Uncertainty of indirect measurements Error propagation

Dr. Miklós BERTA

Department of Physics and Chemistry
Széchenyi István University

Fizika és Kémia Tanszék

Indirect measurements

- Let us suppose, the expected value and standard deviation of the random variable X were estimated based on measurements.
- What can we say about the parameters of a random variable $Y=f(X)$?

Example: We measure the diameter d of a bearing ball. Based on the diameter, the volume of the ball is:

$$
V=\frac{4}{3} \pi r^{3}=\frac{1}{6} \pi d^{3}
$$

If the expected value and standard deviation of the diameter are known, what can we say about the expected value and standard deviation of the volume?

If $f(x)$ is a strictly monotonic function in the proximity of the directly measured value, and the standard deviation of the directly measured value is "small", then a "good" approximation of $f(x)$ is its linearized Taylor series:

$$
\begin{aligned}
& \mu(f(x))=f(\mu(x)) \\
& \sigma(f(x))=\left|\frac{\partial f}{\partial x}\right|_{\mu(x)} . \sigma(x)
\end{aligned}
$$

Indirect measurements

- Let's assume that the expected values and standard deviations of the independent random variables $X_{1} . . . X_{N}$ were estimated based on measurements.
- What can we say about the parameters of a random variable $Y=f\left(X_{1} \ldots X_{N}\right)$?
Example: We measure the diameter d and mass m of a bearing ball. Based on the diameter and mass, the density of the ball is:

$$
\rho=\frac{m}{V}=\frac{6 m}{\pi d^{3}}
$$

If the expected values and standard deviations of diameter and mass are known, what can we say about the expected value and standard deviation of density?

Error propagation law by Gauss

$$
\sigma\left(f\left(x_{1} \ldots x_{N}\right)\right)=\sqrt{\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)_{x_{i}=\mu\left(x_{i}\right)}^{2} \cdot \sigma^{2}\left(x_{i}\right)}
$$

Note: The condition for the applicability of the above error propagation law is, that the values of all partial derivatives involved in it are different from zero.

A special case of the continuous

 uniform distribution - the concept of error limits- In the case of measurements by the scale, the density function of the random error is:

$\delta(x)$ - absolute limit or absolute error $\delta(x)=\frac{b-a}{2}>\sigma(x)=\frac{b-a}{\sqrt{12}}$

The absolute error is always an
overestimate of the standard deviation!

Error propagation law of measurements with absolute error

$$
\delta\left(f\left(x_{1} \ldots x_{N}\right)\right)=\sum_{i=1}^{N}\left|\frac{\partial f}{\partial x_{i}}\right|_{x_{i}=\mu\left(x_{i}\right)} . \delta\left(x_{i}\right)
$$

Note: The condition for the applicability of the above error propagation law is, that the values of all partial derivatives included in it are different from zero.

