QM II.

Dr. Miklós Berta
bertam@sze.hu

2024. február 19.

Fizika és Kémia
Tanszék

Quantum harmonic oscillator

Total energy of the mass point oscillating harmonicly:

$$
E=\frac{p^{2}}{2 m}+\frac{1}{2} D x^{2}
$$

Since the total energy (thus the Hamiltonian) is independent of time, we have to solve the stationary Schrödinger equation.

$$
\Delta \psi(x, y, z)=-k^{2} \psi(x, y, z) \quad k^{2}=\frac{2 m(E-V(x, y, z))}{\hbar^{2}}
$$

Quantum harmonic oscillator

Total energy of the mass point oscillating harmonicly:

$$
E=\frac{p^{2}}{2 m}+\frac{1}{2} D x^{2}
$$

Since the total energy (thus the Hamiltonian) is independent of time, we have to solve the stationary Schrödinger equation.

$$
\Delta \psi(x, y, z)=-k^{2} \psi(x, y, z) \quad k^{2}=\frac{2 m(E-V(x, y, z))}{\hbar^{2}}
$$

It can be written in the next form:

$$
\begin{gathered}
\left\{-\frac{\hbar^{2}}{2 m} \Delta+V(x, y, z)\right\} \Psi(x, y, z)=E \Psi(x, y, z) \\
\hat{H} \Psi(x, y, z)=E \Psi(x, y, z)
\end{gathered}
$$

So the stationary Schrödinger equation is actually the eigenvalue equation of the time-independent Hamiltonian operator!

The solution of the previous eigenvalue equation for the Hamiltonian operator of harmonic oscillations is:

$$
\begin{aligned}
& E_{\nu}=\left(\nu+\frac{1}{2}\right) \hbar \sqrt{\frac{D}{m}}=\left(\nu+\frac{1}{2}\right) \hbar \omega_{0} \\
& \psi_{\nu}(x)=e^{-\frac{\xi^{2}}{2}} H_{\nu}(\xi), \quad \xi=\sqrt{\frac{\boldsymbol{m} \omega_{0}}{\hbar}} x
\end{aligned}
$$

ν - vibrational quantum number

Again, we see that the zero-point energy of the system is a positive, non-zero value!

Equation of continuity

Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi+V . \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

Equation of continuity

Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi+V \cdot \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

It's complex conjugate:

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi^{*}+V \cdot \Psi^{*}=-i \hbar \frac{\partial \Psi^{*}}{\partial t}
$$

Equation of continuity

Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi+V . \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

It's complex conjugate:

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi^{*}+V \cdot \Psi^{*}=-i \hbar \frac{\partial \Psi^{*}}{\partial t}
$$

Multiply the first equation by Ψ^{*}, while the second by $(-\Psi)$, and after summing up these two equations:

$$
-\frac{\hbar^{2}}{2 m}\left\{\Psi^{*} \Delta \Psi-\Psi \Delta \Psi^{*}\right\}=i \hbar \frac{\partial \Psi^{*} \Psi}{\partial t}
$$

After rearrangement:

$$
\frac{\partial \Psi^{*} \Psi}{\partial t}+\frac{\hbar}{2 i m}\left\{\Psi \Delta \Psi^{*}-\Psi^{*} \Delta \Psi\right\}=0
$$

We know that $\boldsymbol{\Delta} \boldsymbol{f}=\boldsymbol{\operatorname { d i v }} \operatorname{grad} \boldsymbol{f}$, thus:

$$
\begin{gathered}
\Psi \Delta \Psi^{*}-\Psi^{*} \Delta \Psi=\Psi \operatorname{div} \operatorname{grad} \Psi^{*}-\Psi^{*} \operatorname{div} \operatorname{grad} \Psi= \\
=\operatorname{div}\left(\Psi \operatorname{grad} \Psi^{*}-\Psi^{*} \operatorname{grad} \Psi\right)
\end{gathered}
$$

Let us introduce next notations:

$$
\rho=\Psi^{*} \Psi, \underset{j}{j}=\frac{\hbar}{2 i m}\left(\Psi \operatorname{grad} \Psi^{*}-\Psi^{*} \operatorname{grad} \Psi\right)
$$

The equation of continuity for quantum probability is:

$$
\frac{\partial \rho}{\partial t}+\operatorname{div} \underline{j}=0
$$

ρ-probability density, $\underline{\boldsymbol{j}}$-current density of probability

Tunnel-effect

Let an electron approaches a potential step with a certain kinetic energy E_{k}. We only deal with the case when the kinetic energy of the electron in the classical sense is not enough to overcome the potential, i.e. $E_{k}<V$.

