Characterization of random uncertainty of measurements Random variables

Dr. Miklós BERTA
Department of Physics and Chemistry
Széchenyi István University

Fizika és Kémia
Tanszék

Probability

- If an experiment has a total of N possible, random results and a given result A occurs k times, then the probability of result A is:

$$
p(A)=\frac{k}{N}
$$

(This definition is the classical definition of probability. From now on, we will be satisfied with this!)

Random error

- the random error is theoretically a random variable
- a random variable could have:
- discrete values from the elements of a discrete set, or
- continuous values from the elements of a continuous interval.
- the sum of the probabilities of all possible values of a random variable is always I. $\sum_{\forall A} p(A)=1$

Distribution function

- The function $F(x)$, which gives the probability that the random variable A takes a value smaller than x, is called distribution function of the random variable A:

$$
F(x)=p(A<x) .
$$

Density function

- The probability density function of the continuous random variable is defined as:

$$
\rho(x)=\frac{d F(x)}{d x}
$$

- From above definition follows:

$$
\begin{gathered}
p(a \leq A \leq b)=\int_{a}^{b} \rho(x) d x \\
\int_{\forall A} \rho(x) d x=1
\end{gathered}
$$

Moments

- Discrete case:

$$
M_{k}=\sum_{\forall i} A_{i}^{k} \cdot p\left(A_{i}\right)
$$

- Continuous case:

$$
M_{k}=\int_{\forall x} x^{k} . \rho(x) d x
$$

Expected value and standard deviation

- The first moment of a random variable is called expected value:

$$
m=M_{1}(x)=\langle x\rangle .
$$

- The second moment of deviations of random variable A from it's expected value is called standard deviation:

$$
D^{2}=M_{2}(x-m)=\left\langle(x-m)^{2}\right\rangle .
$$

Theorem: $\quad D^{2}=M_{2}(x)-m^{2}$

Proof:

$$
\begin{aligned}
& D^{2}=M_{2}(x-m)=\left\langle(x-m)^{2}\right\rangle=\left\langle x^{2}\right\rangle-2 m\langle x\rangle+m^{2}= \\
& =M_{2}(x)-2 m^{2}+m^{2}=M_{2}(x)-m^{2} .
\end{aligned}
$$

The Poisson distribution

- If X is a discrete random variable and take values $0, I, 2, \ldots, k$ with probability:

$$
\begin{aligned}
& \qquad p(X=k)=\frac{\lambda^{k} \cdot e^{-\lambda}}{k!} \quad \lambda>0 \\
& \text { than } X \text { has the Poisson distribution }
\end{aligned}
$$

- Examples: the number of raindrops falling on a given area, the average length of the waiting list during a given time period, the number of radioactive decays during a given time interval, etc.

- From Calculus we now the Taylor serie for exponential funtion:

$$
e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}
$$

Characterization of Poisson distribution

- Does it describe probability?

$$
\sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
$$

-What is it's expected value?

$$
\begin{aligned}
& m=\sum_{k=0}^{\infty} k \frac{\lambda^{k} \cdot e^{-\lambda}}{k!}=0+\lambda \cdot \sum_{k=1}^{\infty} \frac{\lambda^{(k-1)} \cdot e^{-\lambda}}{(k-1)!} \\
& =\lambda \cdot e^{-\lambda} \sum_{r=0}^{\infty} \frac{\lambda^{r}}{r!}=\lambda \cdot e^{-\lambda} \cdot e^{\lambda}=\lambda
\end{aligned}
$$

