
Convex polyhedron learning
and its applications

PhD thesis

Gábor Takács

submitted to

Budapest University of Technology and Economics, Budapest, Hungary

Faculty of Electrical Engineering and Informatics

October, 2009

c© 2009 Gábor Takács

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

gtakacs@mit.bme.hu, gtakacs@sze.hu

Contents

1 Introduction 11
1.1 Classification . 12

1.1.1 Linear classification . 13
1.1.2 Fisher discriminant analysis . 14
1.1.3 Logistic regression . 14
1.1.4 Artificial neuron . 15
1.1.5 Linear support vector machine . 16
1.1.6 Nonlinear classification . 16
1.1.7 K nearest neighbors . 16
1.1.8 ID3 decision tree . 17
1.1.9 Multilayer perceptron . 18
1.1.10 Support vector machine . 18
1.1.11 Convex polyhedron classification . 20

1.2 Regression . 20
1.2.1 Linear regression . 21
1.2.2 Nonlinear regression . 21

1.3 Techniques against overfitting . 22
1.4 Collaborative filtering . 23

1.4.1 Double centering . 24
1.4.2 Matrix factorization . 24
1.4.3 BRISMF . 25
1.4.4 Neighbor based methods . 27
1.4.5 Convex polyhedron methods . 30

1.5 Other machine learning problems . 30
1.5.1 Clustering . 30
1.5.2 Labeled sequence learning . 31
1.5.3 Time series prediction . 31

2 Algorithms 33
2.1 Linear programming basics . 33
2.2 Algorithms for determining separability . 35

2.2.1 Definitions . 35
2.2.2 Algorithms for linear separability . 36
2.2.3 Algorithms for convex separability . 40

2.3 Algorithms for classification . 42
2.3.1 Known methods . 42
2.3.2 Smooth maximum functions . 43
2.3.3 Smooth maximum based algorithms . 48

2.4 Algorithms for regression . 54
2.5 Algorithms for collaborative filtering . 54

3 Model complexity 57
3.1 Definitions . 57

3.1.1 Convex polyhedron function classes . 58
3.2 Known facts . 59
3.3 The VC dimension of MINMAX2,K . 61

3.3.1 Concepts for the proof . 62

1

CONTENTS

3.3.2 The proof . 62
3.4 New lower bounds . 68

4 Applications 73
4.1 Determining linear and convex separability . 73

4.1.1 Datasets . 73
4.1.2 Algorithms . 74
4.1.3 Types of separability . 76
4.1.4 Running times . 79

4.2 Experiments with classification . 84
4.2.1 Comparing the variants of SMAX . 86
4.2.2 Comparing SMAX with other methods . 88

4.3 Experiments with collaborative filtering . 93

List of publications 101

Bibliography 103

2

List of Figures

1.1 The structure of an MLP with one hidden layer. 19
1.2 The red dots represent training examples and the black squares new examples in

a regression problem. The green curve and the blue line represent two predic-
tors. The green predictor fits perfectly to the training examples, but the blue one
generalizes better. 22

1.3 Training algorithm for BRISMF. 26
1.4 Training algorithm for NSVD1. 29

2.1 Examples for linearly separable (a), mutually convexly separable (b), convexly
separable (c), and convexly nonseparable (d) point sets. 36

2.2 The maximum function in 2 dimensions. 45
2.3 Smooth maximum functions in 2 dimensions (α = 2). 46
2.4 The error of smooth maximum functions in 2 dimensions (α = 2). 47
2.5 Stochastic gradient descent with momentum for training the convex polyhedron

classifier. 51
2.6 Newton’s method for training the convex polyhedron classifier. 53
2.7 Stochastic gradient descent for training the convex polyhedron predictor. 56

3.1 How to choose the independent faces based on the label of the extra points. Note
that some faces are never chosen. 60

3.2 A point set in convex position. The red and a blue signs cannot be separated with
a triangle, because for this we should intersect all edges of a convex 8-gon with 3
lines. 62

3.3 A point set in tangled position. The red and the blue signs can never be separated
with a convex K-gon, regardless of the value of K. 62

3.4 The 14 regions generated by placing two points into a triangle. 64
3.5 The 13 regions generated by placing the third point into R13. 65
3.6 Regions in BCDEF , case I. 66
3.7 Regions in BCDEF , case II. 66
3.8 Regions in BCDEFG. 67
3.9 The vertex adjacency graph of the 600-cell. 71

4.1 Examples from the MNIST28 database. 74
4.2 The TOY dataset. 84
4.3 The V distribution with settings d = 2, α = 0.05 (a) and d = 3, α = 0.05 (b).

