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ABSTRACT
The Netflix Prize is a collaborative filtering problem. This
subfield of machine learning has become popular from the
late 1990s with the spread of online services that use rec-
ommendation systems, such as e.g. Amazon, Yahoo! Mu-
sic, and of course Netflix. The aim of such a system is to
predict what items a user might like based on his/her and
other users previous ratings. The dataset of Netflix Prize
is much larger than the previously known benchmark sets,
therefore we first show in the paper how to store it efficiently
and adaptively to various algorithms. Then we describe the
outline of our solution, called the Gravity Recommendation
System (GRS), to the Netflix Prize contest, which is in the
leader position with RMSE 0.8808 at the time of the submis-
sion of the paper. GRS comprises of the combination of dif-
ferent approaches that are presented in the main part of the
paper. We then compare the effectiveness of some selected
individual and combined approaches against a designated
subset of the dataset, and discuss their important features
and drawbacks. Beside the description of successful experi-
ments we also report on the useful lessons of (temporarily)
failed ideas and algorithms.

Categories and Subject Descriptors
H.5.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering ; G.3 [Probability
and Statistics]: Correlation and regression analysis
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1. INTRODUCTION
Collaborative filtering (CF) is a subfield of machine learn-

ing that aims at creating algorithms to predict user prefer-
ences based on known user ratings or user behavior in selec-
tion/purchasing items. Such a system has great importance
in applications in e-commerce, subscription based services,
information filtering and so on. Recommendation systems
providing personalized suggestions greatly increase the like-
lihood over a customer making a purchase than unperson-
alized ones. This is especially important on such a market
where the variety of choices is large, the taste of the cus-
tomer is important, and last but not least the price of the
items is modest. Typical areas of such services are mostly
related to art (esp. books, movies, music), fashion, food &
restaurants, gaming & humor, etc. Clearly, the online DVD
rental service operated by Netflix fits into this list.

The Netflix Prize problem (see the details in the general
description, [2]) belongs to one of the typical framework of
CF called the social-filtering method. In this case the user
first provides ratings of some items, titles or artifacts usually
on a discrete numerical scale, and then the system recom-
mends other items based on ratings the virtual community
using the system has already provided. The virtual com-
munity was defined in [6] as “a group of people who share
characteristics and interact in essence or effect only” that is
in reality they do not interact. The underlying assumption
of such a system that people who had similar taste in the
past may also agree in the future.

1.1 Related works



The first works on the field of CF has been published
from early 1990s. The GroupLens systems of [10] was one of
the pioneer applications of the field where users could rate
articles after reading on a 1–5 scale, and then were offered
suggestion. The underlying techniques of predicting user
preferences can be divided into two main groups [3]. The
memory based approaches operate on the entire database
of ratings collected by the vendor or service supplier. On
the other hand, model based approaches use the database to
estimate or learn a model, and then apply it for prediction.

Over the last broad decade many CF algorithms have
been proposed that approach the problem from different
point of view, including similarity based approaches [10, 13],
Bayesian networks [3], personality diagnosis [8], various ma-
trix factorization techniques [4, 7, 12, 16], and very recently
restricted Boltzman machines [11]. Short descriptions of the
most important CF algorithm can be found in [1], while in
[3] a more detailed survey is given on major CF approaches.
The GRS described in this paper apply the combination
of several different approaches to maximize its performance
(see details in Section 3).

1.2 The aim of this paper
As we have experienced in the last few months, the de-

velopment of a high-quality movie recommender system is
not only about innovative approaches and tricky ideas but
it also requires a lot of efficient coding and experimentation
in order to try different variants of approaches and param-
eter settings, resp. Even after a superficial scanning of the
related literature, one can easily find that the matrix factor-
ization and the K-nearest neighbors approaches suits well
to the Netflix Prize problem. We also believe that many
other teams use these methods in their prediction algorithm.
However, a good approach does not necessarily guarantee a
good implementation. This latter additionally requires to
work out every minor detail of the algorithm appropriately,
which is laborious and cumbersome.

