Predicting Flight Arrival Times with a Multistage Model

Gabor Takacs
Department of Mathematics and Computer Science
Széchenyi Istvdn University
Gydr, Hungary
e-mail: gtakacs@sze.hu

Abstract—Airlines are constantly looking for ways to cut
flight delays, in order to enhance service quality and reduce
operational costs. The goal of the data science contest, GE
Flight Quest (https://www.gequest.com/c/flight), was to make
flights more efficient by improving the accuracy of arrival
time estimates. The data set of the contest was 128 GB in size
and contained 252 data columns arranged in 34 tables. This
paper presents my solution that won third prize under team
name Taki. The solution employs a 6-stage model consisting of
successive ridge regressions and gradient boosting machines,
built on 56 features constructed from the raw data. The
hardware environment used for training and running the model
was a 64 core machine with 1 terabyte of memory.

Keywords-GE Flight Quest, ridge regression, gradient boost-
ing machine, parallelization.

I. INTRODUCTION

Operating an air transportation system efficiently is a
highly complex problem. Changes in factors like in weather,
flight patterns, or bottlenecks can lead to delays that are
inconvenient for the passengers and costly for the airlines.
Airlines are constantly looking for ways to reduce flight
delays. Decreasing the average delay per flight by one
minute could save millions of dollars in annual crew costs
and fuel savings for a mid-sized airline [1].

The goal of the GE Flight Quest contest (http://www.
gequest.com/c/flight) was to make flights more efficient,
building on advancements in real-time big data analysis. The
contest was set up on Kaggle in December 2012 with a prize
pool of 250,000 dollars, and the result was announced in
April 2013.

This paper describes my solution that won third prize
in GE Flight Quest, under team name 7Taki. My approach
employs a 6-stage model consisting of successive ridge
regressions and gradient boosting machines, built on 56
features constructed from the raw data. The hardware en-
vironment used for training and running the model was a 64
core machine with 1 terabyte of memory.

The rest of the paper is organized as follows: Section II.
defines the problem and introduces the data set. Section III.
describes the proposed solution with implementation details.
Section IV. overviews related work. Section V. contains
experimental results and discussion. Section VI. concludes
the paper.

II. THE PROBLEM

The goal of the competition was to predict the runway
and the gate arrival time of en route U.S. domestic flights
as accurately as possible, based on flight history, weather,
air traffic control, and other data available at a given time
moment. The estimates had to be given as the number of
integer minutes elapsed since 00:00 on the day of the flight.
The accuracy was evaluated on a test set, in terms of a root
mean squared error (RMSE) based metric.

The runway RMSE of a prediction was measured as

L~ (:0) @\
RMSErunway == E Z (runway ~ trunway))
i=1

where fr(éz,way and tEi’nway are the predicted and true run-
way arrival time associated with the ¢th test flight and n
is the number of test flights. RMSEg.. is defined like
RMSE;,unway, but for gate arrival times.

The evaluation metric used in the competition was a
weighted average of the runway and the gate RMSE:

1 3
RMSE = - RMSE uay + §RMSEguce-

The weights indicate that the subtask of gate arrival
prediction was considered as more important than runway
arrival prediction. The two subtasks are closely related,
since runway arrival typically precedes gate arrival by a few
minutes.

A. The Data Set

The data set of GE Flight Quest was 128 GB in size
(in uncompressed CSV format), and it contained 252 data
columns arranged in 34 tables. The time span of the data
set was 109 days, from 2012-11-12 to 2013-02-28. Two test
sets were allocated: the Public Leaderboard Set (PLS, 14
days of data from 2012-11-26) and the Final Evaluation Set
(FES, last 14 days of data). The remaining data was split into
3 partitions, namely Initial Training Set (ITS), Augmented
Training Set 1 and 2 (ATS1, ATS2). There was no data
available for 8 days before the FES.