The optimal decision boundary is indicated with green. 84
4.4 The train–test split and the naming convention of the NETFLIX dataset (after

[Bell et al., 2007]) . 94

3

List of Tables

4.1 Types of separability in the MNIST28 dataset. 77
4.2 Types of separability in the MNIST14 dataset. 77
4.3 Types of separability in the MNIST7 dataset. 78
4.4 Types of separability in the MNIST4 dataset. 78
4.5 Number of examples from Class 1 contained in the convex hull of Class 2 in the

MNIST4 dataset. 79
4.6 Running times of basic algorithms for determining linear separability. 80
4.7 Running times of LSEPX, LSEPY, and LSEPZ. 81
4.8 Running times of LSEPZX and LSEPZY. 81
4.9 Running times of basic algorithms for determining convex separability. 82
4.10 Percentage of outer points cut by the centroid method (CSEPC). 82
4.11 Running times of the centroid method (CSEPC). 83
4.12 Running times of enhanced algorithms for determining convex separability. . . . 83
4.13 Results of SMAX training on the TOY dataset. 87
4.14 Results of classification algorithms on the V2 dataset. 89
4.15 Results of classification algorithms on the V3 dataset. 90
4.16 Results of classification algorithms on the ABALONE dataset. 90
4.17 Results of classification algorithms on the BLOOD dataset. 91
4.18 Results of classification algorithms on the CHESS dataset. 92
4.19 Results of classification algorithms on the SEGMENT dataset. 92
4.20 Results of collaborative filtering algorithms on the NETFLIX dataset. 96
4.21 Results of linear blending on the NETFLIX dataset. 97

5

Acknowledgements

I would like to thank Béla Pataki, my advisor, for initiating me into research and guiding me
over the years. I am grateful to him not only for his constant help and valuable advice, but also
for his friendly character and good humor.

I would like to thank Gábor Horváth, my teacher, for giving me interesting tasks that greatly
influenced my interest. His neural networks course remains an unforgettable part of my under-
graduate studies.

I would like to thank István Pilászy, Bottyán Németh, and Domonkos Tikk, the members of
team Gravity, for their sincere enthusiasm to machine learning. I still enjoy the discussions with
them about scientific and other topics.

I would like to thank Zoltán Horváth, my senior colleague for listening me many times and
asking good questions. I am also grateful to him for teaching me some cool mathematical tricks
and helping me to meet people with particularly great knowledge.

I would like to thank my parents for bringing me up and encouraging me in my studies. This
work would not have been possible without their support.

Finally, I would like to thank my wife, Katalin for her never ending love and patience. She
kept me motivated constantly, and comforted me when I was down. I dedicate this thesis to her
and to the fruit of our love, the little Ágnes.

7

Abstract

From a possible engineer’s point of view learning can be considered as discovering the relationship
between the features of a phenomenon. Machine learning (data mining) is a variant of learning, in
which the observations about the phenomenon are available as data, and the connection between
the features is discovered by a program.

In the case of classification the phenomenon is modeled by a random pair (X, Y), where the
d-dimensional continuous X is called input, and the discrete (often binary) Y is called label. In
the case of collaborative filtering the phenomenon is modeled by a random triplet (U, I,R), where
the discrete U is called user identifier, the discrete I is called item identifier, and the continuous
R is called rating value.

Unbalanced problems i.e. in which one class label occurs much more frequently than the other
form an interesting subset among binary classification problems. In practice such problems often
arise for example in the field of medical and technical diagnostics.

A convex polyhedron classifier is a function g : R
d 7→ {+1,−1} with the property that the

decision region {x ∈ R
d : g(x) = 1} is a convex polyhedron. At classifying an input x ∈ R

d, we
have to substitute x into the linear functions defining the polyhedron. If any of the substitutions
gives a negative number, then we can stop the computation immediately, since the class label
will be necessarily −1 in this case. As a consequence, convex polyhedron classifiers fit well to
unbalanced problems.