In this paper, we present the main components of our
solution termed Gravity Recommendation Systems to the
Netflix Prize and show how the individual methods are com-
bined to obtain more efficient results. However, due to the
limits of the paper and our obvious interests, we intention-
ally do not publish all parts of the puzzle: some small but
important details remain hidden.

1.3 Organization
This paper is organized as follows. Section 2 deals with

the data storage issue after having introduced the notations
and some formulae used throughout the paper. Section 3
describes the algorithms we have experimented with and
applied in GRS. Section 4 presents the result achieved by
means of the presented approaches, which is followed by a
concise discussion.

2. PRELIMINARIES

2.1 Notation
We use the following notation in this paper. The rating

matrix is denoted by X ∈ {1, . . . , 5}I×J , where an element
xij stores the rating of the jth movie provided by ith cus-
tomer. I and J denote the total number of users and movies,
resp. We refer to the set of all known (i, j) pairs in X as R.

At the prediction of a given rating we refer to the user as
active user, and to the movie as active movie. Superscript
,,hat” denotes the prediction of the given quantity, that is x̂
is the prediction of x.

Concerning the details of the Netflix Prize problem (e.g.
the terminology of various datasets), we refer the Reader to
the general description given in [2].

2.2 Data storage
Netflix has generously provided a 100 million ratings data-

set for the contestants. Because the size of the training set
is huge compared to other benchmark problems of collabo-
rative filtering and in the usual machine learning tasks, the
storage of training data is an important issue. For compari-
son the widespreadly used EachMovie dataset1 only consists
of about 2.8 million ratings of 73k users and 1628 movies.
Another dataset of the GroupLens project (see e.g. [1]) has
about 13 million ratings from 105k users on 9k movies.

Efficient data storage is particularly important since the
original format of the database is impractical: reading and
parsing the text files takes about 30 minutes with by means
a naive implementation. It is crucial to reduce the ex-
perimenting time in order to speed up the development.
The weakness of model-based approaches, namely that the
model-building process is time-consuming [1], can also be
eliminated or degraded with proper implementation. The
time requirement of both the input processing and the learn-
ing/predicting phases can be reduced with several orders
of magnitude by means of an appropriate representation of
data described next.

Clearly, it is worth storing the entire training set in the
memory, if it is possible. Consequently, we decided to trans-
form the original input data into a concise binary format.
Based on some experiments, we found that the date of the
ratings can be thrown away. Because the 99 percent of rat-
ings in the movie-user matrix is unknown, it is practical to
use sparse representation. There are two reasonable choices:

• The per-user storage represents each row as a list of
(column index, value) pairs.

• The per-movie storage represents each column as a list
of (row index, value) pairs.

In the first case it is easy to go through the ratings of a
given customer. In the second case the ratings of a movie
can be queried efficiently. Most algorithms prefer the first
representation, some prefer the second one, and some meth-
ods need both. It is also possible to store the matrix as (row
index, column index, value) triplets, but this is impractical
because it provides none of the above advantages.

In the training database there are 480189 customers and
17770 movies, so the space requirement of the row index and
the column index is 19 bits and 15 bits, resp. The 5 different
values of the ratings can be stored in 3 bits. Therefore the
space requirement of one matrix element is 18 bits in the per-
user and 22 bits in the per-movie representation. In practice
this means that with appropriate C structs (see Table 1) a
rating can be stored in 24 bits and the storage of the whole
matrix requires ∼300 MB in each case.

1It used to be available upon request from Compaq, but in
2004 the proprietary retired the dataset, and since then it
is no longer available for download.



Table 1: C structures for storing one rating
struct PerUserRating { struct PerMovieRating {
ushort movieId; uchar userIdxHi;

uchar value; uchar userIdxLo:4;

}; uchar value:4;

};

This database representation made us possible to develop
efficient algorithms on an average PC. We achieved our first
leading position using only a 2 GHz notebook with 1 GB
RAM.

For a weaker hardware (512 MB RAM), the 300 MB rep-
resentation can be still too large to work with. Therefore,
we have developed an even more compact per-user represen-
tation, which requires only 200 MB at the expense of a bit
slower access to the data.