Tunnel-effect

Let an electron approaches a potential step with a certain kinetic energy E_{k}. We only deal with the case when the kinetic energy of the electron in the classical sense is not enough to overcome the potential, i.e. $E_{k}<V$.

$$
E_{p}(x)\left\{\begin{array}{c}
0, \text { ha } x<0 \\
V=\text { konstans, ha } x \geq 0
\end{array}\right.
$$

Tunnel-effect

Let an electron approaches a potential step with a certain kinetic energy E_{k}. We only deal with the case when the kinetic energy of the electron in the classical sense is not enough to overcome the potential, i.e. $E_{k}<V$.

$$
E_{p}(x)\left\{\begin{array}{c}
0, \text { ha } x<0 \\
V=\text { konstans, ha } x \geq 0
\end{array}\right.
$$

Tunnel-effect

Let an electron approaches a potential step with a certain kinetic energy E_{k}. We only deal with the case when the kinetic energy of the electron in the classical sense is not enough to overcome the potential, i.e. $E_{k}<V$.

$$
E_{p}(x)\left\{\begin{array}{c}
0, \text { ha } x<0 \\
V=\text { konstans, ha } x \geq 0
\end{array}\right.
$$

In this case, according to classical physics, a macroscopic body cannot penetrate into the region where it's potential energy would be greater than the kinetic energy with which it approaches this region.

In this case, according to classical physics, a macroscopic body cannot penetrate into the region where it's potential energy would be greater than the kinetic energy with which it approaches this region.
However, the quantum mechanical result shows otherwise.
Total energy of the particle:

$$
E=E_{k}+E_{p}=\frac{p^{2}}{2 m}+E_{p}
$$

In this case, according to classical physics, a macroscopic body cannot penetrate into the region where it's potential energy would be greater than the kinetic energy with which it approaches this region.
However, the quantum mechanical result shows otherwise.
Total energy of the particle:

$$
E=E_{k}+E_{p}=\frac{p^{2}}{2 m}+E_{p}
$$

Express the square of the wavenumber k using the energy:

$$
k^{2}=\frac{2 m}{\hbar^{2}}\left(E-E_{p}\right)
$$

In this case, according to classical physics, a macroscopic body cannot penetrate into the region where it's potential energy would be greater than the kinetic energy with which it approaches this region.
However, the quantum mechanical result shows otherwise.
Total energy of the particle:

$$
E=E_{k}+E_{p}=\frac{p^{2}}{2 m}+E_{p}
$$

Express the square of the wavenumber \boldsymbol{k} using the energy:

$$
k^{2}=\frac{2 m}{\hbar^{2}}\left(E-E_{p}\right)
$$

The Schrödinger-equation of the problem is:

$$
\frac{d^{2} \varphi(x)}{d x^{2}}+\frac{2 m\left(E-E_{p}\right)}{\hbar^{2}} \varphi(x)=0
$$

In this case, according to classical physics, a macroscopic body cannot penetrate into the region where it's potential energy would be greater than the kinetic energy with which it approaches this region.
However, the quantum mechanical result shows otherwise.
Total energy of the particle:

$$
E=E_{k}+E_{p}=\frac{p^{2}}{2 m}+E_{p}
$$

Express the square of the wavenumber \boldsymbol{k} using the energy:

$$
k^{2}=\frac{2 m}{\hbar^{2}}\left(E-E_{p}\right)
$$

The Schrödinger-equation of the problem is:

$$
\frac{d^{2} \varphi(x)}{d x^{2}}+\frac{2 m\left(E-E_{p}\right)}{\hbar^{2}} \varphi(x)=0
$$