Characterization of Poisson distribution

- What is it's standard deviation?:

$$
\begin{aligned}
& D^{2}=\left\langle k^{2}\right\rangle-m^{2} \\
& \left\langle k^{2}\right\rangle=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k} \cdot e^{-\lambda}}{k!}=\lambda \cdot \sum_{k=1}^{\infty} k \frac{\lambda^{(k-1)} \cdot e^{-\lambda}}{(k-1)!}=\lambda \cdot \sum_{r=0}^{\infty}(r+1) \frac{\lambda^{r} \cdot e^{-\lambda}}{r!} \\
& =\lambda \cdot\left\{\sum_{r=0}^{\infty} r \frac{\lambda^{r} \cdot e^{-\lambda}}{r!}+\sum_{r=0}^{\infty} \frac{\lambda^{r} \cdot e^{-\lambda}}{r!}\right\}=\lambda \cdot\left\{m+e^{-\lambda} \cdot e^{\lambda}\right\}=\lambda \cdot(\lambda+1)=\lambda^{2}+\lambda \\
& D^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda \quad \\
& M=\lambda \\
& \\
& D^{2}=\lambda
\end{aligned}
$$

Uniform distribution

- If X continuous random variable's probability density function is:

$$
\begin{aligned}
\rho(x) & =\frac{1}{b-a}, & & a<x<b \\
& =0 & & \text { otherwise }
\end{aligned}
$$

than random variable is
uniformly distributed.

- Example: measurements with scales

Characterization of uniform distribution

- Does it describe probability?

$$
\int_{\forall x} \rho(x) d x=\int_{a}^{b} \frac{1}{b-a} d x=\frac{b-a}{b-a}=1
$$

-What is it's expected value?

$$
\mu=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x d x=\frac{1}{b-a} \cdot \frac{b^{2}-a^{2}}{2}=\frac{a+b}{2}
$$

Characterization of uniform distribution

- What is it's standard deviation?:

$$
\begin{aligned}
& \sigma^{2}=\left\langle x^{2}\right\rangle-\mu^{2} \\
& \left\langle x^{2}\right\rangle=\int_{a}^{b} x^{2} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x^{2} d x=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{a^{2}+a b+b^{2}}{3} \\
& \sigma^{2}=\frac{a^{2}+a b+b^{2}}{3}-\frac{(a+b)^{2}}{4}=\frac{(b-a)}{12} \quad \mu=\frac{(a+b)}{2} \\
& \sigma^{2}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Normal distribution or Gaussian distribution

- If probability density function of continuos random variable X is ($\mu_{0}>0$ és $\sigma_{0}>0$)

$$
\rho(x)=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \cdot e^{\frac{-\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}},
$$

than X is called normally distributed or Gaussian.
E.g.: Several independent, small, random deviations make the measured value Gaussian!

Characterization of Normal distribution

- Does it discribe probability?

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \rho(x) d x=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \int_{-\infty}^{\infty} e^{\frac{-\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} d x \\
& t=\frac{x-\mu_{0}}{\sigma_{0}}, \frac{d t}{d x}=\frac{1}{\sigma_{0}} \\
& \int_{-\infty}^{\infty} \rho(t) d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-t^{2}}{2}} d t=1
\end{aligned}
$$

$\begin{aligned} & \text { (1) } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{t^{2}}{2}} d t=A \\ & -\frac{x^{2}+y^{2}}{2}\end{aligned} d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} \cdot e^{-\frac{y^{2}}{2}} d x \cdot d y=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x \cdot \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y=A \cdot A=A^{2}$
(2) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} d x d y=\left\{\begin{array}{l|l}x=r \cdot \cos \varphi & r^{2}=x^{2}+y^{2} \\ y=r \cdot \sin \varphi & d x \cdot d y=\int_{=r d r d \varphi}\end{array}\right\} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r \cdot d r d \varphi=\left\{\begin{array}{l}-\frac{r^{2}}{2}=\mu \\ \frac{d \mu}{d r}=-r\end{array}\right\}=$

$$
\begin{aligned}
& \begin{array}{l}
r \in[0 ; \infty[\\
\varphi \in[0 ; 2 \pi] \\
x=r \cdot \cos y
\end{array}
\end{aligned} \quad \begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x=-2 \pi \int_{0}^{-\infty} e^{\mu} d u=-2 \pi\left[e^{\mu}\right]_{0}^{-\infty}= \\
& =-2 \pi(0-1)=2 \pi=A^{2}
\end{aligned}
$$

$$
x=r \cdot \cos y
$$

$$
y=r \cdot \sin p
$$

$$
\begin{gathered}
A=\sqrt{2 \pi} \\
\int_{-\infty}^{\infty} e^{-\frac{t^{2}}{2}} d t=\sqrt{2 \pi}
\end{gathered}
$$