The convex polyhedron based approach has its analogous variant for collaborative filtering
too. In this case the utility of the approach is that it gives a unique solution of the problem that
can be a useful component of a blended solution involving many different models.

A related problem to classification is determining the convex separability of point sets. Let
us assume that P and Q are finite sets in R

d. The task is to decide whether there exist a convex
polyhedron S that contains all element of P, but no elements from Q.

In a practical data mining project typically many experiments are run and many models are
built. It is non-trivial to decide which of them should be used for prediction in the final system.
Obviously, if two models achieve the same accuracy on the training set, then it is reasonable
to choose the simpler one. The Vapnik–Chervonenkis dimension is a widely accepted model
complexity measure in the case of binary classification.

The first chapter of the thesis (Introduction) briefly introduces the field of machine learning
and locates convex polyhedron learning in it. Then, without completeness it overviews a set
known learning algorithms. The part dealing with collaborative filtering contains novel results
too.

The second chapter of the thesis (Algorithms) is about algorithms that use convex polyhe-
drons for solving various machine learning problems. The first part of the chapter deals with
the problem of linear and convex separation. The second part of the chapter gives algorithms
for training convex polyhedron classifiers. The third part of the chapter introduces a convex
polyhedron based algorithm for collaborative filtering.

The third chapter of the thesis (Model complexity) collects the known facts about the Vapnik–
Chervonenkis dimension of convex polyhedron classifiers and proves new results. The fourth
chapter (Applications) presents the experiments performed with the proposed algorithms.

9

Example isn’t another way to

teach, it is the only way to teach.

Albert Einstein

1
Introduction

Learning from examples is a characteristic ability of human intelligence. For us, learning is as
natural as breathing. We not only observe the world, but inherently try to find relationships
between our observations. From this point of view, a child learning to ride a bike discovers the
connection between his/her perception and traveling safely. A student preparing for an exam
tries to understand the connection between the possible questions and the correct answers. In
this thesis, learning will be considered as discovering the relationship between the features of a
phenomenon.

If the features are encoded as numbers, and the relationship between them is discovered by
an algorithm, then we talk about machine learning (ML) 1. The input of machine learning is a
dataset that was collected by observing the phenomenon. The output is a program that is able
to answer certain questions about the phenomenon.

On the map of scientific disciplines machine learning could be placed into the intersection of
statistics and computer science. Machine learning aims at inferring from data reliably, therefore
it can be viewed as a subfield of statistics. However, machine learning puts great emphasis on
computer architectures, data structures, algorithms, and complexity, therefore it can be consid-
ered as a subfield of computer science.

One might ask: “Why is it useful if machines learn?” There are plenty of reasons for it:

• In many real world problems it is difficult to formalize the connection between the input
and the output, however it is easy to collect corresponding input–output pairs (e.g. face
recognition, driving a car). In such cases, ML might be the only way to solve the problem.

• The raw ML solution consists of two simple and automatable steps: collecting data and
feeding a learning algorithm with it. Therefore with ML it is possible to get an initial
solution quickly. This may significantly reduce development time and cost.

• It happens quite often in engineering practice that the environment of the designed system
changes over time. In such cases the adaptiveness of the ML solution is beneficial.

• There are sources that are quickly and continuously producing data (e.g. video cameras,
web servers). Often, the data just lies unutilized after storing. ML algorithms may extract
valuable information from the available huge amount of unprocessed data.

• ML experiments can help us to understand better how human learning and human intelli-
gence works.

1Another popular name of the discipline is data mining.

11

CHAPTER 1. INTRODUCTION

Now let us introduce the problem more formally. The phenomenon is modeled by the random
vector Z. The components of Z are called the features. The distribution of Z denoted by PZ

describes the frequency of encountering particular realizations of Z in practice.
PZ is typically unknown, but in some cases one may have some partial knowledge about it

(e.g. one might assume that Z has multinormal distribution). The phenomenon can be either
fully observable which means that all features are observable, or partially observable which means
that some features are observable and some are not.

The goal is to estimate PZ or a well defined part of it, based on a finite sample generated
according to PZ. The elements of the sample are called training examples, and the sample itself
is called the training set.

