Development of nanoelectronics

Dr. Miklós Berta
Department of Physics and Chemistry
Széchenyi István University

Basic information about the subject

- Lecturer:

Dr. Miklós Berta
Department of Physics and Chemistry

$$
\begin{aligned}
& \text { e-mail: bertam@sze.hu } \\
& \text { office: C-602 }
\end{aligned}
$$

- web page:

http://www.sze.hu/~bertam

- subject requirements on the web page of the subject

What does it mean ,,nano"?

- It comes from the Greek word "nanos" and means dwarf.
- In the technical world, it is the prefix to units and denotes the multiplier 10^{-9}
- On a I nm length section, approx. 20 H atoms fit next to each other

How did it start?

- On December 29, 1959, Richard P. Feynman gave a lecture at Caltech entitled „There is plenty of room at the bottom"
- In this, he proves that they are not far from technologies that would allow the information contained in all the books in the world to be stored by the atoms of a cube whose side size is $\sim 0.1 \mathrm{~mm}$.
- Less than 100 atoms would be needed to store one bit of information. \rightarrow nano scales
... and the sequel
- in electronics, after the discovery of the transistor in the 1960s, the miniaturization competition begins
- 1965 - Moore's Law - the lowest cost electronic circuits double in complexity and can be built on a single chip. The law is timeless: in 2010, the typical transistor size was $\sim 70 \mathrm{~nm}$.

- in the 60s, the raw materials for electronic circuits were Si and Ge
- 90s heterostructure semiconductors GaAs and AIAs
- 2000s - scanning tunneling microscope, femtosecond laser - "we can see clearly in the nano world"
- $2010 \rightarrow$ organic semiconductors
nano - machines
optoelectronics on the atomic level
manipulation of individual atoms

Data processing and display

,,QUANTUM world"

- the behavior of systems consisting of a few atoms can only be described correctly by quantum theory
- the nano world is by it's nature a QUANTUM world

$$
\hat{H} \Psi(\vec{r}, \mathrm{t})=\mathrm{i} \frac{\mathrm{~h}}{2 \pi} \frac{\partial}{\partial \mathrm{t}} \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})
$$

Thank You!

Next week we will continue and START!

()