Characterization of Normal distribution

-What is it's expected value?

$$
\begin{aligned}
& \mu=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \int_{-\infty}^{\infty} x e^{\frac{-\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} d x \\
& t=\frac{x-\mu_{0}}{\sigma_{0}}, x=t \cdot \sigma_{0}+\mu_{0}, \frac{d t}{d x}=\frac{1}{\sigma_{0}} \\
& \mu=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(t \cdot \sigma_{0}+\mu_{0}\right) \cdot e^{\frac{-t^{2}}{2}} d t=\frac{\sigma_{0}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} t e^{\frac{-t^{2}}{2}} d t+\mu_{0} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-t^{2}}{2}} d t \\
& \int_{-\infty}^{\infty} t e^{\frac{-t^{2}}{2}} d t=0 \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-t^{2}}{2}} d t=1 \\
& \mu=\mu_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{2}=\mu_{2}(x)-\mu^{2} \\
& \rho(x)=\frac{1}{\sqrt[\pi]{\sigma} \varepsilon_{0}} \cdot e^{\frac{\left(x-\mu_{0}\right)^{2}}{2 r_{0}^{2}}} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right) \cdot e^{-\frac{x^{2}+y^{2}}{2}} d x d y= \\
& M_{2}(x)=\int_{0}^{2} x^{2} \cdot \rho(x) d x= \\
& =\frac{1}{\sqrt{\sin } \sigma_{0}} \int_{-\infty}^{\infty} x^{2} \cdot e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}}} d x=\left\{\begin{array}{c}
t=\frac{x-\mu_{0}}{\sigma_{0}} \Rightarrow x=\mu_{0}+\sigma_{0} \cdot t \\
\frac{d x}{d t}=\sigma_{0}
\end{array}\right\}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 23. } \sqrt{2 \pi} \\
& \int_{-0}^{0} t^{2} e^{\frac{t^{2}}{2}} d t=3 \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x^{2}+y^{2}\right) \cdot e^{-\frac{x^{2}+y}{2}} d x d y=\left\{\begin{array}{l}
x=r \cos \varphi ; x^{2}+y^{2}=r^{2} \\
y=r \sin \varphi ; d x d y \rightarrow r d r d \varphi
\end{array}\right\}= \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} r^{2} \cdot e^{-\frac{r^{2}}{2}} \cdot r d r d \varphi=2 \pi \int_{0}^{\infty} r^{3} \cdot e^{-\frac{r^{2}}{2}} d r=\left\{\begin{array}{l}
-\frac{r^{2}}{2}=\mu \\
\frac{d m}{d r}=m^{\prime}=-r
\end{array}\right\}= \\
& =2 \pi \int_{0}^{0} 2 m \cdot e^{\mu} d u=4 \pi \int_{0}^{-\infty} u \cdot e^{\mu} d u=\left\{\begin{array}{ll}
f=u & f^{\prime}=1 \\
g^{\prime}=e^{\mu} & g=e^{u}
\end{array}\right\}= \\
& x B \sqrt{2 \pi}=4^{2 \pi} \\
& 3 \sqrt{2 \pi}=(\sqrt{2 \pi})^{2} \\
& B=\int_{-\infty}^{\infty} t^{2} \cdot e^{-\frac{t^{2}}{2}} d t=\sqrt{2 \pi} \\
& \sigma^{2}=M_{2}(x)-\mu^{2}=\mu_{0}^{2}+\frac{\sigma_{0}^{2}}{\sqrt{2 \pi}+\mu_{0}} \underbrace{\int_{-0}^{0}}_{-3=\sqrt{2 \pi}} \underbrace{2} t^{-\frac{t^{2}}{2}} d t-\mu_{0}^{2}=\sigma_{0}^{2}
\end{aligned}
$$