In the rest of this chapter we will overview some special cases of the machine learning problem
and investigate a selected subset of known learning algorithms. Furthermore, it will be revealed
to the Reader what “convex polyhedron learning” means and why is it useful. I emphasize that
the survey about algorithms does not want to be exhaustive. The main selection criterion was
the degree of connection to the rest of the thesis.

1.1 Classification

In the problem of classification the phenomenon is a fully observable pair (X, Y), where

• X taking values from R
d is called input, and

• Y taking values from C = {c1, . . . , cM},M ≥ 2 is called label. If M = 2, then the problem
is termed binary classification, otherwise it is termed multiclass classification.

The goal is to predict Y from X with a function2 g : R
d 7→ C called classifier such that the

probability of error
L(g) = P{g(X) 6= Y }

is minimal. Theory says that the minimum of L(g) exists for every distribution of (X, Y). The
best possible classifier is the Bayes classifier3 [Devroye et al., 1996]:

g∗(x) = arg max
y∈C

P{Y = y|X = x}.

The minimal probability of error L∗ = L(g∗) is called the Bayes error. If L∗ = 0, then the
problem is called separable, otherwise it is called inseparable. In the separable case it is possible
to construct a classifier that (almost) never errs. In contrast, in the inseparable case the input
does not contain enough information to predict the label without error. Note that in the case of
binary classification L∗ cannot be larger than 0.5, and L∗ = 0.5 means that for (almost) every
X the corresponding Y is generated by a coin toss .

Typically, the distribution of (X, Y) is unknown, so that g∗ and L∗ is unknown too. We only
have a finite sequence of corresponding input–label pairs from the past

T = ((X1, Y1), . . . , (Xn, Yn)),

called training set. It is assumed that these pairs were drawn independently from the unknown
distribution of (X, Y), and also that (X, Y) and T are independent. In practice we usually

2Functions are always assumed to be measurable in this thesis. Otherwise the function of a random variable
would not necessarily be a random variable.

3The optimum is not unique. Perturbed variants of the Bayes classifier are also optimal, if the probability of
perturbation is zero.

12

1.1. CLASSIFICATION

observe only one realization of T denoted by t = ((x1, y1), . . . , (xn, yn)). This is our data at
hand that we have to live with.

The task is to estimate the Bayes classifier g∗ on the basis of T. In other words we want to
construct a function gn : R

d × (Rd × C)n 7→ C, called n-classifier. This description incorporates
the recipe of constructing the classifier from the training set: if we bind all variables except the
first d, then we get a classifier. The error of an n-classifier gn is defined as

L(gn) = P{gn(X,T) 6= Y |T}.

Note that L(gn) is a random variable because of the random T in the condition. The quantity
E{L(gn)} is also interesting. This number indicates the quality of the n-classifier on an average
training set, not your training set.

The disadvantage of an n-classifier is that it predefines the number of training examples. It
is useful to introduce a related concept that handles arbitrary training set size. A classification
algorithm is a sequence of functions such that the n-th function is an n-classifier.

A good classification algorithm should produce a good classifier for any distribution of (X, Y),
if the training set is large enough. This requirement can be formalized with the following defini-
tion: a classification algorithm {gn} is said to be universally consistent, if

lim
n→∞

E{L(gn)} = L∗

with probability one for any distribution of (X, Y).
Some interesting facts about classification algorithms [Devroye et al., 1996]:

• No universally consistent classification algorithm was known until 1977, when Stone proved
that under certain conditions the K nearest neighbors algorithm has this property [Stone,
1977].

• For any universally consistent classification algorithm {gn} there exist a distribution of
(X, Y) for which E{L(gn)} converges to L∗ arbitrarily slowly. As a consequence, there is
no guarantee that a universally consistent algorithm will perform well in practice.

• For any two n-classifiers gn and hn, if E{L(gn)} < E{L(hn)} for a distribution of (X, Y),
then there necessarily exists another distribution of (X, Y) for which E{L(hn)} < E{L(gn)}.
This means that no n-classifier can be inherently superior to any other and there is no best
n-classifier.

In the next subsections we will overview a selected subset of known classification algorithms.