For the test sets, a random cutoff time was drawn for each
day, and the data was available only up to the cutoff time.

https://www.gequest.com/c/flight
http://www.gequest.com/c/flight
http://www.gequest.com/c/flight

To predict a test flight, the contestants could use the training
set, and the day of the test set that the flight belonged to.
The tables of the data set can be arranged into groups:

« FlightHistory: The 2 tables of this group contained
direct information about the flights such as departure
and arrival location and time.

o ASDI (Aircraft Situational Display to Industry): The
7 tables of this group contained information about the
planned and actual travel path of the flights.

e ATSCC (Air Traffic Control System Command Cen-
ter): The 8 tables of this group contained data about air
traffic control events such as ground delay programs.

o Metar: The 4 tables of this group contained actual
weather data, originating from the Metar weather re-
porting system.

o OtherWeather: The 12 tables of this group con-
tained weather forecast data, originating from multiple
sources.

Most parts of the data was extracted from the FlightStats
flight tracking system. The data set contains 2,390,185 U.S.
domestic flights, 26,257,353 flight plans, 40,606,359 flight
events, 1,156 airports, 229 airlines, and 5,434 weather report
stations in total. The tables form a “real life like” relational
database with complex relationship between the tables, and
a significant amount of missing and noisy data. Most of the
records in the data set are events, associated with an entity
(like flight, airport, weather report station) and a time stamp.

B. Data Columns

This subsection will try to give a picture on the actual
data columns contained in the tables. Obviously, it would
make no sense to describe all 252 columns here, therefore
a subset was selected from them.

The FlightHistory table of the FlightHistory group con-
tained among others the airline, the aircraft, the flight
number, the arrival and departure airport associated with the
flight, the scheduled and actual departure and arrival time of
the flight. The departure and arrival times and their estimates
were given in integer minutes.

Note that the actual runway and gate arrival times are
the variables that had to be predicted. Figure [l| shows the
empirical distribution of the difference between gate and
runway arrival time.

It can be seen that most frequently, the gate arrival follows
the runtime arrival by 4 minutes. The difference between
the recorded gate and runway arrival time can be sometimes
negative which indicates erroneous data entry. In some rare
cases (not shown in the figure) it takes hundreds of minutes
for the flight to get from the runway to the gate.

The FlightHistoryEvents table of the FlightHistory group
contained an event log for each flight. Events include up-
dating the estimated runway or gate arrival time, the arrival
terminal or gate or recording the actual takeoff time. The
FlightHistoryEvents table contained more recent information

relative frequency

5 10 15
time difference (min)

Figure 1. The distribution of gate minus runway arrival time.

about arrival times than the FlightHistory table because its
estimates were updated regularly, while the estimates of
FlightHistory were filled in before take-off. The average
number of events per flight was ~17. My solution used only
the most recent estimates contained in FlightHistoryEvents
for predicting arrival times.

A rare event that tends to result delays is divertion from
the originally planned destination to another one. Predicting
the arrival time of flights that have a “diverted” event
in their history is an extraordinarily hard task that needs
special treatment. Such flights were excluded from the Final
Evaluation Set of the competition, therefore they were also
excluded them from training and internal validation.

The ASDIFlightPlan table was the most informative data
source in the ASDI group. It contained data on the flight
plans filed for each flight. One flight may have many
corresponding flight plans, as any change to the plan is
represented as a new plan. The average number of flight
plans per flight was ~11. The flight plan contains an estimate
on the runway arrival time (but not on the gate arrival time).
Only the most recent flight plan of each flight was used in
my model.

The ASDIPosition table from the ASDI group contained
information about the actual geographic position of the
flights, along with altitude and ground speed values. The
geographic latitude and longitude coordinates were given
with two digits precision which corresponds to about one
kilometer precision. The position of a flight was typically
updated about once per minute.

The ATSCC group contained data about air traffic control
events such as delays, de-icing events and ground delay
programs. An air traffic control event is usually associated
with one or more airports and a given time interval. Air
traffic control events are rare, but they can strongly affect
arrival times.

The Metar group contained information about the actual
weather at 5,434 weather report stations at given times. The
most important weather features (according to my model)
were precipitation conditions, visibility, wind speed and
temperature.

