
Investigation of Various Matrix Factorization Methods for
Large Recommender Systems

Gábor Takács
∗

Dept. of Mathematics and
Computer Science

István Széchenyi University
Egyetem tér 1.
Győr, Hungary

gtakacs@sze.hu

István Pilászy
Dept. of Measurement and

Information Systems
Budapest University of

Technology and Economics
Magyar Tudósok krt. 2.

Budapest, Hungary
pila@mit.bme.hu

Bottyán Németh,

Domonkos Tikk
†

Dept. of Telecom. and Media
Informatics

Budapest University of
Technology and Economics

Magyar Tudósok krt. 2.
Budapest, Hungary

{bottyan,tikk}@tmit.bme.hu

ABSTRACT
Matrix Factorization (MF) based approaches have proven
to be efficient for rating-based recommendation systems.
In this work, we propose several matrix factorization ap-
proaches with improved prediction accuracy. We introduce
a novel and fast (semi)-positive MF approach that approx-
imates the features by using positive values for either users
or items. We describe a momentum-based MF approach. A
transductive version of MF is also introduced, which uses in-
formation from test instances (namely the ratings users have
given for certain items) to improve prediction accuracy. We
describe an incremental variant of MF that efficiently han-
dles new users/ratings, which is crucial in a real-life rec-
ommender system. A hybrid MF–neighbor-based method
is also discussed that further improves the performance of
MF. The proposed methods are evaluated on the Netflix
Prize dataset, and we show that they can achieve very favor-
able Quiz RMSE (best single method: 0.8904, combination:
0.8841) and running time.

Categories and Subject Descriptors
H.5.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; H.2.8 [Database
Management]: Database Applications—Data Mining

∗All authors are also affiliated with Gravity Research & De-
velopment Ltd., H-1092 Budapest, Kinizsi u. 11., Hungary,
info@gravitrd.com
†Domonkos Tikk was supported by the János Bolyai Re-
search Scholarship of the Hungarian Academy of Science.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Netflix-KDD Workshop, August 24, 2008, Las Vegas, NV, USA.
Copyright 2008 ACM 978-1-60558-265-8/08/0008 ...$5.00.

General Terms
Algorithms, Experimentation

Keywords
recommender systems, collaborative filtering, Netflix Prize,
matrix factorization, neighbor-based methods, incremental
gradient descent methods

1. INTRODUCTION
Recommender systems attempt to profile user preferences

over items and models the relation between users and items.
The task of recommender systems is to recommend items
that fit the user’s taste, in order to help the user in select-
ing/purchasing items from an overwhelming set of choices.
Such systems have great importance in applications such as
e-commerce, subscription-based services, information filter-
ing, etc. Recommender systems providing personalized sug-
gestions greatly increase the likelihood of a customer making
a purchase compared to unpersonalized ones. Personalized
recommendations are especially important in markets where
the variety of choices is large, the taste of the customer is
important, and typically the price of the items is modest.
Typical areas of such services are mostly related to art (esp.
books, movies, music), fashion, food & restaurants, gaming
& humor.

With the growing significance of e-commerce, an increas-
ing number of web-based merchant and rental services use
recommender systems. Some of the major participants of
e-commerce web, like Amazon.com and Netflix, successfully
apply recommender systems to deliver automatically gener-
ated personalized recommendation to their customers. The
importance of a good recommender system was recognized
by Netflix, which led to the announcement of the Netflix
Prize (NP) competition to motivate researchers to improve
the accuracy of their recommender system called Cinematch.
This competition motivated our present work as well.

The approach which makes use of only user activities of
the past1 (e.g. transaction history or user satisfaction ex-
pressed in rating) is termed collaborative filtering (CF). The

1In contrast to the content-based approaches which use also
demographic data to profile users.

NP contest focuses on the case when users express their opin-
ion of items by means of ratings. In this framework, the user
first provides ratings of some items usually on a discrete nu-
merical scale, and the system then recommends other items
based on ratings similar users have already provided.

Matrix factorization based techniques have proven to be
efficient in recommender systems (see Section 1.1) when pre-
dicting user preferences from known user-item ratings. The
main contribution of this work is a number of novel MF
based algorithms that are accurate in predicting user ratings,
and provide scalable solutions for large-scale recommender
systems. In particular, we present

• an MF with biases, which is currently our best per-
forming approach.

• a novel and fast (semi-)positive MF approach that ap-
proximates the factors by using positive values for ei-
ther users or items;

• a momentum-based MF approach;
• a transductive version of MF that makes use of infor-

mation from test instances (namely the ratings users
have given for certain items) to improve prediction ac-
curacy;

• an incremental variant of MF that efficiently handles
new users/ratings (this is crucial in a real-life recom-
mender systems);

• a hybrid MF–neighbor based method is introduced,
which improves the accuracy of MF considerably.

The proposed methods were evaluated on the Netflix Prize
problem, but this does not limit their applicability to this
specific dataset. The presented methods are parts of the
blended solution of our team Gravity in the NP contest.

