Evaluation of time series in the frequency domain

Dr. Berta Miklós Department of Physics and Chemistry Széchenyi István University

Fourier - series

 Every T periodic, quadratically integrable time signal can be written as an infinite series of harmonic functions.

Spectra of boxcar signal

Fourier series of sampled signals (DFT)

• If our time signal is sampled with frequency F_s , i.e. at intervals $\Delta t = I / F_s$, and contains N samples, then for the coefficients of the Fourier series holds:

$$c_{k} = \sum_{l=0}^{N-1} f(l.\Delta t) e^{-i\frac{2\pi kl}{N}}, k = -\frac{N}{2}, \dots, \frac{N}{2}.$$

Sampling theorem (Shannon)

- If a time signal is sampled with a frequency of F_s , i.e. at intervals of $\Delta t = 1/F_s$, then a component with a maximum frequency of $F_N = F_s/2$ (Nyquist frequency) can be identified in the sampled time series!
- All components with frequency $f > F_N$ appear as alias below the Nyquist frequency!
- An analog antialiasing filter is required even before sampling! (In ADCs already included.)

Fast Fourier transform (FFT)

 In 1965, Cooley and Tukey found an algorithm for calculating the coefficients of the Fourier components that is much faster than the definition. (FFT)

Auto and cross spectra (APSD, CPSD)

- Let $F(\omega)$ is the Fourier transform of f(t).
- The APSD(ω) = $|F(\omega)|^2$ frequency function is called autospectra of time serie.
- Cross spectra of two time series: $CPSD(\omega) = F_1^*(\omega) F_2(\omega).$
- Dimension of spectra: [spectra]=[amplitude]² / [frequency]