About 92 % of the airports were equipped with an own
weather report station. For such airports it was easy to
extract the weather from the Metar tables. It is much more
difficult to infer the weather at the actual location of an en
route flight, since (a) it is not trivial how the measurements
of the nearby weather report stations should be combined
and (b) the altitude of the flight should also be taken into
account. My solution used only the destination airport’s
weather for predicting the arrival times of a flight.

III. THE PROPOSED SOLUTION

The applied data splitting scheme was quite complex,
since it tried to match the special rules of the competition
(cutoff times, prohibited days). The top level elements in my
scheme are called configurations. A configuration contains
three distinct time intervals:

o The training period is used to extract aggregate infor-
mation about the entities (e.g. average taxi time per
airport). No cutoff times are used.

o The probe period is used to extract per flight features,
and to internally validate the model. A cutoff time is
drawn for each day, and the data is kept only up to the
cutoff time.

e The test period is the interval the model should give
prediction for.

In the first phase of the competition, the test set was
the Public Leaderboard Set. In the second phase it was
the Final Evaluation Set. In both phases, I defined multiple
configurations having the same test and training period, but
different probe periods. Predictions were generated for the
test set with each of the configurations, and the answers were
averaged. The reason of using multiple configurations was
to reduce time and memory requirement.

T used 3 configurations, Cy, Cs and C's, depicted on Figure
[2to create the final submission. In each configuration, a 10-
fold cross-validation scheme was applied. This means that
the probe set was randomly partitioned to 10 parts. In each
fold, the training set and 9 parts of the probe set was used for
training, and 1 part of the probe set was used for validation.

To generate prediction for the test set, I did not train a
new model on the training set plus the full probe set. Instead
of this, I took the models that were built during the cross-
validation, and averaged their answers, since this solution
ensures that only quality-checked models are involved in
generating a submission.

In the initial phase of the competition, I generated the
examples of the probe set the same way as the official
test sets were generated. Later it turned out that instead of
drawing a cutoff time for each day and taking the flights
that are en route at that time, it is more efficient to draw
cutoff times for the flights individually. This way, much more
flights could be included in the probe set and more accurate
models could be built.

My solution did not use every flight to generate a probe
example. Flights that had a “diverted” or “redirected” event
in their history, flights with unknown departure or arrival
times, and flights with extreme (e.g. negative) flight dura-
tion were removed. After this outlier removal process, the
probe set contained 253,852 examples in configuration C1,
387,558 in Cs and 214,264 in Cj.

A. Features

This section describes the 56 features that were used in
the final model (both for gate and runtime arrival prediction).
The features can be arranged into groups. Every time stamp
and duration is measured in minutes. The phrase “most
recent 2’ means the most recent value of x before the cutoff
time corresponding to the given flight. Feature types are
marked with the following symbols: o indicates a continuous
feature, { a binary feature, ¢ a single-valued categorical
feature and x a multi-valued categorical feature. The op-
eration x X y means the direct product (“concatenation”) of
categorical features = and y.

1) Main Features:

o fhx/era7: Cleaned version of tgra — tcutoft, Where tgra is
the most recent estimated runway arrival time in the flight
history events, and tcutomr is the cutoff time associated with
the flight. The cleaning consists of filling in nulls and clipping
the value into [0, 400].

o fhx/ega7: Cleaned version of tgga — tcutoft, Where tgga is
the most recent estimated gate arrival time in the flight history
events.

o fhx/eat7: Cleaned version of tarp + (tED — tEA) — toutofts
where tarp is the actual runway departure time of the flight
and tgp / tea are the estimated departure / arrival times
contained in the most recent flight plan.

o fhx/sat7: Cleaned version of tArD + tsaT
tsat is the scheduled air time of the flight.

o fhx/sbt7: Cleaned version of tArRD + tsBT — tcutoff, Where
tspT is the scheduled block time of the flight.

o fhx/ard7: tcutort — tarD, clipped into [0, 400].

2) GroupBy Features:

o gb/gd3_ap: Average gate delay (actual gate arrival time
minus scheduled gate arrival time) at the destination airport,
computed on the training set.

o gb/tt3_ga: Average taxi time for flights that arrive at the same
airport and gate as the current flight, computed on the training
set.