1.1 Related Work
The first works on the field of CF have been published

in the early 1990s. The Tapestry system [7] used collab-
orative filtering to filter mails simultaneously from several
mailing lists based on the opinion of the community on read-
ings. Over the last broad decade many CF algorithms have
been proposed that approach the problem by different tech-
niques, including similarity/neighborhood based approaches
[10, 13], Bayesian networks [6], restricted Boltzman ma-
chines (RBM) [12], and various matrix factorization tech-
niques [8, 14].

The NP competition boosted the interest in CF, and yielded
a number of related publications. We should here mention
the NP related 1st Netflix-KDD Workshop in 2007 [4], which
brought together top contenders of the contest. The mem-
bers of BellKor/KorBell team2 presented an improved neigh-
borhood based approach in [2], which removes the global ef-
fect from the data—can be considered as normalization—to
improve the accuracy of similarity based interpolative pre-
dictions. Paterek applied successfully various matrix fac-
torization techniques [9] by adding biases to the regularized
MF, postprocessing the residual of MF with kernel ridge re-
gression, using a separate linear model for each movie, and
by decreasing the parameters in regularized MFs.

Our methods are different from the above ones in vari-
ous aspects. BellKor uses alternate least squares, but we
use incremental gradient descent method at weight updates.
Their method does not use the chronological order of ratings,
while we exploit this information in our approaches. The

2Winner of the Progress Prize 2007, awarded to the leading
team at the one-year anniversary of NP.

accuracy of their published MF variants is inferior to ours.
They use only positive and normal MFs, while we propose
the semi-positive version of MF algorithm. The learning of
BellKor’s positive MF is more complicated and consequently
significantly slower than ours, but this complexity does not
yield improvement on the accuracy. Paterek apply a differ-
ent learning scheme that compares unfavorable to ours in
terms of speed and accuracy. We point out that this dif-
ference result in faster training and better accuracy of our
MF methods. Other differences are that Paterek uses less
meta-parameters for his MF methods. The idea of using
test data has also appeared at various authors for differ-
ent approaches: RBM in [12], LM, NSVD1 and NSVD2 in
[9]. Our presented approaches differ slightly from known
ones but these modifications are together important: simul-
taneous feature training, regularization, bias features, early
stopping criteria, incremental gradient descent training al-
gorithm, and date based ordering of the ratings of users.

2. PROBLEM DEFINITION
We define the problem of collaborative filtering in the fol-

lowing setting. A set of I users and a set of J items are
given. A rating record is a quadruple (i, j, dij , xij) repre-
senting that user i rated item j on date dij as xij , where
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, dij ∈ D the ordered set of
possible dates, and xij ∈ X ⊂ R. Typical rating values can
be binary (X = {0, 1}), integers from a given range (e.g.
X = {1, 2, 3, 4, 5}), or real numbers of a closed interval (e.g.
X = [−1, 10]). We assume that a given user can rate a given
item at most once. This justifies the use of subscripts ij for
dates and rating values. We are given a finite set of rating
records, T , which are used for the training. We refer to the
set of all known (i, j) pairs in T as R. Note that typically
|R| ¿ |I| · |J |, because each user rates only a few items.

The rating values can be organized in a rating matrix X
where elements indexed by (i, j) /∈ R are unknown. In this
paper we adopt the evaluation measure of NP contest, the
root mean squared error (RMSE), which is defined as:

RMSE(T) =

√
1

|T |
∑

(i,j)∈T

(x̂ij − xij)2, (1)

where T (i, j) contains user-item pairs on which the ratings
are predicted. The accuracy of predictors are evaluated on
a validation set V; naturally the ratings of V is not used at
the creation of the predictor. Since in recommender systems
the goal is to predict the user preferences from past ratings,
the ratings of T precedes the ratings of V in time.

From now on, without loss of generality, we use terms item
and movie as synonyms. At the prediction of a given rating
we refer to the user as active user, and to the movie as active
movie. Superscript

”
hat” denotes the prediction of the given

quantity, that is, x̂ is the prediction of x.

3. MATRIX FACTORIZATION METHODS
This section exploits our previous work [15] to introduce

matrix factorization. We there discussed Basic MF and Reg-
ularized MF methods, and the incorporation of constant
values in the matrices. The goal of MF techniques is to
approximate X as a product of two much smaller matrices:

X ≈ UM, (2)

where U is an I ×K and M is a K × J matrix.

3.1 Basic MF
In the case of the given problem, X has many unknown

elements which cannot be treated as zero. For this case, the
approximation task can be defined as follows. Let U ∈ RI×K

and M ∈ RK×J . Let uik denote the elements of U, and mkj

the elements of M. Let uT
i denote a row of U, and mj a

column of M. Then:

x̂ij =

K∑

k=1

uikmkj = uT
i mj (3)

eij = xij − x̂ij for (i, j) ∈ R
e′ij =

1

2
e2

ij (4)

SSE =
∑

(i,j)∈R
e2

ij , SSE′ =
1

2
SSE =

∑

(i,j)∈R
e′ij

RMSE =
√

SSE/|R| (5)

(U∗,M∗) = arg min
(U,M)

SSE′ = arg min
(U,M)

SSE = arg min
(U,M)

RMSE

(6)

Here x̂ij denotes how the i-th user would rate the j-th movie,
according to the model, eij denotes the training error on the
(i, j)-th rating, and SSE denotes the sum of squared training
errors. Eq. (6) states that the optimal U and M minimizes
the sum of squared errors only on the known elements of X.