To achieve this, first we split the matrix into two halves.
The first one contains ratings for movies with ID ≤ 17770/2 =
8885, the second contains the rest. We utilize the fact that
8885 · 5 = 44425 ≤ 216 = 65536. This means, that a movie
with ID between 1 and 8885 and its rating between 1 and 5
can be stored in 2 bytes:

(j, xij) → cij := 5 · j + xij − 1

cij → j = ⌊cij/5⌋, xij = 1 + (cij mod 5)

where j ∈ [1, J ] identifies the movie. Movies with ID > 8885
can be treated similarly: first we subtract 8885 from the ID,
then the rating and the new ID (≤ 8885) can be stored in 2
bytes in the second matrix.

3. APPROACHES

3.1 Matrix factorization
The idea behind matrix factorization (MF) techniques is

very simple. Suppose we want to approximate the matrix
X as the product of two matrices:

X ≈ UM, (1)

where U is an I ×K and M is a K ×J matrix. The uik and
mkj values can be considered, reps. the kth feature of the ith
user and the jth movie. If we consider the matrices as linear
transformations, the approximation can be interpreted as
follows: the M matrix transforms from V1 = R

J into V2 =
R

K , and U transforms from V2 into V3 = R
I . Thus, the V2

vector space acts as a bottleneck when predicting v3 ∈ V3

from v1 ∈ V1. In other words, the number of parameters to
describe X is reduced from |R| to IK + KJ . However, X
contains integers of range 1 to 5, while M and U contain
real numbers.

Several matrix factorization techniques have been applied
successfully to CF, including SVD (singular value decompo-
sition, [12]), pLSA (probabilistic latent semantic analysis,
[7]), and MMMF (maximum margin matrix factorization,
[16]). Due to the speciality of the Netflix Prize problem, the
solution should be sought as a low-rank approximation with
missing data (see also e.g. [5, 9, 15]). Here we present the
basics of MF methods via SVD:

X = UΣM, (2)

where U ∈ R
I×min(I,J) and M ∈ R

min(I,J)×J are orthogo-
nal matrices, and Σ ∈ R

min(I,J)×min(I,J) contains non-zero

elements only along the diagonal. These elements are called
singular values, and are always non-negative. If we keep
only the K largest singular values and replace the others
by zero, we got X̂, a K-rank approximation of X with the
following property:

‖X̂ − X‖ = min{‖X′ − X‖ : X′ ∈ R
I×J , rank(X′) ≤ K}

In other words: from the SVD the optimal K-rank approx-
imation of X can easily be computed, which minimizes the

Frobenius norm, defined as ‖A‖ =
q

P

a∈A
a2, of the dis-

tance of the matrices. We can eliminate Σ from the factor-
ization given in eq. (2):

X = (UΣ)M = U(ΣM) = (U
√

Σ)(
√

ΣM),

thus the form reduces to eq. (1).
In the case of the given problem, X has many unknown

elements which cannot be treated as zero. For this case,
the approximation task can be defined as follows. Let now
U ∈ R

I×K and M ∈ R
K×J . Let uik denote the elements of

U, and mkj the elements of M. Then:

x̂ij =

K
X

k=1

uikmkj (3)

eij = xij − x̂ij for (i, j) ∈ R

SE =
X

(i,j)∈R

e2
ij =

X

(i,j)∈R

 

xij −
K
X

k=1

uikmkj

!2

(U,M) = arg min
(U,M)

SE (4)

Here x̂ij denotes how the ith user would rate the jth movie,
according to the model, eij denotes the training error on the
(i, j)th example, and SE denotes the total squared training
error. Eq. (4) states that the optimal U and M minimizes
the sum of squared errors only on the known elements of X.