3) ATSCC Features:

1 atscc/grdelay: Indicates if there is an ATSCC ground delay
scheduled at the destination airport for the scheduled runway
arrival time of the flight.

1 atscc/delay2: Indicates if there is any ATSCC delay sched-
uled at the destination airport for the day of the flight.

4) Metar Features:

* metar/@pcs2: This binary vector valued feature was ex-
tracted from the present conditions part of the Metar data.
Its jth component is 1, if the jth condition (e.g. Light Snow)
occurred at the destination airport at any time on the day of
the flight.

o metar/ws2: Average Metar wind speed at the destination
airport on the day of the flight.

— teutoft, Where

o

‘22 = training period,

22 = probe period,

1= test period

Figure 2. Configurations involved in generating the final submission.

metar/{wg, temp, vis}: The most recent Metar wind gusts /
temperature / visibility value at the destination airport.

5) Sparse Features:

&
<
&

<&

fh/aac: Arrival airport code from the FlightHistory table.
fh/alc: Airline code from the FlightHistory table.

fh/aach: Arrival airport code from the FlightHistory table x
period of day at the destination at the scheduled arrival time.
fh/aact: Arrival airport code from the FlightHistory table x
most recent arrival terminal extracted from the FlightHisto-
ryEvents table.

fh/aaca: Arrival airport code X airline code (both from the
FlightHistory table).

fp/@Ir: The jth component of this binary vector valued
feature is 1, if the most recent legacy route associated with
the flight contains the jth legacy route station. The legacy
route stations are given in the ASDIFlightPlan table.
fh/sact: Scheduled aircraft type from the FlightHistory table.
fh/aaic: Arrival airport ICAO code from FlightHistory.
fh/aacg: Arrival airport code from the FlightHistory table
X most recent arrival gate extracted from the FlightHisto-
ryEvents table.

fh/edge: Departure airport code X arrival airport code (both
from the FlightHistory table).

fh/flight: Airline code X flight number (both from the
FlightHistory table).

fp/acid: Aircraft identifier from the FlightHistory table.
fh/aacb: Arrival airport code from the FlightHistory table
X the most recent bag gate extracted from the FlightHis-
toryEvents table.

6) Delta Features:

e}

fhx/tdeltal: The time stamp (receive time) of tgga minus
the time stamp of tgra.

fhx/{tdelta2, tdelta2}: The time stamp of the most recent
flight plan minus the time stamp of tgra / tEGA-
fhx/adelta{70, 71, 72, 73, 74, 75, 76, 77, 78, 79}: fhx/sbt7
— fthx/sat7, fhx/ega7 — thx/era7, thx/eat7 — thx/era7, thx/sbt7
— fhx/ega7, thx/ega7 — thx/eat7, thx/sbt7 — thx/eat7, thx/sbt7
— thx/era7, fthx/era7 — thx/sat7, fhx/ega7 — fhx/sat7, thx/eat7
— fhx/sat7.

Of course, a feature that is a linear combination of existing
ones has no predictive value in a linear model. The utility of
Delta features in the solution was that they helped to build
more accurate non-linear models.

7) Position Features:

[e]

pos/{distl, dist2, grsp, alt}: Distance from the origin /

distance from the destination / ground speed / altitude at the
most recent position of the flight.

8) Other Features:

[¢]
[e]

fh/cutoff: Cutoff time minus midnight time.

fh/hour2: Period of day at the destination airport at the
scheduled arrival time.

fhx/{speed, speed2}: Estimated average speed between the
origin / most recent position and the destination.
fhx/speed1: Average speed between the origin and the most
recent position.

fhx/dist: Distance between the origin and the destination.
fhx/{latl, lonl}: Geographic latitude / longitude of the
origin, with nulls replaced to the average value.

fhx/{lat2, lon2}: Geographic latitude / longitude of the
destination, with nulls replaced to the average value.