In order to minimize RMSE, which is equivalent to min-
imize SSE′, we have applied a simple incremental gradient
descent method to find a local minimum of SSE′, where one
gradient step intend to decrease the square of prediction
error of only one rating, or equivalently, either e′ij or e2

ij .
Suppose we are at the (i, j)-th training example, xij and its
approximation x̂ij is given.

We compute the gradient of e′ij :

∂

∂uik
e′ij = −eij ·mkj ,

∂

∂mkj
e′ij = −eij · uik. (7)

We update the weights in the direction opposite of the gra-
dient:

u′ik = uik + η · eij ·mkj , m′
kj = mkj + η · eij · uik. (8)

that is, we change the weights in U and M to decrease the
square of actual error, thus better approximating xij . Here
η is the learning rate. We refer to this method as Basic MF.

3.2 Regularized MF
Consider the following case: let K = 2, m71 = 1, m72 =

0, m81 = 1, m82 = 0.1, x67 = 4, x68 = 3, |{j : (i, j) ∈
R, i = 6}| = 2. In other words, we have two features, and
the 6th user rated only two very similar movies, the 7th and
the 8th, as a 4 and a 3. In this case, according to eq. (6),
the optimal user features are u61 = 4, u62 = −10, which
perfectly describe the ratings of this user: x̂67 = 4, x̂68 = 3.

Apparently such large feature values (x62 = −10) should
be avoided. The common way of overcoming this consists in
applying regularization by penalizing the square of the Eu-
clidean norm of weights, which results in a new optimization

problem:

e′ij = (e2
ij + λ · uT

i · ui + λ ·mT
j ·mj)/2 (9)

SSE′ =
∑

(i,j)∈R
e′ij (10)

(U∗,M∗) = arg min
(U,M)

SSE′ (11)

Note that minimizing SSE′ is no longer equivalent to mini-
mizing SSE. Similar to the Basic MF approach, we compute
the gradient of e′ij , and update the weights in the direction
opposite of the gradient:

∂

∂uik
e′ij = −eij ·mkj+λ·uik,

∂

∂mkj
e′ij = −eij ·uik+λ·mkj .

(12)

u′ik = uik + η · (eij ·mkj − λ · uik), (13)

m′
kj = mkj + η · (eij · uik − λ ·mkj) (14)

For the learning algorithm used in Regularized MF, see
Algorithm 1.

Input: R,X, η, λ, T,V
Output: U∗,M∗

Initialize U and M with small random numbers.1

loop until the terminal condition is met. One epoch:2

iterate over each (i, j) element of T. For xij :3

compute e′ij ;4

compute the gradient of e′ij , according to (12);5

for each k ∈ {1, . . . , K}6

update the i-th row of U and the j-th column7

of M according to (13)–(14);8

calculate the RMSE on V;9

if the RMSE on V was better than in any prev.10

epoch:11

Let U∗ = U and M∗ = M.12

terminal condition: RMSE on V does not decrease13

during two epochs.14

end15

Algorithm 1: Training algorithm for Regularized MF

We remark that after the learning phase, each value of
X can be computed easily using eq. (3), even the “unseen”
values. In other words, the model (U∗, M∗) provides a
description of how an arbitrary user would rate any movie.

3.3 BRISMF
We found a simple way to boost the performance of Reg-

ularized MF, by fixing the first column of U and the second
row of M to the constant value of 1. Under the expression
“fixing to a constant value” we mean not to apply eqs. (13)–
(14) when updating ui1 and m2j , and in the initialization,
to assign them the constant value instead of random val-
ues. The pair for these features (m1j and ui2) can serve as
a bias feature. This simple extension speeds up the training
phase and yields a more accurate model with better gener-
alization performance. We refer to this method as BRISMF
that stands for Biased Regularized Incremental Simultane-
ous MF. In [15] the insertion of constant values into U and
M was proposed. BRISMF is a special way of inserting con-
stant values: all the inserted values are 1-s. We remark that
the bias feature idea was mentioned also by Paterek in [9],

3.4 Semipositive and positive MF
The presented Regularized MF algorithm can assign not

only positive but also negative feature values. Positive ma-
trix factorization techniques have been succesfully applied
in the field of CF [8]. We present a simple extension of Reg-
ularized MF that can give positive and semipositive factor-
izations. We talk about semipositive MF when exactly one
of U and M contains both positive and negative values, and
positive MF, when both contains only non-negative values.

The idea can be summarized as follows: for the (i, j)-th
training example in a given epoch, if uik or mkj becomes
negative due to the application of eqs. (13)–(14), we reset
it to 0. We describe the modified equations for the case
when both user and movie features are required to be non-
negative:

u′ik = max{0, uik + η · eij ·mkj − λ · uik} (15)

m′
kj = max{0, mkj + η · eij · uik − λ ·mkj} (16)

If we allow user features to be negative, we can simply use
eq. (13) instead of eq. (15). Allowing only negative movie
features can be treated similarly.