In order to minimize SE (which is equivalent to minimize
RMSE), we have applied a simple gradient descent method
to find a local minimum. Suppose that a training example
xij and its approximation x̂ij are given. We compute the
gradient of e2

ij :

∂

∂uik

e2
ij = −2eij · mkj ,

∂

∂mkj

e2
ij = −2eij · uik. (5)

We update the weights in the opposite direction of gradient:

u′
ik = uik + η · 2eij · mkj , m′

kj = mkj + η · 2eij · uik,

that is, we change the weights in U and M to decrease the
error, thus better approximating xij . Here η is the learn-
ing rate. To better generalize on unseen examples, we have
applied regularization with factor λ to prevent large weights:

u′
ik = uik + η · (2eij · mkj − λ · uik) (6)

m′
kj = mkj + η · (2eij · uik − λ · mkj) (7)

Our algorithm can be summarized as follows:

1. Initialize the weights in U and M randomly.
Set η and λ to some small positive value.

2. Loop until the terminal condition is met

(a) Iterate over each known element of X which is
not in the probe subset. For xij :



i. compute eij ;

ii. compute the gradient of e2
ij ;

iii. update the ith row of U and the jth column
of M according to eqs. (6)–(7).

(b) Calculate the RMSE on the probe subset.

The loop is terminated when the RMSE does not decrease
during two iterations.

Note that if the rows of U and the columns of M are con-
stant vectors, each row of U and each column of M remains
a constant vector. That is, why we initialize randomly. Our
approach is very similar to Simon Funk’s SVD,2 but we up-
date each factor simultaneously, and initialize the matrix
randomly. Simon Funk’s approach learns the first factor for
a certain number of iterations, then the second, and so on.
His approach converges much slower than ours because it
iterates more on X. Additionally, it is not specified in his
algorithm when one has finish the learning of one factor and
start the next.

We remark that after the learning phase, each value of X
can be computed easily by eq. (3), even the “unseen” values.
In other words, the model (U and M) can say something
about how an arbitrary user would rate any movie.

GRS comprises of a combination of several methods. Among
them there are some variants of the presented MF algorithm,
which will be described next.

3.1.1 Using dates
We can easily incorporate the date of ratings into the MF

model. Let gij denote the date of the (i, j)th rating, repre-
sented as an integer between 1 and L. We can then refor-
mulate eq. (3) as

x̂ij =
K
X

k=1

uikmkjdkl, where l = gij .

Here dkl are the elements of D ∈ R
K×L. Its weights are

initialized randomly as well. We compute the gradient of
e2

ij = (xij − x̂ij)
2:

∂

∂uik

e2
ij = −2eij · mkj · dkl,

∂

∂mkj

e2
ij = −2eij · uik · dkl,

∂

∂dkl

e2
ij = −2eij · uik · mkj .

The weight updating scheme is similar to eqs. (6)–(7):

u′
ik = uik + η · (− ∂

∂uik

e2
ij − λ · uik)

m′
kj = mkj + η · (− ∂

∂mkj

e2
ij − λ · mkj)

d′
kl = dkl + η · (− ∂

∂dkl

e2
ij − λ · dkl)

This method can adapt to some changes in the users’ rat-
ing conventions, which may be caused for example by pro-
motions for users to rate more movies or by improvement in
the recommendation system. Although, these MF models
with dates do not result a significant improvement of the
prediction, they can be efficiently used in the combination
since they differ sufficiently from regular MFs.

2http://sifter.org/~simon/journal/20061211.html

3.1.2 Constant values in matrices
Beside the (user ID, movie ID, date, rating) quadruples,

Netflix has also provided the title and year of release of
each movie. This information can be incorporated in the
MF model as follows: we can extend M with rows that
indicate the occurrence of words in the movie title, or the
year of release. For example, the k1th row of M is 1 or
0 depending on whether the term “Season” occurs in the
title of the movies or not. This row of M is fixed to be
a constant, thus we do not apply equ. (7) for k = k1. If
the occurrence of term “Season” in the title increases the
ith user’s rating (i.e. the user likes TV-series), the resulting
model can have positive weight for uik1

. Other constant
values can be inserted, for example, we can increase the size
of matrices, K, with 2 by inserting the average rating of the
user and the movie, resp.

