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Quantum state. Equation of motion.

Ψ(r , t)

Ψ(r , t)-the function of position and time only

|Ψ|2dV is a probability that investigated object in a time t can be found

in an elementary volume dV characterized by the position r .

The time evolution of the quantum state is described by the

Schrödinger-equation .

ĤΨ(r , t) = i~~~
∂Ψ(r , t)

∂t
Ĥ - Hamilton�operator of the system

i =
√
−1 - imaginary unit

~~~ = h
2π

- modi�ed Planck-constant (h = 6, 63 . 10−34 Js)

Normalization of the quantum state:∫∫∫
(V )
|Ψ(r , t)|2 dV = 1
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ĤΨ(r , t) = i~~~
∂Ψ(r , t)

∂t
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The physical quantities as operators

In classical physics, all physical quantities can be expressed by two status

determiners de�ning the classical state, which are coordinate and

momentum.

In quantum physics, special linear operators are assigned to physical

quantities!

Fundamental assignments:

pk → p̂k = −i~~~
∂

∂xk

xk → x̂k = xk .

Let's see how the Hamilton-operator of a mass point is de�ned!
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Hamilton-operator of a mass point moving in the potential

�eld

The total energy of the mass point as a function of the momentum and

coordinate is none other than the Hamilton function.

H(p, r) =
p.p

2m
+ V (r) =

1

2m
(p2x + p2y + p2z ) + V (x, y , z)

Let's move on to the Hamilton operator:

Ĥ =
1

2m
(p̂x p̂x + p̂y p̂y + p̂z p̂z) + V (x, y , z).

Ĥ = i 2
~2

2m
(
∂2

∂x2
+

∂2

∂y2
+
∂2

∂z2
) + V (x, y , z).

Ĥ = −
~2

2m
∆ + V (x, y , z).
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Heisenberg's uncertainty relation

x̂(p̂xΨ(x)) = x.(−i~~~
∂Ψ(x)

∂x
) = −i~~~x

∂Ψ(x)

∂x

p̂x(x̂Ψ(x)) = −i~~~
∂

∂x
(x.Ψ(x)) = −i~~~(Ψ(x) + x

∂Ψ(x)

∂x
)

x̂(p̂xΨ(x)) 6= p̂x(x̂Ψ(x))

x̂ p̂x − p̂x x̂ =
[
x̂, p̂x

]
= i~~~ −W .Heisenberg[

x̂, p̂x
]
� commutator of operators

Operators whose commutator is 0 are called compatible operators!
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Stationary solutions

The Schrödinger equation of a mass point moving in the time-independent

potential �eld:

−
~2

2m
∆Ψ(x, y , z, t) + V (x, y , z).Ψ(x, y , z, t) = i~~~

∂Ψ(x, y , z, t)

∂t

Let's search for the solution in the next form: e−i E~ tψ(x, y , z). After
substitution and simpli�cation:

~2

2m
(∆−

2m

~2
V (x, y , z))e−i E~ tψ(x, y , z) = −e−i E~ tEψ(x, y , z)

∆ψ(x, y , z) = −k2ψ(x, y , z)

k2 = 2m(E−V (x,y ,z))
~2
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Electron on the string

An electron in one dimension if its motion is limited to a section of length

a.

The space-dependent part ψ(x) of the state function describing the steady

state of the electron in time must satisfy the standing wave equation.

d2ψ(x)

dx2
= −k2ψ(x)

The solution must be identically zero outside of the string, since we set up

an in�nitely large repulsive potential at the ends of the string � the electron

cannot leave the string!

Inside the string, however, the electron can move freely, i.e. here

V (x, y , z) = 0.
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The equation must be solved under two boundary conditions, which are

ψ(0) = 0 and ψ(a) = 0.

The equation is the same as the equation of harmonic vibrations, only

instead of the time variable, the position variable is included. Its solution is

a harmonic function.

ψ(x) = A sin (kx + φ)

According to the boundary conditions: φ = 0 and k = nπ
a
, where

n = 1, 2, 3, ...
Since:

k2 =
2mE

~2
=

n2π2

a2
,

Therefore:

En =
~2π2

2ma2
n2
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Since: ∫∫∫ a

0

|ψ(x)|2dx = 1.

Therefore A =
√

2

a
.

ψ(x) =

√
2

a
sin

nπ

a
x

It is generally true that if the movement of a micro-object is limited in

space, its energy can only have discrete values.

Note that the smallest energy of the system is not zero, but some positive

value. Zero point energy.
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