The presented approach can easily be extended to handle
arbitrary box-constraints (i.e. prescribing a minimum and
a maximum possible value for features e.g. 0 and 1). The
handling of arbitrary box constraints can be thought of as a
generalization of constant features, for example in the case
of bias features, 1 ≤ ui1 ≤ 1 and 1 ≤ m2j ≤ 1.

Though the (semi-)positive MF has no advantage over
Regularized MF in the NP Problem, in real recommender
systems the model can provide a better explanation of users’
behaviour. When box constraints are 0 and 1, the feature
values can be thought of as fuzzy membership values.

3.5 Applying momentum method
We can apply momentum method by a small modifica-

tion of the original learning rule. In each learning step the
modification of the weights are calculated not only from the
actual gradient but from the last weight changes too. With
the modification of (13) and (14) we get the following equa-
tions:

uik(t + 1) = uik(t) + ∆uik(t), (17)

∆uik(t) = η · (eij ·mkj − λ · uik(t)) + σ ·∆uik(t− 1),

mkj(t + 1) = mkj(t) + ∆mkj(t), (18)

∆mkj(t) = η · (eij · uik − λ ·mkj(t)) + σ ·∆mkj(t− 1)

Here σ is the momentum factor. Though momentum MF
is not among our best MFs, it blends well with other MF
methods.

3.6 Retraining user features
The Regularized MF algorithm has a serious disadvantage:

movie features change while we iterate through users. If the
change is large, user features updated in the beginning of an
epoch may be inappropriate at the end of the epoch.

To overcome this problem, we can completely recompute
the user features after the learning procedure. This method
can serve as an efficient incremental training method for
recommender systems. The algorithm can be summarized
as follows:

1. First training: apply an MF algorithm.
2. Let M = M∗. Initialize U randomly.

3. Second training: Apply the same learning procedure
as in the first training step, with the following restric-
tions: skip the weight initialization step; do not change
weights in M, i.e. do not apply eq. (14) or its variants;
store the optimal number of epochs, denote it n∗.

Note that this method can efficiently handle the addition
of new users, or new ratings for an existing user, which is
very important in a real recommender system: we do not
apply the whole training procedure, just reset the weights
of a certain user, and apply the second training procedure
for n∗ epochs, only for that certain user. Note also, that
the second training procedure needs to iterate through the
entire database, which requires slow disk access operation,
only once (not n∗ times), as the ratings of a user can be
kept in memory and can be immediately re-used in the next
epoch.

We found a simple modification of this algorithm very
effective: in the second training, learn not only U, but M
as well. Though this is not useful for incremental learning in
recommender systems anymore, it boosts the performance
of MF.

3.7 Transductive MF
Transductive learning involves the use of test examples

but not their labels. In the case of CF, this means that the
algorithm“knows”what test examples the model will be ap-
plied for, i.e. the (i, j) ∈ V pairs, but not the corresponding
xij values. For Restricted Boltzmann Machines there is a
straightforward way to get a better model by incorporating
the test set [12].

We have developed a Transductive MF that can incorpo-
rate (i, j) ∈ V information after the learning process. The
idea behind the method is the following: suppose that user
i has the following n ratings in the test set (test ratings)
to be predicted: xi1, . . . , xin. The user has a feature vec-
tor (ui). When we are at the j-th example, we can pre-
dict another feature vector based only on what other movies
(1 ≤ j′ ≤ n, j′ 6= j) are to be predicted. A proper linear
combination – not depending on i or j – of the original user
feature vector and this new feature vector can yield another
feature vector for the prediction of xij that is better than
the original one. Formally:

u′i(j) =
1√

|j′ : (i, j′) ∈ R|+ 1

n∑

j′′=1
j′′ 6=j

mj′′ . (19)

x̂′ij = x̂ij + ν · u′i(j)T ·mj = uT
i ·mj + ν · u′i(j)T ·mj .

The attenuation factor in eq. (19) ensures that the more
ratings a user has in a training set, the less information
the test set provides, thus x̂′ij will differ less from x̂ij . In
practice, ν need not be determined: we can use x̂′ij and

u′i(j)
T ·mj as two predictions for xij , and apply linear re-

gression to get the best RMSE.
Though transductive methods cannot be applied directly

in real applications, the transductive MF can boost up the
performance of a predictor for the Netflix Prize problem.

3.8 Neighbor based correction of matrix fac-
torization

It is known that the combination of MF and NB can lead
to very accurate predictions [2, 3]. However, conventional
NB methods scale up poorly for large problems. The price

of additional accuracy is the loss of scalability.
Here we propose a scalable scheme for using the MF and

NB approaches together. The idea is that we improve an
existing MF model (U,M) by adding an item neighbor based
correction term to its answer in the prediction phase. The
corrected answer for query (i, j) is the following:

r̂ij = uT
i mj + γ

∑
k∈Ti\{j} sjk

(
uT

i mk − rik

)
∑

k∈Ti\{j} sjk
,

where sjk is the similarity between items j and k, and Ti is
the set items rated by user i. The weight of the correction
term γ can be optimized via cross-validation.

The similarity sjk can be defined in many different ways.
Here are two variants that proved to be useful for the Netflix
Prize problem [5].

• (S1): Normalized scalar product based similarity.

sjk =




∑K
`=1 m`jm`k√∑K

`=1 m2
`j ·

√∑K
`=1 m2

`k




α

,

where α is the amplification parameter.