B. The Multistage Model

My prediction model consists of 6 stages that are trained
on the residual of each other. This subsection specifies the
regression method (with parameters) and the input features
associated with the stages. Let JFy denote the feature set
{fhx/era7, thx/ega7, fhx/eat7, fhx/sat7, fhx/sbt7, fhx/ard7}.
Let p* denote the group of features whose name begins with
prefix p. The details of the stages are as follows:

« Stage 1: Baseline stage, outputting th/cutoff.
o Stage 2: A ridge regression (RR) [2] model trained

with the feature set F» = Fy U {gb/gd3_ap, gb/tt3_ga,
atscc/grdelay, atscc/delay2, metar/*}. The value of the
regularization coefficient was alpha=100.

Stage 3: A gradient boosting machine (GBM) [3]
trained with the feature set F3 = Fy U {fhx/tdelta*,
fhx/adelta*, pos/*, atscc/grdelay, atscc/delay?2,
fh/hour2, fhx/speed*, fhx/dist, fhx/lat2, fhx/lon2}.
I used the scikit-learn implementation of GBM
with parameters max_depth=10, n_estimators=50,
learn_rate=0.16 and random_state=42. The target
variable of this stage (i.e. the residual of the previous
stage) was clipped to [—10, 10] before training.

Stage 4: A RR (alpha=50) trained with the feature set
Fy = Fo U {fh/aac, fh/alc, fh/aach, fh/aact, fh/aaca,
fp/@lr, fh/sact, fh/aaic, fh/aacg, fh/edge, th/flight,

fp/acid, fh/aacb}. The target variable of this stage was
clipped to [—20, 20] before training.

o Stage 5: A GBM (max_depth=10, n_estimators=50,
learn_rate=0.16 and random_state=42), trained with the
feature set F3. The target variable of this stage was
clipped to [—10, 10] before training.

o Stage 6: A GBM (max_depth=7, n_estimators=50,
learn_rate=0.24, random_state=42), trained with
the feature set F5 = Fu U {fhx/adelta*, pos/*,
atscc/grdelay, atscc/delay?2, th/hour2, fhx/lat2, thx/lon2,
thx/latl, fhx/lonl, metar/@pcs2}. The target variable
of this stage was clipped to [—10, 10] before training.
The feature metar/@pcs2 was converted from sparse to
dense (since scikit-learn’s GBM expects dense input).

The role of Stage 1 is to transform the task from predicting
the arrival time relative to midnight to predicting the remain-
ing time to the arrival. Stage 2 is a linear model on a small,
informative set of features. The role of Stage 3 is to capture
most of the nonlinear effects in the data. Besides GBM,
I also experimented with some other nonlinear models, but
they performed worse. Random forests could achieve GBM-
like accuracy, but only at the cost of significantly larger
model size. The role of Stage 4 is to incorporate sparse
features into the modeling. Stages 5 and 6 are nonlinear
models, trying to squeeze out a bit of additional accuracy.

The presented model structure is a result of a heuristic,
hand-run optimization process. The usual workflow was to
iteratively define features and then try to incorporate them
into the modeling so that they decrease the RMSE as much
as possible.

My solution employs the same features and the same
stages for the runway and gate arrival prediction task. The
only thing that differed in the two cases was the target
variable.

C. Implementation Details

Except some utility Bash scripts, the whole system was
implemented in Python. The most important Python modules
I used besides the standard library were numpy, scipy,
pandas and scikit-learn. For running the code, a 64 core
Linux server with 1 terabyte of memory was used. Each core
was an Intel Xeon X7560 @ 2.27GHz. The Experiments
section will show that the system would still have tolerable
running time on a smaller machine.

I approached the problem by defining data processing
nodes that depend on each other. Each node expects a set of
files as input an produces another set of files as output. I tried
to break down the problem to small parts so that a most of
the nodes are associated with relatively simple subproblems.
An example node is for instance the conversion of raw
FlightHistory table from CSV to binary format with parsed
date values. Cross-validation folds and independent nodes
were run in parallel.

I introduced a little tweak into the scikit-learn 0.12.1
implementation of RR. The original version evaluates the
expression X7 Xv as (X7 X)v while mine as X7(Xw),
where X is the (sparse) input matrix, and v is an arbitrary
vector. The reason why this modification was needed is
that the scikit-learn implementation failed to converge with
sparse features when the number of examples was large.