1.1.1 Linear classification

Linear classification algorithms are simple, old, and extensively studied. Some of them were
already used in 1936, but they are still popular today. They are applied both directly and as
component of more complex learning machines.

A set S ⊂ R
d is called a half-space, if it can be given in the following form:

S = {x ∈ R
d : wT x + b ≥ 0,w ∈ R

d, b ∈ R}.

A binary classifier g : R
d 7→ {c1, c2} is termed linear, if {x ∈ R

d : g(x) = c1} is a half-space. An
equivalent definition is the following: a linear classifier is a function g : R

d 7→ {c1, c2} that can
be written in the following form:

g(x) = th(wT x + b),
�

�

�

�1.1

13

CHAPTER 1. INTRODUCTION

where w ∈ R
d and b ∈ R are the parameters of the classifier, and

th(y) =

{
c1 if y ≥ 0
c2 if y < 0

is the threshold function. Unless otherwise stated we will always assume that c1 = 1 and c2 = 0.
A classification algorithm is called linear, if it produces linear classifiers. The set {x ∈ R

d :
wT x+b = 0}, is called the decision hyperplane. The various linear classification algorithms differ
in the way of determining w and b.

1.1.2 Fisher discriminant analysis

Fisher discriminant analysis (FDA) [Fisher, 1936] is probably the oldest recipe for determining
w. Its idea is that the scalar product wT x can be viewed as the projection of the input x to one
dimension. Let us introduce the notations

nc =

n∑

i=1

I{yi = c},

mc =
1

nk

n∑

i=1

I{yi = c}xi,

Rc =
1

nk − 1

n∑

i=1

I{yi = c}(xi −mk)(xi −mk)T

for the elementary statistics of the classes (c = 0, 1). Then the empirical means and variances
of the projected classes can be written as wT mc and wT Rcw (c = 0, 1). The goal of FDA is to
find a vector w for which

F(w) =
(wT m1 −wT m0)

2

wT R1w + wT R0w

�

�

�

�1.2

the so called Fisher criterion is maximal. In other words, FDA wants to obtain a large between-
class variance and a small within-class variance simultaneously. Note that the maximum is not
unique, since F(w) = F(αw) for any α ∈ R \ {0}.

It can be shown that F is maximal at4

w∗ = (R1 + R0)
−1(m1 −m0).

�

�

�

�1.3

It is also true that w∗m1 ≥ w∗m0, therefore w∗ can be used in (1.1) without flipping the sign.
The original FDA algorithm does not say anything about the offset b. A simple heuristic is

setting it to (w∗m1 −w∗m0)/2.

1.1.3 Logistic regression

Logistic regression (LOGR) [Wilson and Worcester, 1943] is a classical statistical method that is
frequently used in medical and social sciences. It assumes the following interdependency between
X and Y :

P{Y = 1|X = x} = sgm(wT x + b),
�

�

�

�1.4

where sgm(z) = 1/(1 + exp(−z)) is the logistic sigmoid function. When classifying a new input
x, logistic regression answers the class with higher probability:

g(x) = th(P{Y = 1|X = x} − 0.5) = th(wT x + b).

4If the inverse exists.

14

1.1. CLASSIFICATION

Note that logistic regression is more than a simple “black box”: besides classifying the input it
also gives the probability of the classes.

In the training phase, the parameters w and b are calculated via maximum likelihood esti-
mation. This means that w and b are set such that the conditional probability

P{Yi = yi, . . . , Yn = yn|Xi = xi, . . . ,Xn = xn}
�

�

�

�1.5

is maximal. In other words we want to find the model for which the probability of getting
the training labels given the training inputs is maximal. Maximizing (1.5) is equivalent with
minimizing

L(w, b) = − lnP{Y1 = y1, . . . , Yn = yn|X1 = x1, . . . ,Xn = xn}
�

�

�

�1.6

=

n∑

i=1

(
ln(1 + exp(wT xi + b))− yi(w

T xi + b)
)
,

the negative log-likelihood.
L is convex, therefore its minimum can be approximated well by iterative optimization algo-

rithms (e.g. gradient descent, Newton’s method).

1.1.4 Artificial neuron

The linear classifier g(x) = th(wT x + b) can also be viewed as a simple model of the biological
neuron [McCullogh and Pitts, 1943]. In this interpretation the elements of w are input connection
strengths. Stimulating the neuron with input x causes an activation wT x in the neuron. If the
activation level is greater than b, then neuron “fires” and emits a signal on its output.

