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Probability

 If an experiment has a total of N possible, 

random results and a given result A occurs 

k times, then the probability of result A is:

(This definition is the classical definition of 

probability. From now on, we will be satis-

fied with this!)
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Random error

• the random error is theoretically a 

random variable  

• a random variable could have:

- discrete values from the elements of 

a discrete set, or

- continuous values from the 

elements of a continuous interval.

• the sum of the probabilities of all 

possible values of a random variable is 

always 1. 1)( 
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Distribution function

 The function F(x), which gives the 

probability that the random variable A

takes a value smaller than x, is called 

distribution function of the random variable
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Density function

 The probability density function of the 

continuous random variable is defined as:

 From above definition follows:
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Moments

 Discrete case:

 Continuous case:
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Expected value and standard 

deviation
 The first moment of a random variable is 

called expected value:

 The second moment of deviations of 
random variable A from it’s expected
value is called standard deviation:
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Theorem:

Proof:
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The Poisson distribution

 If X is a discrete random variable and take
values 0,1,2,…,k with probability:

than X has the Poisson distribution

 Examples: the number of raindrops falling on a 
given area, the average length of the waiting 
list during a given time period, the number of 
radioactive decays during a given time inter-
val, etc.
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• From Calculus we now the Taylor serie for

exponential funtion:
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Characterization of Poisson 

distribution
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• Does it describe probability?

•What is it’s expected value?
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Characterization of Poisson 

distribution

•What is it’s standard deviation?:
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Uniform distribution

 If X continuous random variable’s

probability density function is:
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than random variable is 

uniformly distributed.

• Example: measure-

ments with scales



Characterization of uniform 

distribution

• Does it describe probability?

•What is it’s expected value?
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Characterization of uniform 

distribution

•What is it’s standard deviation?:
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Normal distribution or

Gaussian distribution
 If probability density function of continuos

random variable X is (μ0>0 és σ0>0)

than X is called normally distributed or
Gaussian. 

E.g.: Several independent, small, random 
deviations make the measured value 
Gaussian!
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Characterization of Normal

distribution

• Does it discribe probability?
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Characterization of Normal

distribution
•What is it’s expected value?
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Characterization of Normal

distribution
•What is it’s standard deviation?
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Central limit theorem

 The sum of N independent variables (μ0 ,σ0) 
with the same probability distribution is a 
random variable with a normal distribution in 
the limiting case N→∞, the expected value 
of which is μ=N. μ0 , and its standard 
deviation σ2=N. σ0

2.


