WARM AND COLD FORGING

PRECISION FORGING COLD HEADING COLD EXTRUSION

Precision forging

Main characteristics:

- Closed die forging
- Temperature is below the hot range, it is "warm" forging (T~0,5*T_m °K)
- Close tolerances, acceptable surface finish – "near net shaping process"
- Good material yield
- Good mechanical properties

Economic considerations

- Precision forging is more costly than conventional forging, ...but!
- Savings in material and machining costs are significant
- Forming complex shapes is possible
- Precision forging represents a higher value product than a conventional forging (higher added value)

Temperature of forging

Low alloy steels:

Cold forging	< 250 °C	
Warm forging	540 815 °C	
Hot forging	950 1150 °C	

Controlled cooling may be necessary after forging to avoid distorsion and to control the microstructure of the workoiece

Tooling (1)

Dimensions

- Allowances (thermal contraction, machining)
- Draft angles, no sharp corners good material flow
- Workability
 - High deformation levels needs good formability
 - Try to avoid cracking!

Tooling (2)

• Precision:

- Tolerance bands of tool: 10...30% of the workpiece
- High-precision machining (EDM)
- Rigid alignment
- Preform considerations (volume, weighting, appropriate shape)
- Conditions: good lubrication, remove contaminants, good control of billet and tool temperature

Forging equipment

- Billet separation: shearing or sawing
- Heating:
 - Furnace oxide formation
 - Induction heating
 - Resistance heating
- Presses:
 - Hammers
 - Crank presses
 - Hydraulic presses

Comparison of forgings

Cold forging

Processes:

- Upsetting
- Cold forging of components

Effect of cold working on material properties

- the ductility of the material drops, strengths and hardness increases (because of higher dislocation density - strain hardening)
- the microstructure changes, crystals (grains) become elongated in the direction of major deformation

Cold heading

- To upset the metal in a portion of wire or rod blank
- The cross-sectional area of the initial material is increased as the height of the workpiece is decreased
- variants:
 - Free (head formed between flat punch and die)
 - Closed (head formed in punch and die)

Limits of deformation

Material dependent:

$$\frac{L}{d} \le 2,3$$

$$\frac{\mathrm{D}}{\mathrm{d}} \Rightarrow 2...2.7$$

Material independent:

$$\frac{D}{k} \Rightarrow 2...3$$

Calculation of force

$F = k_f A \left(1 + \frac{2\mu}{3h}R\right)$

Where:

- k_f flow stress
- A cross-sectional area
- R radius of head
- h height of head
- μ coefficient of friction

Two-stroke upsetting

- If L/d > 2,3 then two operations are needed:
 - Preforming
 - Finish heading
- Preforming head: conic-cylindrical
- Finish: closed heading punch

Example: screw

head heading reduction shearing shearing

Example: screws and bolts

Example: heading

Closed-die cold heading

•Die can be opened for feeding and removing the workpiece

Head shearing

Cold extrusion of parts

- Principle: a punch applies pressure to the preform or billet, causing the work metal to flow in the required direction
- Process variants:
 - Direct indirect or forward backward
 - Extrusion of rod, can and hollow part
 - Single or combined operations

Forward extrusion of rod

Backward extrusion of can

Combined : forward and backward extrusion of can

Combined: forward extrusion of rod, backward extrusion of can

punch

Cold extrusions

Forward extrusion of rod

Back extrusion of can

Forward extrusion of can

Extrusion pressure and force

Extrusion pressure:

$$p = \frac{k_{fm}\varphi}{\eta}$$

where:

- k_{fm} mean flow stress
- φ logarithmic strain: $\ln(A_o/A_1)$
- **η** coefficient of extrusion (0,4...0,7)

Extrusion pressure and force

Materials and lubrication

- Good formability: mild steel, copper, aluminium
- Medium formability: low alloy steels, Zn
- Preparation for cold forging:
 - Surface treatment
 - Lubrication
 - Forging

Equipment

Machines:

- Crank presses
- Knuckle-joint presses
- Hydraulic presses
- Special purpose cold forging and heading machines
- Requirements:
 - Sufficient flywheel energy and load capacity
 - Rigid frame

crank press knuckle-joint press

Automated press

Feeding,
shearingPreforming
of headColdCoining and
sizing

Cold Forging Machines

Cold forged parts

Example: multiple-step forging

Example: multiple-step forging

Example: production of nut

Comparison of material yield and energy consumation

Process	Material yield, %	Energy, 10 ⁶ J/kg
Cold forging	85	41
Warm forging	85	41
Hot forging	7580	4649
Cutting	4050	6682