3.1.3 Rounding the values
X contains only integers between 1 and 5, and this holds

also for the unknown ratings in the Quiz set. It is straight-
forward that this information should also be exploited. We
have tried several approaches to round the values in UM,
but none of them helped. The error of approximation (ele-
ments of X − UM) has Gaussian distribution, with µ = 0
and σ between 0.7 and 1.0. Note that σ is the same as the
RMSE in the Netflix contest, but on the training set. Be-
cause a large portion of the errors are ≥ 0.5, rounding the
values has no point. To see this, let us suppose that we want
to round the values with the following function:

x̂′
ij = ρ · x̂ij + (1 − ρ) · round(x̂ij) 0 ≤ ρ ≤ 1 (8)

If we set ρ to 1, there is no rounding, if we set to 0, we round
each value to the closest integer. Errors between 0 and 0.5
will decrease, errors between 0.5 and 1 will increase, between
1 and 1.5 decrease, etc. For example, suppose that for some
i, j, xij = 2, x̂ij = 1.2, and ρ = 0.9. Hence, x̂′

ij = 1.18
and we increased the error by 0.02. Let ε = xij − x̂ij and
ε′ = xij − x̂′

ij denote the variate of training error before and
after rounding, resp. If −0.5 < ε < 0.5, then −0.5 · ρ < ε′ <
0.5 ·ρ. If 0.5 < ε < 1.5, then 1−0.5 ·ρ < ε′ < 1+0.5 ·ρ, etc.

Let ϕ denote the probability density function of ε:

ϕ(x) =
1√
2πσ

exp

„

− (x − µ)2

2σ2

«

Formally, the training error after rounding will be:

RMSE =

v

u

u

t

X

n∈Z

Z n+0,5

n−0.5

ϕ(x) · (n + ρ(x − n))2 dx

When ρ = 0.9, this approach improves performance only if
σ is below ∼ 0.5, which seems unreachable (on the probe
subset).

We have also tried another rounding approach, which de-
fines a smooth rounding function as follows:

sr(x) = ⌊x⌋+ tanh((x − ⌊x⌋ − 0.5) · 2 · A) − tanh(−A)

tanh(A) − tanh(−A)
(9)

Here A controls the “smoothness” of rounding.
We can apply rounding functions (8) or (9) either on the

entire or on a part of the output, i.e.:

x̂ij =

K1
X

k=1

uikmkj + sr

0

@

K
X

k=K1+1

uikmkj

1

A ,



where 0 ≤ K1 < K denotes the part not altered by rounding.
With this modification, the computation of the gradient, eq.
(5), becomes more complicated.

We expected that this model will activate rounding only
on such users for who this is worthwhile, and thus improves
the performance. However, it yielded inferior results.

We tried to apply different non-linear functions on differ-
ent parts of the output, but none of these experiments were
successful. The failure of these trials can be supported by
the following explanatory example. If x̂ij is 4.1, then the
user would rate 4 with probability 0.9, and 5 with proba-
bility 0.1, and the decision of the user is taken completely
arbitrarily.

3.1.4 Parameters of matrix factorization
The more parameters a matrix factorization has, the harder

to set them well, but the more chance to get a better RMSE.
We experimented with the following parameters:

• the number of features: K;

• different learning rate and regularization factor

– for users and movies;

– at different learning cycles;

– values of η and λ depends on k in eqs. (6)–(7);

– for users or movies with different number of rat-
ings;

– for the corresponding variables of constant fea-
tures;

• probability distribution function to initialize U and
M;

• offset to subtract from X before learning (can be, e.g.,
set to the global average of ratings);

• nonlinear functions on parts of the output as in eq. (9).

We subsampled the matrix for faster evaluation of a pa-
rameter settings. We experienced that movie-subsampling
substantially increased the error, in contrast to user-subsampling.
It is interesting, that the larger the subsample is, the fewer
iterations are required to achieve the optimal model. We
think this is because of the redundancy in the data set.

