Subject information sheet

Subject name: Nanoelectronics	Subject code: GKNM_FKTA012	
Responsible for teaching the subject: Dr. Mikle Department name: Department of Physics and C		
Name, academic degree, and position of the sub Professor	ject teacher: Dr. Miklós BERTA PhD.	Associate
Number of meetings : 2	Lectures: 2	
	Practice: 0	
	Laboratory practice: 0	
Credit score: 3	Semester: autumn <u>spring</u> autumn a	and spring
Reporting form (underline):examcontinuous assessmentreport	port (3-level) report (5-level)	
Prerequisites: -		
Majors where the subject is taught:		
Name / code / specialization	Туре	Credits
Electrical Engineering MSc/full-time and correspondence	mandatory core material	3
Mechatronics Engineer MSc/full-time and correspondence	mandatory core material	3

Short content description (annotation):

Week 1 The history of the development of nanoelectronics. Summary of the classical and quantum description of
reality, the importance of quantum phenomena in nanoelectronics.
Week 2 The mathematical foundations of the quantum mechanical description method. The physical meaning of
the state vector (wave function). The fundamental dynamical equation of quantum mechanics (Schrödinger
equation).
Week 3 Description of electron motion in potential fields. Eigenstates and the principle of superposition. Discrete energy levels.
Week 4 The quantum mechanical tunneling effect. Reflection and transmission coefficients. The importance of the
tunneling effect in nanoelectronics.
Week 5 Electron in a crystal lattice. The concept of a forbidden band. Classical and quantum mechanical
description of electrical conduction. The role of statistics.
Week 6 Properties of electrical conductors, insulators and semiconductors. Electron and hole conduction. Hall
effect.
Week 7 Properties of materials used in nanoelectronics and their production methods. Formation of semiconductor
heterostructures, organic semiconductors
Week 8 Growth and production technology of nanostructures. Nanolithography, laser etching and other
technologies
Week 9 Measurement methods and control of nanostructures. Electron microscopes. Sample preparation
Week 10 Electron transport in nanostructures. Quantum dot, quantum wire, quantum trenches
Week 11 Fundamentals of resonant tunneling diode operation
Week 12 FET transistors

Required reading:

Date: February 20, 2023.	Signature of initiator: Dr. Ferenc Giczi