] = X’[t] 

p4

3

4

p
tXp ][

− +(p3-X[t])Y[t] 







++λ−− ][)( tY

p
p

p2
3

4
3  = Y’[t] 

 
The solutions of our model equations are: 
   

X[t] = etλlX0 
 

Y[t] = 
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The control variables: 

h[t_]=
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Results 
Numerical simulation of the nonlinear closed loop model. Let us consider the following 
numerical values, Juhász et.al. [4]: p1=-0.021151, p2=0.092551, p3=-0.014188, p4 = 0.077947. 
We consider a hypoglycaemic episode with initial values X0=0.1 and Y0=2. Let the 
eigenvalues be: 17.01 p=λ  and 305.12 p=λ  
The dynamic performance of the state variables is shown in Fig. 1. – Fig. 4.  
Simulation without control. In order to qualify the effect of the control on the dynamical 
performance, we carry out the simulation without control. This can be done only numerically. 
The figures (Fig.1 vs Fig.4) clearly show, that the control considerably improves the 
dynamical performance of the system. 

         
Fig.1 The state variables in time with control.      Fig.2 The state variables on phase plane. 



           
Fig.3 The control variables on phase plane. Fig.4 The state variables in time without control. 

Discussion 
Although, the control design was based on the linearized model, the control could improve 
considerably the system response. Results show, that it is possible to carry out the design 
algorithm fully symbolical way. According to the first results, the system is expected – after 
the necessary further verifications – to provide a useful help to control of blood glucose level 
in diabetics under intensive care, and to the optimisation process of diabetic administration. 
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