3.1.5 Connections with neural networks
The MF model can be considered as the learning of a

multi-layer perceptron given on Figure 1. The network has
I inputs, J outputs and K hidden neurons, and identity
activation function in each neuron. We consider the weight
between the ith input and the kth hidden neuron as uik,
and the weight between the kth hidden neuron and the jth
output neuron as mkj .

The network applies incremental learning method. For the
(i, j)th rating, we set the input x as xi is 1 and xk 6=i = 0,
thus zk = uik holds. Let x̂ij = yj denote the jth output
of the network. We compute the error: eij = xij − x̂ij .
This error is back-propagated from the jth output neuron
towards the input layer.

In the evaluation phase, we set the input as in the learning
phase, and yj (j = 1, . . . , J) predicts the active user’s rating
on the jth movie. The network can be generalized in many
ways, e.g.:

x2

x3

x1 y1

y2

y3

yJxI

z1

z2

zK

Figure 1: Multilayer perceptron for collaborative fil-
tering

• reverse the direction of edges;

• replace some of the identity activation functions with
non-linear ones in the hidden layer or in the output
layer;

• create more hidden layers;

• apply batch learning.

3.1.6 2D Modifications of the matrix factorization
algorithm

The linear combination of different MF algorithms is bet-
ter than the best single algorithm. The result is as good
as different the MFs are in the combination. Based on this
observation, we made different modifications on simple MF
models. In one experiment we arranged the movie and user
features (recall that these are provided by MF) to a 2D
lattice and defined a simple neighborhood relation between
the features. If the difference of the horizontal and vertical
positions of two features are small (they are neighbors) the
“meaning” of those features should also be close. To achieve
this, we proceed as follows. After each usual learning step,
we modify the feature values towards the direction of the
neighboring features by smoothing the calculated changes
of feature values. In practice, in order to prevent slow train-
ing, we take only those features into account which are next
to each other

∆u′
i,k1,k2

= ∆ui,k1,k2
+ ξ(∆ui,k1+1,k2

+ ∆ui,k1−1,k2

+ ∆ui,k1,k2+1 + ∆ui,k1,k2−1) +
ξ√
2
(∆ui,k1+1,k2+1

+ ∆ui,k1−1,k2−1 + ∆ui,k1−1,k2+1 + ∆ui,k1+1,k2−1).

Here ξ is the smoothing rate, ∆u′ the modified and ∆u the
2D array of the original changes in user features. The indices
of ∆u denotes the user index, and the two coordinates of the
feature in the feature array, respectively. We applied analog
formula also on the movies.

The 2D features of a movie (or user) can be nicely visu-
alized. Meanings can be associated with the regions of the
image. The labels on Figure 2 are assigned to sets of fea-
tures and not to single ones. The labels has been determined
based on such movies that have extreme values at the given
feature.

Such feature maps are useful for detecting main differences
between movies or episodes of the same movie. Figure 3



Figure 2: Features of movie Constantine

represents the three episodes of The Matrix movie. One
can observe that the main characteristic of the feature maps
are the same, but there are noticeable changes between the
first and the other episodes. In the first episode the feature
values are higher in the area of “Political protest” and “Ab-
surd” and lower around “Legendary”. This may indicate
that the first episode presented a unique view of the world,
but the other two were rather based on the success of the
first episode.

Figure 3: Features of The Matrix episodes

3.2 Neighbor based approaches
In neighbor based approaches a similarity value and a uni-

variate predictor function is assigned to each movie pair or
to each user pair. The first variant can be referred as the
movie neighbor and the second as the user neighbor method.
Assuming the movie neighbor method, the unknown matrix
element xij can be estimated as

x̂ij =

P

k:(i,k)∈R sjkfjk(xik)
P

k:(i,k)∈R sjk

, (10)

where sjk is the similarity between the jth and the kth
movie, and fjk is the function that predicts the rating of
the jth movie from the rating of the kth. The answer of the
system is the similarity-weighted average of movie-to-movie
sub-predictions.

