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Abstract.
Tomographic reconstruction is the mathematical procedure of approximating a function f , based on the integrals of f

along a set of line sections. The need for fast tomographic reconstruction arises for example in the challenging problem of
real time control of some plasma parameters in a fusion reactor. In this paper, we present a fast algorithm for tomographic
reconstruction. A good property of our approach is that it fits well to hardware with two levels of parallelism (e.g. a GPU
cluster). We also propose an objective evaluation method for measuring the quality of reconstruction on real datasets where
f is unknown. We will demonstrate that our algorithm is able to perform more than 50 000 reconstructions per second at
reasonably good quality, running on a relatively cheap hardware.
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INTRODUCTION

Tomographic reconstruction is the mathematical procedure of approximating a function, based on the integrals of the
function along a set of line sections. An interesting area where fast and accurate tomographic reconstruction is needed
is the challenging and yet not satisfactorily solved task of real time control of some plasma parameters in a tokamak
fusion reactor (see e.g. [1] for further information).

A possible formalization of the tomographic reconstruction problem is the following. Assume that f : Rd 7→ R
is an unknown function called image, and τ :

(
Rd 7→ R

)
7→ RI is a known operation that calculates the scaled line

integrals of f along a given set of lines. The formula of the i-th output of τ is [τ( f )]i = ei
∫

Li
f (x)ds, where Li is a

line section in Rd , and ei ∈ R is the scaling factor corresponding to the i-th integral (i = 1 . . . , I). The vector τ( f ) is
called the tomogram of f . Assume that ε :

(
Rd 7→ R

)2 7→ R is a known function called error measure. The task is to
approximate f by f̂ based on τ( f ), so that ε( f , f̂ ) is small.

An important variant of the problem is batch reconstruction, where a sequence of functions f1, . . . , fK has to be
approximated on the basis of τ( f1), . . . ,τ( fK). The task is almost always batch reconstruction in real world cases,
since it is impractical to build a tomographic device for the reconstruction of a single image.

In the field of plasma tomography, some known approaches for computing f̂ are analytical methods (e.g. [2, 3, 4])
and pixel based methods (e.g. [5, 6]). A common error measure is the relative sum squared error that can be defined as
εRSSE( f̂ , f ) = ∑

J
j=1
(

f̂ (x j)− f (x j)
)2

/∑
J
j=1 ( f (x j))

2 , where x1, . . . ,xJ are sampling points, usually located regularly
in a region of interest.

In this paper, we present a basis function based approach for tomographic reconstruction. Our approach can be
viewed as a generalization of pixel based methods. A good property of our approach is that it fits well to hardware
with two levels of parallelism (e.g. a cluster of multi-core CPUs or a cluster of GPUs).

We also propose an error measure that assesses the quality of reconstruction without using the values of f . Error
measures that require f are not applicable in real environments, since f is unknown there. Our error measure does not
have this limitation. We will demonstrate that our approach is able to perform more than 50 000 reconstructions per
second at reasonably good quality, running on a relatively cheap hardware.

THE PROPOSED APPROACH

A possible strategy for solving the tomographic reconstruction problem is the basis function approach. Assume that
we have a set of functions {g j : Rd 7→ R, j = 1, . . . ,J} called basis functions. In the basis function approach the



reconstruction formula is

f̂ (x) =
J

∑
j=1

w jg j(x), (1)

where the w j ∈ R values called weights are the parameters of the model. The goal is to set w = [w1, . . . ,wJ ]
T so that

τ( f̂ ) is similar to τ( f ) and f̂ is “simple” in a sense. This requirement can be formalized as the minimization of the
regularized loss function

δ (w) =
n

∑
i=1

(
Fi−

d

∑
j=1

w jGi j

)2

+ρ(w), (2)

where Fi = [τ( f )]i, Gi j = [τ(g j)]i, and ρ : RJ 7→ R is called the regularizer. In plasma tomography some common
choices for ρ are Tikhonov and minimum Fisher regularizers [5].

In this work, we considered pixel and spherical Gaussian basis functions, arranged in a rectangular grid. The pixel
basis function corresponding to grid cell C returns 1 for input x, if x ∈C, and returns 0 otherwise. The formula of the
Gaussian basis function corresponding to cell C is g(x) = exp

(
−(x− c)T (x− c)/(2r2)

)
, where c is the centroid of C

and r is the half diagonal length of C. The basis function set also contained a constant 1 function in both cases.
We applied Tikhonov regularization ρ(w) = λwT w, λ > 0, meaning that large weight absolute values are penalized.

In our case, minimizing δ is equivalent with solving the system of linear equations
(
GT G+λ I

)
w = GT f, where G is

the I-by-J matrix of Gi j values, f is the I-by-1 vector of Fi values, and I is a J-by-J identity matrix. Note that GT G+λ I
is determined by the line integrals of the basis functions, and does not depend on the image. Therefore, in the case of
batch reconstruction the task is to solve K systems with the same coefficient matrix.

Implementation

In this subsection, we present some details of the implementation, using low level building blocks. Besides standard
matrix operations we need only three simple linear algebraic routines:

• chol(A): Compute the Cholesky decomposition of the symmetric matrix A, and return the lower Cholesky-factor.
• L\F b: Solve the lower triangular system Lx = b with forward substitution, and return the solution.
• LT\B b: Solve the upper triangular system LT x = b with backward substitution, and return the solution.

We will also use the notation L\F B and LT\BB, meaning that the system is solved for each column of B and the
solution column vectors are arranged into a matrix. Note that if A and L are n-by-n, then the (sequential) computational
complexity of the chol(A) is O(n3), while the complexity of L\F b and L\Bb is O(n2).

The reconstruction of a singe image can be done as follows:

L← chol(GT G+λ I), w← LT\B

(
L\F

(
GT f

))
.