IV. RELATED WORK

The data set of GE Flight Quest was the first publicly
available large-scale, heterogeneous data set for flight arrival
prediction to the best of my knowledge. Prior works on
flight arrival prediction typically focus on specific parts of
the problem, for example modeling congestion at individual
airports or delay propagation, analyze these subproblems in
detail, and experiment with relatively small data sets. On
the other hand, the contestants of GE Flight Quest had a
short time span (~2 months) to build their prediction model,
and their goal was to predict arrival times as accurately as
possible from the available rich data. For the above reasons,
the discussion of related work will be split into two parts.
First, earlier work will be overviewed, second the approaches
of other contestants will be outlined.

A. Prior Work

One of the early works in the topic is Newell’s study on
airport capacity and delays [4]]. Its purpose was to describe
how the capacity of a runway configuration depends upon
the operation sequencing strategy, the runway geometry, the
instrument flight rules, and and other factors.

The approach of Peterson et al. [5] uses a combination of
stochastic and deterministic components to model delay in
a network of airports. The stochastic part of the approach
is a semi-Markov model of airport capacities, and the
deterministic part is a fluid-flow based delay propagation
method.

The paper of Beatty et al. [6] proposes the concept of
Delay Multiplier (DM) in order to demonstrate the effect
of an initial delay on the operating schedule as a whole.
Specifically, their process was developed to evaluate changes
in the Federal Aviation Administration’s Ground Delay
Program procedures.

Abdelghany et al. [[7] presents a tool for airline schedule
recovery during irregular operations caused mostly by bad
weather. Their approach employs a rolling horizon modeling
framework that integrates a schedule simulation model and
a resource assignment optimization model.

Tu et al. [8] develops a model for estimating flight de-
parture delay distributions required by air traffic congestion
prediction models. They employ non-parametric methods to
model daily and seasonal trends and mixture distribution to
estimate the residual errors.

A recent approach to flight delay estimation is the Ap-
proximate Network Delays (AND) model [9]. AND employs

an analytical queuing engine to estimate local delays and
a domain specific delay propagation algorithm to model
network effects. The foundations of AND were laid down
in Malone’s Ph.D. thesis [10].

B. Approaches of Other Contestants

Team Gxav & * (the winner of the competition) used
a mixture of gradient boosting and random forest models
to predict gate and runway arrival times. Key to their
success was careful feature selection with their final models
using only 58 and 84 features for gate and runway arrivals,
respectively, from the total 258 features they painstakingly
constructed and optimized.

Team As High As Honor (2nd place) used a two-step
approach that combined the results of a generalized linear
model that encoded intuition about important variables with
refinements derived from a random forest model.

Team Sun’s (4th place) approach to predicting gate and
runway arrival times relied on creating a derived data set
with new variables encoding information about the aircraft,
airport, airway, gate, hour, and flight path times. Important
features used in this model include aircraft GPS position,
ASDI flight plans and the direction from which airplanes
approached airport runways.

Jacques Kvam’s (5th place) approach for predicting run-
way and gate arrival times used gradient boosting for a
model using 10,000 trees and a whopping 1,102 features
trained on 260,000 flights. Most significant among these
included the distance between the final waypoint and the
arrival airport. Many weather features were important as well
including temporary vertical visibility and wind speed at the
arrival airport.

V. EXPERIMENTS

This section presents the results of my approach in differ-
ent settings. The analysis will focus on accuracy and running
time. The Public Leaderboard Set will be used for evaluation
instead of the Final Evaluation Set, since the ground truth
values of the latter are not known.

In the first experiment, I defined a single configuration
C, and measured the accuracy after the 6 stages defined
in subsection III. B. The training period was the first day
and the probe period was the remaining 13 days of Initial
Training Set. 10-fold cross validation was applied, and cutoff
times were generated per flight to construct the probe set.
The number of flights in the probe set was 242,055.