A common approach is to use a correlation based movie-
to-movie prediction and similarity. If we introduce the no-
tation Rjk = {i : (i, j), (i, k) ∈ R}, then the formula of the

empirical Pearson correlation [14] coefficient between two
movies is the following:

rjk =
1

|Rjk |
X

i∈Rjk

(xij − µj)(xik − µk)

σjσk

,

where µj and µk are the empirical means, σj and σk are the
empirical standard deviations of the jth and the kth movie,
resp.

If there are only a few common ratings between two movies
then the empirical correlation is not a good estimator of the
true one. Therefore we regularize the estimate with the
a priori assumption of zero correlation. This can be per-
formed in a theoretically grounded way by applying Fisher’s
z-transformation:

zjk = 0.5 ln
1 + rjk

1 − rjk

.

According to [14], the distribution of zjk is approximately

normal with standard deviation 1/
p

|Rjk| − 3. We can now
compute a confidence interval around the z value and use
the lower bound as the regularized estimate:

z′
jk = zjk − λ

p

|Rjk| − 3
,

where λ ≥ 0 is the regularization factor. Our experiments
showed that λ = 2.3 is a reasonable choice for the Netflix
problem. The regularized correlation coefficient can be ob-
tained from the inverse of the z-transformation:

r′jk =
exp(2z′

jk) − 1

exp(2z′
jk) + 1

Now we can define the similarity metric and the movie-
to-movie predictor functions:

sjk = |r′jk|α,

fjk(x) = µj + r′jk(x − µk),

where α can be called the amplification factor. Large α ≫ 1
values increase the weight of similar movies in eq. (10).

An advantageous property of the neighbor based methods
is that they can be implemented without training phase.
Having said this, it is useful to precompute the correlation
coefficients and keep them in the memory, because this dras-
tically decreases testing time. It is enough to store only the
correlations between the 6000 most rated movies, because
these values are much more frequently needed than other
ones.

Additional improvements can be achieved with the follow-
ing tricks:

• Only the K most similar movies are taken into account
in eq. (10).

• The average rating of the active movie is taken into ac-
count with weight β in eq. (10). Note that this is differ-
ent from simply combining the output of the neighbor
based predictor with the movie average, because the
influence of the movie average depends on how close
neighbors the active movie has.

Theoretically, we could also use the user based “dual” of
this method but the user neighbor approach does not fit well
to the Netflix problem, because



• user correlations are unreliable, since there are typi-
cally very few common movies between two arbitrary
users;

• the distribution of the users is approximately uniform
in the test set, therefore there is no such a part of
the user correlation matrix that is used significantly
more often than other ones. Consequently, the pre-
computation step is needless, and the testing time of
the algorithm is significantly larger than that of the
movie neighbor based approach.

We have experienced also with modified version of the
user neighbor method, when we computed the correlation
between each user and the top 10000 users and stored 1000
neighbors, but it did not yield any improvement on the effi-
ciency of GRS.

3.3 Clustering based approaches
Another possible way to tackle the Netflix Prize problem is

to use a clustering based approach. We independently apply
clustering on users and movies that yields L user clusters
and M movie clusters. Let us call the L × M (user cluster,
movie cluster) pairs product clusters. The unknown matrix
element xij can be predicted based on the product cluster
corresponding to the ith customer and the jth movie. In
the simplest case the prediction is the average rating in the
product cluster.

The outline of training algorithm is the following:

1. Randomly create the initial clustering of users and
movies, resp.

2. For each user u: reassign u to a new user cluster, so
that the training RMSE is minimized.

3. For each movie m: reassign m to the movie cluster, so
that the training RMSE is minimized.

4. If the training RMSE decreased significantly, then go
to step 2.

The most frequent operations in the algorithm is comput-
ing the training RMSE and updating the attributes of the
source and target clusters after the reassignment step. Both
can be performed efficiently if we store the sum of ratings,
the squared sum of ratings and the number of elements in
each cluster. We can obtain interesting variants of this ap-
proach, if each user (movie) belongs to a separate cluster
and only the movie (user) clustering is optimized.