• (S2): Normalized Euclidean distance based similarity.

sjk =




∑K
`=1(m`j −m`k)2√∑K

`=1 m2
`j ·

√∑K
`=1 m2

`k




α

.

In both cases, the value sjk can be calculated in O(K) time,
thus r̂ij can be calculated in O(K ·|Ti|). We remark that one
can restrict to use only the top S neighbors of the queried
item [2], however, it does not affect the time requirement, if
we use the same function for sij and neighbor-selection.

Now let us comment in more details on the time and mem-
ory requirement of our NB corrected MF in comparison with
the improved neighborhood based approach of BellKor [2],
which can also be applied to further improve the results of an
MF. For a give query, the time requirement of our method
is O(K · S), while their method requires to solve a sepa-
rate linear least squares problem with S variables, thus it is
O(S3). Memory requirements: for the i-th user, our method
requires to store in the memory ui and M, that is O(KJ),
while their approach necessitates to store the item-by-item
matrix and the ratings of the user, which is O(J2 + |Ti|).
For all users, our method requires O(IK + KJ) while their
approach requires O(J2 + |R|) memory.

Regardless of the simplicity of our method its effectiveness
is comparable with that of Bell and Koren’s method, see
Section 4.

This model can be seen as a nice unification of the MF
and NB approaches. It is simple, scalable, and accurate.
The training is identical to the regular MF training. The
prediction consists of an MF and a NB term. The similarities
used in the NB term need not to be precomputed and stored,
because they can be calculated very efficiently from the MF
model.

4. EXPERIMENTAL STUDY
The experimentations have been performed on the Net-

flix Prize dataset, being currently the largest available one
for the public. It contains about 100 million ratings from

over 480k users on nearly 18k movies. For more information
on the dataset see e.g. [3, 4]. We decided to validate our
algorithm against the Netflix dataset since currently this is
the most challenging problem for the CF community due to
its challenging properties (see e.g. [1] for a comprehensive
summary of these properties), and the task of the Netflix
Grand Prize.

In this experimentation section we evaluate the presented
methods on a randomly selected 10% subset of the Probe
set3, which we refer to as Probe10. 4 We mention that we
measured only a slight difference between the RMSE values
on the two test sets: our Probe10 and Quiz5. For some
selected methods, we also report on Quiz RMSE values. We
performed all tests on a 2 GHz Intel Pentium M (Dothan)
laptop with 1 GB RAM.

4.1 Parameter settings
All of the presented methods have many pre-defined pa-

rameters that greatly influences the result. A model and the
corresponding parameter setting can be considered useful if
either it results in a very accurate model (low test RMSE)
or the model “blends well” i.e. improves the accuracy of the
blended solution. For combining different models we applied
ridge regression.6

We applied a very simple but effective parameter opti-
mization algorithm. We initialize parameters randomly, then
we select a single parameter to optimize. We assign n (typi-
cally 2) distinct random values to the parameter, and choose
the best performing one by evaluating MF with this param-
eter setting. This method is performed systematically for
all parameters one-by-one.

4.2 Results of Matrix Factorization
We ordered the training examples user-wise and then by

date. By this we model that user’s taste change in time, and
the most recent taste is the dominant. This coincides with
the creation of train-test split of NP dataset. We performed
test runs with numerous parameters settings. We report on
the actual settings of the parameters at each result. Naming
convention for parameters: learning rate and regularization
factor for users and movies (ηu, ηm, λu, λm); the correspond-
ing variables of bias features (ηub, ηmb, λub, λmb); minimum
and maximum weights in the uniform random initialization
of U and M: wu, wu, wm, wm; offset G to subtract from X
before learning.

4.2.1 Comparing Regularized MF and BRISMF
We compare two MFs:

• a Regularized MF, which we name briefly as RegMF#0,
with the following parameter settings: K = 40, η =
0.01, λ = 0.01, wu = −wu = wm = −wm = −0.01

• a BRISMF, which we name briefly as BRISMF#0,
with the following parameter settings: K = 40, η =
0.01, λ = 0.01, wu = −wu = wm = −wm = −0.01

3Probe set: dedicated for testing purpose by Netflix with
known ratings
4A Perl script is available at our homepage, gravityrd.com,
which selects the Probe10 from the original Netflix Probe set
to ensure repeatability.
5Quiz set: to be predicted data, but only Netflix knows the
ratings.
6The source code of our combination algorithm is publicly
available at our web site.

RegMF#0 reaches its optimal Probe10 RMSE in the 13th
epoch: Probe10 RMSE is 0.9214, while these numbers for
BRISMF#0 are: 10th and 0.9113, which is a 0.0101 im-
provement.

4.2.2 Changing the parameters of the BRISMF
Table 1 present the influence of η and λ on the Probe10

RMSE. Other parameters are the same as in BRISMF#0.
Best result: η = 0.007, λ = 0.005. We refer to this MF in
the following as BRISMF#1. The running time for this MF
is only 14 minutes! The number of epochs to get this RMSE
was 10. Note that running time depends only on K and the
number of epochs to get the optimal Probe10 RMSE.