Table [I| shows the RMSE values per stage along with the
total CPU time (measured in seconds) needed to achieve
the results. The time value shown for a given stage includes
the CPU time associated with the previous stages, but it
does not include the time spent on feature extraction. For
easier interpretability, regressor types and public leaderboard
positions corresponding to stages are also indicated. The
number of entries in the public leaderboard was 179.

Table I
RMSE PER STAGE USING A SINGLE CONFIGURATION.

Stage | Alg. | Time | RMSE | LB Pos.
1 0 93.8241 165.
2 RR 295 6.5204 23.

3 GBM | 43,994 5.7619 9.
4 RR 49,711 5.5486 6.
5 GBM | 73,481 5.5241 6.
6 GBM | 81,905 | 5.5200 6.

%2 = training period
72 = probe period
.1 = test period

Figure 3.

Configurations used for the experiments.

The RMSE of the 6th stage is 5.5200. It requires ~23
CPU hours to produce this result that would achieve 6th
place on the public leaderboard. One can observe that the
last 4 stages improve the RMSE of Stage 2 by ~15 % at
the cost of significantly increased running time.

The second experiment investigates the effect of averaging
the results of two configurations instead of using a single
one. The training period of the second configuration C5 was
the same as for the Cy The probe period was the 24 days
of Augmented Training Set 1, and the number of flights in
the probe set was 445,127. Configurations C4 and Cj5 are
depicted in Figure [3]

Note that using configuration C5 means that future data
is involved in predicting the arrival times of the Public
Leaderboard Set. This was allowed in the public leaderboard
phase of competition, and the contestants did apply it. The
results of the second experiment can be seen in Table

Table II
RMSE PER STAGE USING TWO CONFIGURATIONS.

Stage | Alg. | Time | RMSE | LB Pos.
1 0 93.8241 165.
2 RR 1,279 6.4736 21.
3 GBM | 145,243 5.7108 7.

4 RR 167,355 5.4262 5.
5 GBM | 255,610 5.3932 3.
6 GBM | 290,677 | 5.3818 2.

The RMSE of the last stage is now 5.3818 that would
achieve 2nd place on the public leaderboard. The cost of this
improvement is that now the total CPU time needed is ~81
hours, 3.5 times more than previously. My best submission
in the competition for the public leaderboard followed more

or less the same approach as this experiment, and it had an
RMSE score of 5.3926.

A. Simplifying the Solution

It is not necessary to apply 10-fold cross validation and a
6-stage model, if we can tolerate a slight loss in the accuracy.
Fairy good RMSE can be achieved with using only 3 folds
and 3 stages. Gradient boosting can be further speeded up by
decreasing the value of the maximal tree depth (max_depth)
parameter.

Another obvious simplification possibility is to leave out
the 2 features extracted from the training period (gb/gd3_ap,
tt3_ga). They were only kept in the final solution because I
did not have enough time during the competition to precisely
check the effect of omitting them.

In the next experiment, all of the above simplifications
are applied, and the elements of the solution are added
incrementally. The results are shown in Table The stages
are separated by dashed lines. The regularization coefficient
in the RR stage was alpha=100. The parameters of the GBM
stage were max_depth=_8, n_estimators=50, learn_rate=0.16
and random_state=42. The symbol + in front of a feature
group name means that the features of the previous exper-
iments (up to a dashed line) were also included among the
features.

Table III
THE UTILITY OF VARIOUS FEATURE GROUPS AND REGRESSORS.
Features Alg. Time | RMSE | LB Pos
fh/cutoff 0 93.8241 165
©7 Main | RR™ [I | 68691 | 29. °
+ Sparse1 RR 32 6.3515 19
+ Sparsea RR 55 6.2155 16
+ Sparses RR 181 6.1051 16
+ Sparseq RR 254 6.0775 16
+ Metar RR 422 5.9307 12
+ ATSCC RR 453 5.9150 12
+ GroupBy RR 525 59172 12
"7 Main | GBM | 895 | 58804 | 12.
+ Delta GBM 1,735 5.7748 10
+ Position | GBM | 2,399 5.6857 7
+Othef| | GBM | 3,641 | 5.6415 7

It can be seen that GroupBy features should be indeed
omitted, since the decrease the accuracy. The last line shows
that if we can tolerate a 5 % increase in the RMSE compared
to the 5.3818 result, then it is possible to reduce the time
requirement by 98.7 %.