4. EVALUATION
The approaches were evaluated on the probe subset of

the training set [2]. Tables 2–4 presents some results of MF
methods, neighbor methods and clustering based methods,
respectively and Table 5 tabulates the best results of single
methods and their combination. These results were obtained
without using some efficient tricks implemented in GRS —
we now hold back those ones for obvious reason. However,
the results themselves indicate the efficiency of various tech-
niques, and we also report on the effect of certain previously
mentioned modifications.

As shown also in Table 5, MF is the most effective one
from the three approaches. The appropriate selection of its
parameters can boost MF’s performance significantly (see

Table 2: RMSE of the basic matrix factorization
algorithm for various η and λ values (K = 40)

η
λ

0.005 0.007 0.010 0.015 0.020

0.005 0.9280 0.9260 0.9237 0.9208 0.9190
0.007 0.9326 0.9301 0.9273 0.9243 0.9226
0.010 0.9397 0.9367 0.9337 0.9306 0.9287
0.015 0.9543 0.9518 0.9494 0.9473 0.9458
0.020 0.9781 0.9767 0.9753 0.9736 0.9719

Table 3: RMSE of various neighbor based methods
Parameters RMSE

K = ∞, α = 2, β = 0.0, λ = 0.0 0.9483
K = 16, α = 2, β = 0.0, λ = 0.0 0.9399
K = ∞, α = 2, β = 0.2, λ = 0.0 0.9451
K = ∞, α = 2, β = 0.0, λ = 2.3 0.9445
K = 16, α = 2, β = 0.2, λ = 2.3 0.9313

also Table 2). In our MF experiments we initialized the
weights of U and M uniformly between −0.01 and 0.01.
The effect of random initialization based on 50 with different
random seeds have also been examined. We found standard
deviation of 1.5 ·10−4 on training RMSE, 0.9 ·10−4 on probe
RMSE. The correlation was 0.29 between them. We realized
that increasing K yields better RMSE, however, the memory
consumption increases linearly, and the training time almost
linearly. The increase of λ, and analogously, the decrease
of η have the same effect3: improve RMSE but slow down
the training. In case of η = 0.005, λ = 0.02 37 iterations
were required, as opposed to η = 0.02, where 12 iterations
were enough. We can state in general that MF with better
parameters requires more time to converge, but it also de-
pends on the details of implementation. We have witnessed
a 0.0010 . . . 0.0030 difference between RMSE on probe and
quiz subsets. Figures 4–6 illustrate the over-learning effect
and some learning curves of MF.
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Figure 4: MFs with different values of K (η =
0.01, λ = 0.01)

The results of Table 3 achieved with the correlation coef-
ficients computed only between the 6.000 most rated movies
based on the top 75.000 users. When predicting other rat-

3though η has larger influence on RMSE than λ
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Table 4: RMSE of various clustering based methods
Parameters RMSE

L = 480189, M = 5 0.9659
L = 5, M = 17770 0.9640
L = 40, M = 40 0.9606

ings we simply answered a combination of the user and the
movie mean.

We applied different rating normalization methods in the
three cases presented in Table 4. In the first case, we sub-
tracted the movie mean, in the second case the user mean,
and in the third case the average of the movie mean and the
user mean from the ratings before training. The results of
the clustering based approach are inferior to Cinematch’s.
However, its model is easy to interpret and can be used as
an input of other algorithms.

Observing the combinations of the different approaches on
Table 5, one can see that they outperform the single ones
significantly. Note that clustering based method does not
yield improvement on the combination of MF and NB.

The effect of using only a fixed number of neighbors im-

Table 5: Best results of single approaches and their
combinations

Method/Combination RMSE
MF 0.9190
NB 0.9313
CL 0.9606
NB + CL 0.9275
MF + CL 0.9137
MF + NB 0.9089
MF + NB + CL 0.9089

proved RMSE by 0.0098. Taking the movie average into
account yielded an improvement of 0.0024. Regularizing
the correlation coefficient using Fisher’s z-transformation re-
sulted in a 0.0043 change. When all of the three tricks were
applied, then the improvement was 0.0173, which means
that combination of these modification amplify their own
beneficial effect.
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