Table 1: Probe10 RMSE / optimal number of
epochs of the BRISMF for various η and λ values
(K = 40)

η
λ

0.005 0.007 0.010 0.015 0.020

0.005 0.9061 0.9079 0.9117 0.9168 0.9168
0.007 0.9056 0.9074 0.9112 0.9168 0.9169
0.010 0.9064 0.9077 0.9113 0.9174 0.9186
0.015 0.9099 0.9111 0.9152 0.9257 0.9390
0.020 0.9166 0.9175 0.9217 0.9314 0.9431

4.2.3 Subsampling users
On Figure 1 we demonstrate how the number of users

(thus, the number of ratings) influences Probe10 RMSE and
the optimal number of training epochs in case of BRISMF#1.
Probe10 RMSE varies between 0.9056 and 0.9677, and the
number of epochs between 10 and 26. The smaller the subset
of users used for training and testing, the larger the Probe10
RMSE and the number of epochs. This means that time-
complexity of MF is sublinear in the number of users, which
is proportional to the number of ratings, the ratio is 209 for
the Netflix dataset.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1⋅10
3

 1⋅10
4

 1⋅10
5

 1⋅10
6

P
ro

b
e
1

0
 R

M
S

E

Number of users

26

23

19

16

13

111010

Figure 1: Effect of the number of users on Probe10
RMSE and on the optimal number of training
epochs.

4.2.4 Retraining user features
We investigated with three parameter settings the effect

of retraining user features: BRISMF#1, and the following
two MFs:

• BRISMF#250: K = 250, wu = −0.01, wu = −0.006,
wm = −0.010, wm = 0.020, ηu = 0.008, ηub = 0.016,
ηm = 0.015, ηmb = 0.007, λu = 0.048, λm = 0.008,
λub = 0.019, λmb = 0, G = 0.

• BRISMF#1000: the same as BRISMF#250, but K =
1000.

The results are summarized on Table 2. Both the sim-
pler case (after the first learning step, reset U and retrain
only U), and the advanced case (after the first learning step,
reset U and retrain both U and M) are reported. We ap-
pend letter “U” to the method name in the simpler case (i.e.
BRISMF#1 becomes BRISMF#1U, etc.), and letters “UM”
in the advanced case (BRISMF#1UM, etc.). We report the
number of epochs required both in the first and the sec-
ond training procedure (if available). Note, that in case of
BRISMF#250 and BRISMF#1000, the retraining of user
features greatly improved the performance of those MFs.

Table 2: Examining the effect of retraining user fea-
tures. We report on Probe10 RMSE and some Quiz
RMSE values.

Model Epochs Probe10 Quiz

BRISMF#1 10 0.9056
BRISMF#1U 10+8 0.9072
BRISMF#1UM 10+6 0.9053
BRISMF#250 14 0.8961 0.8962
BRISMF#250U 14+8 0.8953 0.8954
BRISMF#250UM 14+7 0.8937
BRISMF#1000 14 0.8938 0.8939
BRISMF#1000U 14+8 0.8936
BRISMF#1000UM 14+8 0.8921 0.8918

4.2.5 Accurate MFs
Here we report on some of the most accurate models that

were obtained by the automatic (see above) and manual pa-
rameter optimization methods.

• BRISMF#800: manually parameterized MF, with 800
features. Parameter are set to: K = 800, wu = −wu =
wm = −wm = −0.005, ηu = ηub = 0.016, ηm = ηmb =
0.005, λu = λm = 0.010, λub = λmb = 0, G = 3.6043.
After 9 epochs, learning rates are multiplied by 0.01,
and the model is trained for another 2 epochs.

• SemPosMF#800: this is a semipositive variant of
BRISMF#800, where user features are non-negative,
item-features are arbitrary. Parameter are set to: K =
800, wu = 0, wu = −wm = wm = 0.005, ηu = ηub =
0.016, ηm = ηmb = 0.005, λu = λm = 0.010, λub =
λmb = 0, G = 3.6043. After 12 epochs, learning rates
are multiplied by 0.01, and the model is trained for
another 2 epochs.

• MlMF#200: a BRISMF with 200 features. Automatic
parameter optimization.

• MlMF#80: a BRISMF with 80 features. Automatic
parameter optimization.

• MomentumMF: a BRISMF with momentum method
and 50 features, manually optimized: K = 50, η =
0.01, σ = 0.3 and λ = 0.00005. Learnt in 5 epoch.

Table 3: Probe10 RMSE of accurate MFs without and with applying Q-correction and neighbor corrections
(S1 and S2). At column S1 and S2 we also indicated the optimal value of parameter α

Model basic Q S1 S2 Q+S1+S2 Combination basic Q+S1+S2
1 BRISMF#800 0.8940 0.8930 0.8916(α=8) 0.8914(α=7) 0.8902
2 SemPosMF#800 0.8950 0.8941 0.8916(α=8) 0.8913(α=5) 0.8900 1+2 0.8923 0.8880
3 MlMF#200 0.9112 0.9106 0.9087(α=8) 0.9085(α=6) 0.9076 1+2+3 0.8913 0.8872
4 MlMF#80 0.9251 0.9240 0.9104(α=9) 0.9072(α=2) 0.9058 1+2+3+4 0.8909 0.8863
5 BRISMF#1000UM 0.8921 0.8918 0.8905(α=7) 0.8907(α=5) 0.8901 1+2+3+4+5 0.8895 0.8851
6 MomentumMF 0.9031 0.9020 0.8979(α=6) 0.8956(α=3) 0.8949 1+2+3+4+5+6 0.8889 0.8838

We refer to a variant of the transductive MF algorithm as
Q-correction: in eq. (19) to improve predictions we use only
the ratings in the Qualify set, not in the Probe10+Qualify
set. See Table 3 for the RMSE values of the each method
and their blended versions. We applied two neighborhood
corrections on the MF models, with similarities S1 and S2.

