QM III.

Dr. Miklós Berta
bertam@sze.hu
2024. március 4.

Fizika és Kémia
Tanszék

Energy states of electrons in H atom

The electron's potential energy in the electric field of the H atom's nucleus:

$$
E_{p}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.

Energy states of electrons in H atom

The electron's potential energy in the electric field of the H atom's nucleus:

$$
E_{p}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
Since $\boldsymbol{k}^{2}=\frac{2 m_{e}}{\hbar^{2}}\left(\boldsymbol{E}-\boldsymbol{E}_{\boldsymbol{p}}\right)$, the stationary Schrödinger equation is:

$$
\triangle \psi(\underline{r})+\frac{2 m_{e}}{\hbar^{2}}\left(E-E_{p}\right) \psi(\underline{r})=0
$$

Energy states of electrons in H atom

The electron's potential energy in the electric field of the H atom's nucleus:

$$
E_{p}=-\frac{e^{2}}{4 \pi \varepsilon_{0} r}
$$

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
Since $\boldsymbol{k}^{2}=\frac{2 m_{e}}{\hbar^{2}}\left(\boldsymbol{E}-\boldsymbol{E}_{\boldsymbol{p}}\right)$, the stationary Schrödinger equation is:

$$
\triangle \psi(\underline{r})+\frac{2 m_{e}}{\hbar^{2}}\left(E-E_{p}\right) \psi(\underline{r})=0
$$

Since the electric field of the nucleus is spherically symmetric, we look for a spherically symmetric solution $\boldsymbol{F}(\boldsymbol{r})$ of the equation:

$$
\psi(\underline{r})=F(\boldsymbol{r})
$$

Then the Schrödinger equation is:

$$
\frac{d^{2} F(r)}{d r^{2}}+\frac{2}{r} \frac{d F(r)}{d r}+\frac{2 m_{e}}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) F(r)=0
$$

Then the Schrödinger equation is:

$$
\frac{d^{2} F(r)}{d r^{2}}+\frac{2}{r} \frac{d F(r)}{d r}+\frac{2 m_{e}}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) F(r)=0
$$

We get the solution in the following form:

$$
F(r)=N e^{-\lambda r}
$$

where $\boldsymbol{N}=\frac{\lambda^{\frac{3}{2}}}{\sqrt{\pi}}$ and $\boldsymbol{\lambda}=\frac{\boldsymbol{e}^{2} \boldsymbol{m}_{e}}{4 \pi \varepsilon_{0} \hbar^{2}}$.

Then the Schrödinger equation is:

$$
\frac{d^{2} F(r)}{d r^{2}}+\frac{2}{r} \frac{d F(r)}{d r}+\frac{2 m_{e}}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) F(r)=0
$$

We get the solution in the following form:

$$
F(r)=N e^{-\lambda r}
$$

where $\boldsymbol{N}=\frac{\lambda^{\frac{3}{2}}}{\sqrt{\pi}}$ and $\boldsymbol{\lambda}=\frac{\boldsymbol{e}^{2} \boldsymbol{m}_{\boldsymbol{e}}}{4 \pi \varepsilon_{0} \hbar^{2}}$.
The energy of the electron in this spherically symmetric state is:

$$
E=-\frac{m_{e} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}=-13,605 \mathrm{eV}
$$

Then the Schrödinger equation is:

$$
\frac{d^{2} F(r)}{d r^{2}}+\frac{2}{r} \frac{d F(r)}{d r}+\frac{2 m_{e}}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) F(r)=0
$$

We get the solution in the following form:

$$
F(r)=N e^{-\lambda r}
$$

where $\boldsymbol{N}=\frac{\lambda^{\frac{3}{2}}}{\sqrt{\pi}}$ and $\boldsymbol{\lambda}=\frac{\boldsymbol{e}^{2} \boldsymbol{m}_{e}}{4 \pi \varepsilon_{0} \hbar^{2}}$.
The energy of the electron in this spherically symmetric state is:

$$
E=-\frac{m_{e} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}=-13,605 \mathrm{eV}
$$

This spherically symmetric solution gives the ground state of the electron in the H atom. Since the nucleus-electron system is bound, the electron can only have discrete energies in the H atom.

The state functions of the excited states are not necessarily spherically symmetric, but can always be written in the following form:

$$
\psi(\underline{r})=R_{n, l}(r) \cdot Y_{l, m}(\theta, \varphi)
$$

$\boldsymbol{R}_{\boldsymbol{n}, \boldsymbol{I}}(\boldsymbol{r})$ - radial function, $\boldsymbol{Y}_{\boldsymbol{I}, \boldsymbol{m}}(\boldsymbol{\theta}, \varphi)$ - spherical function.
$(\boldsymbol{r}, \boldsymbol{\theta}, \varphi)$ the spherical coordinates according to the figure below!