Characterization of Normal distribution

-What is it's standard deviation?

$$
\begin{aligned}
& \sigma^{2}=\left\langle x^{2}\right\rangle-\mu^{2} \\
& \left\langle x^{2}\right\rangle=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \int_{-\infty}^{\infty} x^{2} \cdot e^{\frac{-\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} d x=\sigma_{0}^{2}+\mu_{0}^{2} \\
& \sigma^{2}=\sigma_{0}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\mu_{0} \\
& \sigma^{2}=\sigma_{0}^{2}
\end{aligned}
$$

$$
\rho(x)=\frac{1}{\sqrt{2 \pi} \cdot \sigma_{0}} \cdot e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}
$$

(1)

$$
\rho\left(x=\mu_{0}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \quad \sigma_{0} \rho \rightarrow \rho(x=\mu) \downarrow
$$

(2)

$$
\begin{aligned}
& \rho\left(x=\mu_{0} \pm \sigma_{0}\right) \Rightarrow \rho(x)=\frac{\rho\left(x=p_{0}\right)}{2} \\
& \left.\frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(\beta_{0} \pm \gamma_{0}-x_{0}\right)^{2}}{2 x_{0}^{2}}}=\frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{1}{2}}=\frac{1}{\sqrt{2 T} \sqrt[F]{e}^{2} \cdot \sigma_{0}} \right\rvert\, \frac{1}{\sqrt{2 \pi} \sigma_{0} \cdot 2}
\end{aligned}
$$

(3) $p\left(x=\mu_{0} \pm \sigma_{0}\right) \Rightarrow p(x)=\frac{p\left(x-\mu_{0}\right)}{e}$

Gans-
$x=\mu_{0} \pm \sigma_{0}$ pontor at mirniség-fgr. infleviri pontjai

$$
\begin{aligned}
& \rho^{\prime}(x)=\left[\frac{1}{\sqrt{2 \pi} \sigma_{0}} \cdot e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\right]^{\prime}=\frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} \cdot\left(-\frac{2\left(x-\mu_{0}\right)}{2 \Gamma_{0}^{2}}\right) \cdot 1= \\
& =-\frac{\left(x-\mu_{0}\right)}{\sqrt{2 \pi} \sigma_{0}^{3}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} \\
& \rho^{\prime \prime}(x)=-\frac{1}{\sqrt{2 \pi} \sigma_{0}^{3}}\left[\left(x-\mu_{0}\right) \cdot e^{\left.-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right]^{\prime}=-\frac{1}{\sqrt{2 \pi} \sigma_{0}^{3}}\left[e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}+\left(x-\mu_{0}\right) \cdot e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}} \cdot\left(-\frac{x\left(x y_{0}\right)}{2 \sigma_{0}^{2}} \cdot 1\right)\right.}\right. \\
& =-\frac{1}{\sqrt{2 \pi} \sigma_{0}^{3}} e^{-\frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}}\left[1-\left(x-\mu_{0}\right) \frac{\left(x-\mu_{0}\right)}{\sigma_{0}^{2}}\right]=\nabla^{<} \Leftrightarrow 1-\frac{\left(x-\mu_{0}\right)^{2}}{\sigma_{0}^{2}}=\varnothing \\
& \sigma_{0}^{2}-\left(x-\mu_{0}\right)^{2} \Rightarrow \phi \Rightarrow\left(x-\mu_{0}\right)^{2}=\sigma_{0}^{2} \Rightarrow\left|x-\mu_{0}\right|=\sigma_{0} \Rightarrow x=\mu_{0}+\sigma_{0}
\end{aligned}
$$

Central limit theorem

- The sum of N independent variables $\left(\mu_{0}, \sigma_{0}\right)$ with the same probability distribution is a random variable with a normal distribution in the limiting case $N \rightarrow \infty$, the expected value of which is $\mu=N . \mu_{0}$, and its standard deviation $\sigma^{2}=$ N. $\sigma_{0}{ }^{2}$.