Due to the jump of the potential at the origin, the equation must be solved separately on the negative and positive sides of the \boldsymbol{x}-axis.
$\boldsymbol{x}<\mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\mathbf{0}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \varphi_{n}(x)=0
$$

$\boldsymbol{x}<\mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\mathbf{0}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \varphi_{n}(x)=0
$$

Let $\boldsymbol{k}_{\mathbf{0}}^{\mathbf{2}}=\frac{2 m E}{\hbar^{2}}$, than

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+k_{0}^{2} \varphi_{n}(x)=0
$$

$\boldsymbol{x}<\mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\mathbf{0}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \varphi_{n}(x)=0
$$

Let $\boldsymbol{k}_{\mathbf{0}}^{\mathbf{2}}=\frac{2 m E}{\hbar^{2}}$, than

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+k_{0}^{2} \varphi_{n}(x)=0
$$

Let's find the solution of this equation in the following form:

$$
\varphi_{n}(x)=e^{i k_{0} x}+A e^{-i k_{0} x}
$$

Here $\boldsymbol{i}=\sqrt{-\mathbf{1}}$ is the imaginary unit.
$\boldsymbol{x}<\mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\mathbf{0}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \varphi_{n}(x)=0
$$

Let $\boldsymbol{k}_{\mathbf{0}}^{\mathbf{2}}=\frac{2 m E}{\hbar^{2}}$, than

$$
\frac{d^{2} \varphi_{n}(x)}{d x^{2}}+k_{0}^{2} \varphi_{n}(x)=0
$$

Let's find the solution of this equation in the following form:

$$
\varphi_{n}(x)=e^{i k_{0} x}+A e^{-i k_{0} x}
$$

Here $\boldsymbol{i}=\sqrt{-\mathbf{1}}$ is the imaginary unit.
Physical meaning: a plane wave of unit amplitude approaches the potential step + after reflection, a reflected plane wave of amplitude \boldsymbol{A} also contributes to the solution.
$\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\boldsymbol{V}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{p}(x)}{d x^{2}}+\frac{2 m(E-V)}{\hbar^{2}} \varphi_{p}(x)=0
$$

$\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\boldsymbol{V}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{p}(x)}{d x^{2}}+\frac{2 m(E-V)}{\hbar^{2}} \varphi_{p}(x)=0
$$

In this particular case the expression $\frac{2 m(E-V)}{\hbar^{2}}$ is negative, because $E<V$.
$\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{E}_{\boldsymbol{p}}=\boldsymbol{V}$. So here the equation to be solved is:

$$
\frac{d^{2} \varphi_{p}(x)}{d x^{2}}+\frac{2 m(E-V)}{\hbar^{2}} \varphi_{p}(x)=0
$$

In this particular case the expression $\frac{2 m(E-V)}{\hbar^{2}}$ is negative, because $E<V$.
Let us introduce notion $-K^{2}=\frac{2 m(E-V)}{\hbar^{2}}$. The equation takes the following form:

$$
\frac{d^{2} \varphi_{p}(x)}{d x^{2}}-K^{2} \varphi_{p}(x)=0
$$

or what is the same:

$$
\frac{d^{2} \varphi_{p}(x)}{d x^{2}}=K^{2} \varphi_{p}(x)
$$

Let us find the solution in the following form:

$$
\varphi_{\boldsymbol{p}}(x)=C e^{-K x}+D e^{K x}
$$

Let us find the solution in the following form:

$$
\varphi_{p}(x)=C e^{-K x}+D e^{K x}
$$

Since the solution must be normalizable, so: $\boldsymbol{D}=\mathbf{0}$.