The state functions of the excited states are not necessarily spherically symmetric, but can always be written in the following form:

$$
\psi(\underline{r})=R_{n, l}(r) \cdot Y_{l, m}(\theta, \varphi)
$$

$\boldsymbol{R}_{\boldsymbol{n}, \boldsymbol{I}}(\boldsymbol{r})$ - radial function, $\boldsymbol{Y}_{\boldsymbol{I}, \boldsymbol{m}}(\boldsymbol{\theta}, \varphi)$ - spherical function.
$(\boldsymbol{r}, \boldsymbol{\theta}, \varphi)$ the spherical coordinates according to the figure below!

The state of the electron in the H atom is characterized by 3 quantum numbers: $(\boldsymbol{n}, \boldsymbol{l}, \boldsymbol{m})$.

These respectively determine the magnitude of 3 conserved quantities:
$n=1,2, \ldots$. - main quantum number - determines the discrete total energy of the electron,
$\boldsymbol{I}=\mathbf{0}, \mathbf{1}, \ldots, \boldsymbol{n}-\mathbf{1}$ - secondary quantum number - determines the magnitude of electron's angular momentum,
$m=-I,-I+\mathbf{1}, \ldots ., \mathbf{0}, \ldots \ldots, I-\mathbf{1}, \boldsymbol{I}$ - magnetic quantum number determines one component of electron's angular momentum.

$$
E_{n}=\frac{E_{1}}{n^{2}}=\frac{-13,41 \mathrm{eV}}{n^{2}}, L^{2}=I(I+1) \hbar^{2}, L_{z}=m \hbar
$$

Radial functions

Radial functions

Contours of spherical functions

Contours of spherical functions

The SPIN

We have seen that the electron has a quantized angular momentum that comes from its motion.

The SPIN

We have seen that the electron has a quantized angular momentum that comes from its motion.

Larmor-theorem: A charged system with angular momentum has also a magnetic moment.

$$
\underline{m}=\frac{q}{2 m} \underline{L}
$$

Stern-Gerlach experiment

The SPIN

We have seen that the electron has a quantized angular momentum that comes from its motion.

Larmor-theorem: A charged system with angular momentum has also a magnetic moment.

$$
\underline{m}=\frac{q}{2 m} \underline{L}
$$

Stern-Gerlach experiment

In addition to the previously mentioned angular momentum, the electron also has an angular momentum of another kind, which cannot be linked to any motion. It is called \Rightarrow Spin.

In addition to the previously mentioned angular momentum, the electron also has an angular momentum of another kind, which cannot be linked to any motion. It is called \Rightarrow Spin.

Spin is also a quantized quantity. In the case of the electron, it can have two projections for a selected direction.

$$
S_{z}=s_{z} \hbar
$$

where $S_{z^{-}}$is a projection of the electronspin, $s_{z^{\prime}}$-is the so called spin quantum number, its value can be $+\frac{1}{2},-\frac{1}{2}$ (s_{z} is not an integer!).

In addition to the previously mentioned angular momentum, the electron also has an angular momentum of another kind, which cannot be linked to any motion. It is called \Rightarrow Spin.

Spin is also a quantized quantity. In the case of the electron, it can have two projections for a selected direction.

$$
S_{z}=s_{z} \hbar
$$

where $S_{z^{-}}$is a projection of the electronspin, $s_{z^{\prime}}$-is the so called spin quantum number, its value can be $+\frac{1}{2},-\frac{1}{2}$ (s_{z} is not an integer!).
Pauli principle: Two or more half-spin particles or fermions can never be in the same quantum state.

In addition to the previously mentioned angular momentum, the electron also has an angular momentum of another kind, which cannot be linked to any motion. It is called \Rightarrow Spin.

Spin is also a quantized quantity. In the case of the electron, it can have two projections for a selected direction.

$$
S_{z}=s_{z} \hbar
$$

where $S_{z^{-}}$is a projection of the electronspin, $s_{z^{\prime}}$-is the so called spin quantum number, its value can be $+\frac{1}{2},-\frac{1}{2}$ (s_{z} is not an integer!).
Pauli principle: Two or more half-spin particles or fermions can never be in the same quantum state.

The energy minimum principle and the Pauli principle form the basis of the quantum physics' interpretation of the periodic table.

Thank you!