The Q, S1, S2 and Q+S1+S2 columns represents results of
linear regression of multiple columns (2, 2, 2 and 4 respec-
tively) on Probe10 data. The “baisc” column of combina-
tions (1+2, 1+2+3, . . . , 1+2+3+4+5+6) are combinations
of 2, 3, . . . , 6 columns, resp. The Q+S1+S2 column of com-
binations (1+2, 1+2+3, . . . , 1+2+3+4+5+6) are combina-
tions of 8, 12, 16, 20 and 24 columns, resp. In our experi-
ments, blending means ridge regression against the expected
Probe10 values.

One can observe in Table 3 that NB correction improves
significantly the result of MF based methods. Starting from
an average MF (MlMF#80) the reduction of RMSE can be
0.0179, it can reduce the RMSE of the good Momentum MF
by 0.0075, and it even improves slightly (0.0026) the very
accurate BRISMF#800. In comparison, BellKor’s approach
([2], Table 2) results in 0.0096 RMSE reduction, starting
from MF with 0.9167 RMSE, here the reduced RMSE score
is almost identical with our NB corrected MlMF#80 that
has originally only RMSE 0.9251.

If we put in all MFs and all corrections, then the combi-
nation yields an RMSE = 0.8838. However, it brings only
insignificant improvements if one applies Q-correction tech-
nique for all MFs. We get RMSE = 0.8839 if we exclude the
Q-corrections of all MFs but the first from the combination.
Moreover, if we apply neighbor and Q-correction only on
the first MF, then the RMSE increases only to 0.8850. In
general, we can state that one “correction technique” brings
major decrease in the RMSE when applied only to a single
method in the linear combination. If we apply it multi-
ple times, the improvement becomes less. In other words,
Q-corrections or neighbor corrections captures the same as-
pects of the data, regardless of the MF behind them.

4.2.6 Speed vs. accuracy
It is interesting and important to investigate the relation

of accuracy and speed. We run many randomly parameter-
ized MFs with K = 40, and collected the best accuracies
in each epoch. Table 4 summarizes the results. A Probe10
RMSE of 0.9071 can be achieved within 200 seconds (includ-
ing the time to train with the 100 million available ratings
and evaluate on the Probe10)! Netflix’s Cinematch algo-
rithm can achieve Quiz RMSE = 0.9514.

To our best knowledge, the running times presented here
are far more advantageous than of any other methods pub-
lished in the literature of CF—though authors usually do

Table 4: Probe10 RMSE of fast and accurate MFs.

Epoch Training Time (sec) RMSE

1 120 0.9188
2 200 0.9071
3 280 0.9057
4 360 0.9028
5 440 0.9008
6 520 0.9002

not tend to publish running time data. This property pairs
with very accurate models which makes the presented mod-
els and their implementation to be the most favorable matrix
factorization approaches.

4.3 RMSE values reported by other authors
We compare the presented Probe10 RMSE values (which

differ from Quiz RMSE values at most by 0.0003) with other
RMSE values reported for the Netflix Prize dataset.

Authors often report on Probe RMSE or Quiz RMSE val-
ues. Probe RMSE values are calculated by leaving out the
Probe set from the Train set, while Quiz RMSE is often
computed by incorporating the Probe data into the training
of the predictor. Thus, Probe RMSE is often much lower
than Quiz RMSE.

Paterek in [9] introduces the use of bias features. He re-
ports on Quiz RMSE = 0.9070 for his biased regularized MF
(called there RSVD2). Salakhutdinov and Mnih present a
Probabilistic MF approach and its variants in [11]. The
best result they publish is Quiz RMSE = 0.8970, which is
obtained as a combination of 3 MFs. Bell and Koren in
[2] provides a detailed description of their alternating least
squares approach proposed to matrix factorization. Their
matrix factorization approach uses a specialized quadratic
optimizer instead of ridge regression to assure non-negative
weights. They report on Probe RMSE = 0.9167 for their
MF, and their methods need to run either ridge regression
or a specialized quadratic optimizer for (|I|+|J |)/2·n∗ times,
on |R| · n∗ data with K input variables in total, where n∗

is the number of epochs, which is “few tens”. Thus, their
method requires Ω((|I| + |J |) · K3/2 + |R| · K2) · n∗ steps
using either ridge regression or the specialized quadratic op-
timizer. They report on Quiz RMSE = 0.8982 for their
neighbor method executed on the residuals of their MF.