Let us find the solution in the following form:

$$
\varphi_{p}(x)=C e^{-K x}+D e^{K x}
$$

Since the solution must be normalizable, so: $\boldsymbol{D}=\mathbf{0}$. So

$$
\varphi_{p}(x)=C e^{-K x}
$$

Let us find the solution in the following form:

$$
\varphi_{p}(x)=C e^{-K x}+D e^{K x}
$$

Since the solution must be normalizable, so: $\boldsymbol{D}=\mathbf{0}$. So

$$
\varphi_{p}(x)=C e^{-K x}
$$

The height of the potential step is finite at the point $\boldsymbol{x}=\mathbf{0}$, the obtained solutions and their first derivatives (due to the continuity equation, the probability density current must be continuous at $\boldsymbol{x}=0$) must be identical on the both sides of $\boldsymbol{x}=\mathbf{0}$. Therefore:

$$
\begin{aligned}
1+A & =C \\
i k_{0}(1-A) & =-K C
\end{aligned}
$$

Solving this system of equations, we get:

$$
A=\frac{i k_{0}+K}{i k_{0}-K}
$$

and

$$
C=\frac{2 i k_{0}}{i k_{0}-K}
$$

Solving this system of equations, we get:

$$
A=\frac{i k_{0}+K}{i k_{0}-K}
$$

and

$$
C=\frac{2 i k_{0}}{i k_{0}-K}
$$

The surprising thing about the solution is that $\varphi_{\boldsymbol{p}}(\boldsymbol{x})$ describing the electron will not be zero in region of the potential step either.

Solving this system of equations, we get:

$$
A=\frac{i k_{0}+K}{i k_{0}-K}
$$

and

$$
C=\frac{2 i k_{0}}{i k_{0}-K}
$$

The surprising thing about the solution is that $\varphi_{\boldsymbol{p}}(\boldsymbol{x})$ describing the electron will not be zero in region of the potential step either.

We can say that the electron also penetrates the region inaccessible to it in the classical sense.

If the potential step has a finite width, then the electron can pass through this classically inaccesible region. The probability of passing through (\boldsymbol{T}) is proportional to the following quantity:

$$
T \sim \frac{\varphi_{p}^{2}(b)}{\varphi_{p}^{2}(0)} \sim e^{-\frac{2 b}{\hbar} \sqrt{2 m(V-E)}}
$$

If the potential step has a finite width, then the electron can pass through this classically inaccesible region. The probability of passing through (\boldsymbol{T}) is proportional to the following quantity:

$$
T \sim \frac{\varphi_{p}^{2}(b)}{\varphi_{p}^{2}(0)} \sim e^{-\frac{2 b}{\hbar} \sqrt{2 m(V-E)}}
$$

\boldsymbol{T} is decreasing if \boldsymbol{b} is increasing, or if $\boldsymbol{V}-\boldsymbol{E}$ is increasing.

If the potential step has a finite width, then the electron can pass through this classically inaccesible region. The probability of passing through (\boldsymbol{T}) is proportional to the following quantity:

$$
T \sim \frac{\varphi_{p}^{2}(b)}{\varphi_{p}^{2}(0)} \sim e^{-\frac{2 b}{\hbar} \sqrt{2 m(V-E)}}
$$

\boldsymbol{T} is decreasing if \boldsymbol{b} is increasing, or if $\boldsymbol{V}-\boldsymbol{E}$ is increasing. The name of this phenomenon is tunnel-effect.

If the potential step has a finite width, then the electron can pass through this classically inaccesible region. The probability of passing through (\boldsymbol{T}) is proportional to the following quantity:

$$
T \sim \frac{\varphi_{p}^{2}(b)}{\varphi_{p}^{2}(0)} \sim e^{-\frac{2 b}{\hbar} \sqrt{2 m(V-E)}}
$$

\boldsymbol{T} is decreasing if \boldsymbol{b} is increasing, or if $\boldsymbol{V}-\boldsymbol{E}$ is increasing. The name of this phenomenon is tunnel-effect.

This enables the radioactive decay or the getting electrons through the contacts between metals.

This enables the radioactive decay or the getting electrons through the contacts between metals.

The most successful application of the tunnel effect is the Scanning tunnel microscope, which made it possible to map the atomic structure of surfaces and even to manipulate and move individual atoms.

This enables the radioactive decay or the getting electrons through the contacts between metals.

The most successful application of the tunnel effect is the Scanning tunnel microscope, which made it possible to map the atomic structure of surfaces and even to manipulate and move individual atoms.