If the task is to reconstruct K images instead of a singe one, then it is worthwhile to compute the Cholesky decomposi-
tion before looping over the K images. In a parallel environment one can calculate the reconstruction of the K images
independently (the pseudocode of this variant can be seen in Algorithm 1).

However, this solution does not fit well to a two level parallel environment, because the operations \F and \B are
not easily parallelizable 1. For such environments it is better to calculate the inverse of A before the loop (using chol,
\F , and \B ), and apply parallel matrix–vector multiplications in the loop (see Algorithm 2).

The sequential computational complexity is O
(
J2(I + J +K)

)
for both algorithms. In a sequential environment

Algorithm 1 is a bit faster than Algorithm 2, since it does not require the calculation of A−1 (and the cost of the loop
is nearly equal in the two cases).

In a parallel environment the two algorithms can have about the same speed, if certain conditions are met (K is large
enough, there are enough parallel processing units, the implementation is done carefully). However, Algorithm 2 is
easier to implement than Algorithm 1, because parallelizing the matrix–vector multiplication is easier than paralleliz-
ing the loop of Algorithm 1. Another advantage of Algorithm 2 is that it fits particularly well to two level parallel
environments.

1 And implementing the loop on the low level processing units can be difficult



A← GT G+λ I ; // matrix-matrix multiplication
L← chol(A) ; // Cholesky decomposition
for k← 1 to K do in parallel

b← GT fk ; // matrix-vector multiplication

wk ← LT \B (L\F b) ; // forward & backward substitution

end
Algorithm 1: Parallel batch reconstruction.

A← GT G+λ I ; // matrix-matrix multiplication
L← chol(A) ; // Cholesky decomposition

A−1 ← LT \B (L\F I) ; // forward & backward substitution J times
for k← 1 to K do in parallel

b← GT fk ; // parallel matrix-vector multiplication

wk ← A−1b ; // parallel matrix-vector multiplication

end
Algorithm 2: Two level parallel batch reconstruction.

EXPERIMENTS

We tested the proposed approach on artificial images (called phantoms) and on a real tomogram sequence (called shot)
originating from the TCV tokamak. In the TCV tokamak the dimension of the images is d = 2 and the number of line
integrals (channels) is I = 140. The geometry of the tokamak and the line segments corresponding to the channels can
be seen in Figure 1(a). For reconstruction we used J = 432 pixel or Gaussian basis functions, arranged in 36-by-12
rectangular grid over the bounding rectangle of the tokamak’s geometry.

Evaluation

Measuring the quality of reconstruction in the case of real tomograms is not a trivial problem, since the image f is
unknown. A possible solution that we propose here is to apply an L-fold cross validation procedure. This means that
we partition the channels randomly into L nearly equally sized parts, and run L experiments. In the l-th experiment
we do not use the channels of the l-th part for reconstruction, but we use them for validating the components of τ( f̂ )
corresponding to the l-th part.
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FIGURE 1. The geometry of the TCV tokamak (a), a phantom (b), and its reconstructed version (c).



TABLE 1. Reconstruction quality with different settings.

λ ε
pixel
CV εGaussian

CV εGaussian
CV /ε

pixel
CV

10−18 0.30 (±0.14) 0.24 (±0.10) 0.90 (±0.47)
10−17 0.19 (±0.08) 0.13 (±0.07) 0.81 (±0.54)
10−16 0.21 (±0.13) 0.12 (±0.09) 0.61 (±0.27)
10−15 0.31 (±0.15) 0.19 (±0.14) 0.60 (±0.14)

Assuming batch reconstruction, the relative sum squared error of the l-th experiment is calculated as

εl =
∑

K
k=1 ∑i∈Il

(
[τ( f̂k)]i− [τ( fk)]i

)2

∑
K
k=1 ∑i∈Il ([τ( fk)]i)

2 , (3)

where the set Il contains the channel indices of the l-th part (l = 1, . . . ,L). The proposed error measure is the average
of the numbers ε1, . . . ,εL (denoted by εCV), supplemented with the empirical standard deviation of the numbers.

The above cross validation procedure does not compare f̂ with f directly, but it compares τ( f̂ ) with τ( f ) in a fair
way. In a sense, a low εCV error means that the reconstruction method is able to predict the values of new channels.

Results

The result of our reconstruction method on a phantom (using Gaussian basis functions and λ = 10−18) is shown
in Figures 1(b)-(c). We also tested our method on a real shot containing K = 200 000 tomograms. The 10-fold cross
validation errors with different regularization coefficients and basis functions can be seen in Table 1.

εGaussian
CV was less than the corresponding ε

pixel
CV in all cases. The parentheses contain the (unbiased) empirical

standard deviation of the quantities. The standard deviation of εCV is often quite high, meaning that prediction was
much more difficult for some channel subsets than for others. However, it can be seen in the last column that the ratio
εGaussian

CV /ε
pixel
CV was always significantly less than 1, which means that if a subset of channels was more difficult for the

Gaussian basis function method, then it was typically more difficult for the pixel basis function method too. Therefore,
it is rightful to say that the Gaussian variant performed better than the pixel variant.

We also measured the reconstruction speed of our method (Algorithm 2). Here we assumed that matrix G and vectors
f1, . . . , fK are in the main memory, and calculated K/T , where T is the wall clock time required to produce w1, . . . ,wK
in the main memory. In the first experiment used a single CPU (Intel Pentium E2200) core. The reconstruction speed
was∼800 images / second. In the second experiment we accelerated the matrix–vector multiplications of Algorithm 2
by a GPU (NVIDIA GeForce GTX 280). The reconstruction speed was ∼56 000 images / second, which means a
speedup factor of 70.
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