Our presented approaches have O(|R| ·K) · n∗ computa-
tional complexity, where n∗ is typically less than 20. Remark
that O(·) is an upper bound, while Ω(·) is a lower bound for
computational complexity.

Here we neglected the cost of parameter optimization.

Our MF has 13 parameters. We perform the parameter
optimization process (Sec. 4.1) with a subset of users (1/6),
and with a small K value (typically K is 20 or 40). The
optimization process requires 100–200 MF runs. In case
of SemPosMF#800, which is manually parameterized, we
performed ∼50 runs. One may argue that parameter op-
timization for alternating least squares type MF is faster,
since there are no learning rates, thus it has just 9 parame-
ters. We observed that the more parameters the MF have,
the easier to tune the parameters to get the same Probe10
RMSE. Consequently, we introduced many parameters, for
example ηu, ηm, ηub, ηmb instead of a single η.

The best results in the NP literature are reported in [3],
where the authors briefly describe their approach for the
Netflix Progress Prize 2007. They use the MF algorithm
presented in [2]. They report only on Quiz RMSE values.
Here we summarize the best results of that paper:

• Best stand-alone positive MF: Quiz RMSE = 0.8998
• Best stand-alone positive MF with “adaptive user fac-

tors”: Quiz RMSE = 0.8955
• Best neighbor method on positive MF: Quiz RMSE =

0.8953
Table 5 compares our best methods with the results re-

ported by [3].

Table 5: Comparison of our best Probe10 and Quiz
RMSE values against the Quiz RMSE values re-
ported by [3]

Method Name of our Our Our Bell et
method Probe10 Quiz al’s Quiz

Simple MF BRISMF 0.8938 0.8939 0.8998
#1000

Tweaked MF BRISMF 0.8921 0.8918 N/A
#1000UM

MF with BRISMF 0.8905 0.8904 0.8953
neighbor #1000UM,
correction S1

Clearly, our matrix factorization methods and our hybrid
MF-neighbor approaches outperform Bell et al’s methods:
they are more accurate, much faster (in the O() sense as
well), simpler, and can handle the change of users’ taste in
time.

5. CONCLUSIONS
This paper presented matrix factorization based approaches

for rating based collaborative filtering problems. We pro-
posed a few novel MF variants including a fast (semi-)positive
MF, a momentum based MF, a transductive MF, and an in-
cremental variant of MF. The neighbor based correction of
MF with two similarity functions was also presented. We re-
ported on the RMSE scores of our algorithms evaluated on
the Netflix Prize dataset. We have shown that the presented
models outperform the already published ones significantly.
It has been also pointed out that our algorithms are very
effective in terms of time requirement, needing in general
only a few minutes to train reasonably accurate models.

6. REFERENCES
[1] R. Bell, Y. Koren, and C. Volinsky. Chasing

$1,000,000: How we won the netflix progress prize.

ASA Statistical and Computing Graphics Newsletter,
18(2):4–12, December 2007.

[2] R. M. Bell and Y. Koren. Scalable Collaborative
Filtering with Jointly Derived Neighborhood
Interpolation Weights. In Proc of. ICDM, IEEE
International Conference on Data Mining, 2007.

[3] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor
solution to the Netflix Prize. Technical report, AT&T
Labs Research, 2007. http://www.netflixprize.com/
assets/ProgressPrize2007_KorBell.pdf.

[4] J. Bennett, C. Eklan, B. Liu, P. Smyth, and D. Tikk.
KDD Cup and Workshop 2007. ACM SIGKDD
Explorations Newsletter, 9(2):51–52, 2007.

[5] J. Bennett and S. Lanning. The Netflix Prize. In Proc.
of KDD Cup Workshop at SIGKDD’07, 13th ACM
Int. Conf. on Knowledge Discovery and Data Mining,
pages 3–6, San Jose, CA, USA, 2007.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proc. of UAI’98, 14th Conference on
Uncertainty in Artificial Intelligence, pages 43–52.
Morgan-Kaufmann, 1998.

[7] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70,
1992.

[8] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[9] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In Proc. of
KDD Cup Workshop at SIGKDD’07, 13th ACM Int.
Conf. on Knowledge Discovery and Data Mining,
pages 39–42, San Jose, CA, USA, 2007.

[10] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for
collaborative filtering of netnews. In Proc. of
CSCW’94, ACM Conference on Computer Supported
Cooperative Work, pages 175–186, Chapel Hill, North
Carolina, United States, 1994. ACM Press.

[11] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In J. C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information
Processing Systems 20, Cambridge, MA, 2008. MIT
Press.

[12] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
Boltzmann machines for collaborative filtering. In
Proc. of ICML’07, the 24th Int. Conf. on Machine
Learning, pages 791–798, Corvallis, OR, USA, 2007.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proc. of WWW’01:
10th Int. Conf. on World Wide Web, pages 285–295,
Hong Kong, 2001. ACM Press.

[14] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola.
Maximum-margin matrix factorization. Advances in
Neural Information Processing Systems, 17, 2005.

[15] G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the
Gravity recommendation system. In Proc. of KDD
Cup Workshop at SIGKDD’07, 13th ACM Int. Conf.
on Knowledge Discovery and Data Mining, pages
22–30, San Jose, CA, USA, 2007.