The Sparse feature group was divided into 4 sets in this
experiment as Sparse;={fh/aac, fh/alc}, Sparseo={fh/aach,
fh/aact, fh/aaca}, Sparses={fp/@Ir, fh/sact, fh/aaic, fh/aacg},
Sparses={fh/edge, th/flight, fp/acid, fh/aacb}. It is interest-
ing to see that more than half of the improvement on the
trivial solution with RMSE 6.8691 is due to the sparse
features.

IThe feature fh/cutoff was not included.

VI. CONCLUSION

This paper presented my solution that won third prize
in GE Flight Quest. The proposed model consists of 6
consecutive stages of ridge regressions and gradient boosting
machines, trained on 56 features. I used a relatively low
number of features and a relatively complex model compared
to other contestants. To cope with the massive amount
of available data, separate models were built on different
partitions of the data and their answers were averaged. The
time requirement of my solution can be reduced by 98.7 %
at the cost of a 5 % loss in the accuracy.

ACKNOWLEDGMENT

This paper was subsidized by TAMOP-4.2.2.C-
11/1/KONV-2012-0012/: “Smarter Transport” — IT for
co-operative transport system — The Project is supported
by the Hungarian Government and co-financed by the
European Social Fund.

REFERENCES

[1] J. Leber, “A data-crunching prize to cut flight delays,” 2013,
mIT Technology Review, http://www.technologyreview.com/
news/513141/a-data-crunching-prize-to-cut- flight-delays.

[2] A. E. Hoerl and R. W. Kennard, “Ridge regression; biased
estimation for non orthogonal problems,” Techonometrics,
vol. 12, pp. 55-67, 1970.

[3] J. Friedman, “Greedy function approximation: a gradient
boosting machine,” Annals of Statistics, vol. 29, no. 5, pp.
1189-1232, 2001.

[4] G. F. Newell, “Airport capacity and delays,” Transportation
Science, vol. 13, no. 3, pp. 201-241, 1979.

[5] M. D. Peterson, D. J. Bertsimas, and A. R. Odoni, “Models
and algorithms for queueing congestion at airports,” Manage-
ment Science, vol. 41, pp. 1279-1295, 1995.

[6] R. Beatty, R. Hsu, L. Berry, and J. Rome, “Preliminary
evaluation of flight delay propagation through an airline
schedule,” Air Traffic Control Quarterly, vol. 7, pp. 259-270,
1999.

[71 K. E. Abdelghany, S. S. Shah, S. Raina, and A. F. Abdel-
ghany, “A model for projecting flight delays during irregular
operation conditions,” Journal of Air Transport Management,
vol. 10, no. 6, pp. 385-394, 2004.

[8] Y. Tu, M. O. Ball, and W. S. Jank, “Estimating flight depar-
ture delay distributions — A statistical approach with long-
term trend and short-term pattern,” Journal of the American
Statistical Association, vol. 103, no. 481, pp. 112-125, 2008.

[9] N. Pyrgiotis, K. M. Malone, and A. Odoni, “Modelling
delay propagation within an airport network,” Transportation
Research Part C: Emerging Technologies, vol. 27, pp. 60-75,
2013.

[10] K. Malone, “Dynamic queuing systems: Behavior and ap-
proximations for individual queues and networks,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1995.

http://www.technologyreview.com/news/513141/a-data-crunching-prize-to-cut-flight-delays
http://www.technologyreview.com/news/513141/a-data-crunching-prize-to-cut-flight-delays

	Introduction
	The Problem
	The Data Set
	Data Columns

	The Proposed Solution
	Features
	Main Features
	GroupBy Features
	ATSCC Features
	Metar Features
	Sparse Features
	Delta Features
	Position Features
	Other Features

	The Multistage Model
	Implementation Details

	Related Work
	Prior Work
	Approaches of Other Contestants

	Experiments
	Simplifying the Solution

	Conclusion
	References