It is a natural idea that training should be done by minimizing

N (w, b) =

n∑

i=1

I{th(wT xi + b) 6= yi},

the number of misclassifications in the training set.
Unfortunately, the minimization of N is difficult, because the functions I and th are not

differentiable. A straightforward way to overcome this difficulty is replacing them by smooth
functions. The replacements will assume that the class labels are c1 = 1 and c2 = 0.

If I{α 6= β} is replaced by − ln(αβ(1 − α)1−β) and th(γ) by sgm(γ), then we get logistic
regression. However, this is not the only possible choice.

Smooth perceptron

If I{α 6= β} is replaced by (α − β)2 and th(γ) by sgm(γ), then we get the smooth variant of
Rosenblatt’s perceptron [Rosenblatt, 1962], referred as smooth perceptron (SPER). In this case
the function to minimize is the following:

P(w, b) =

n∑

i=1

(sgm(wT xi + b)− yi)
2.

Finding the global minimum of P is difficult, because P is nonconvex. However, a local
minimum can be computed easily with iterative methods, and this is often sufficient in practice.

15

CHAPTER 1. INTRODUCTION

Adaptive linear neuron

If I{α 6= β} is replaced by (α− β)2 and th(γ) by γ + 0.5, then we get the adaptive linear neuron
(ALN) [Widrow, 1960]. Now the function to minimize is the following:

A(w, b) =

n∑

i=1

(wT xi + b + 0.5− yi)
2.

A is convex and quadratic, therefore the minimization can be done efficiently. A disadvantage
is that A is quite different from the original function N . As a consequence, ALN classifiers tend
to be less accurate than other linear classifiers.

1.1.5 Linear support vector machine

Support vector machine (SVM) [Boser et al., 1992] is quite a new invention in machine learning.
The linear variant of SVM (LSVM) is a linear classification algorithm. The goal of LSVM to
separate the classes from each other such that the distance between the decision hyperplane and
the closest training examples (called margin) is maximal. Assuming class labels c1 = +1 and
c2 = −1 the requirement can be formalized as the following quadratic programming problem:

variables: w ∈ R
d, b ∈ R, ξ ∈ R

n

minimize:
1

2
wT w + C

n∑

i=1

ξi

�

�

�

�1.7

subject to: (wT xi + b)yi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The role of variable ξ is to make the problem feasible for every training set. The parameter C
can be used as a tradeoff between training set classification accuracy and maximizing the margin.
For solving (1.7) one can use a general quadratic programming solver or a specialized algorithm
like sequential minimal optimization (SMO) [Platt, 1999].

1.1.6 Nonlinear classification

In many real world training sets, the classes cannot be separated from each other with a hy-
perplane. One possible solution is to consider this as an effect of noise and still apply a linear
classifier. A different and often more accurate approach is to apply a nonlinear classifier. In
the following subsections we will overview a very limited subset of known nonlinear classification
algorithms.

1.1.7 K nearest neighbors

The K nearest neighbors (KNN) [Fix and Hodges, 1951] approach is based on the assumption
that if two inputs are similar, then their labels are probably identical. Let δ : R

d × R
d 7→ R be

a distance function. In the training phase KNN just memorizes the training examples. Then a
new input x is classified as follows:

1. Calculate the distance between x and all training inputs with respect to δ.

2. Determine the indices of the K closest training inputs to x, and denote them by i1, i2, . . . , iK .

3. Return the most frequent label (or one of the most frequent labels) from {yi1 , yi2 , . . . , yiK
}.

16

1.1. CLASSIFICATION

An appealing property of KNN classifiers is that they provide a nice explanation to their
decision (e.g. “Joe was classified as a beer lover, because the most similar person in the database,
Tom, is also one.”). The weak point of most KNN implementations is limited scalability (because
one has to iterate over the training examples to classify an input).

1.1.8 ID3 decision tree

The key idea of decision tree algorithms is “divide and conquer”. The outline of the approach is
the following:

• In the training phase, the training set is partitioned by applying a splitting rule recursively.

• In the classification phase, the partition of the input is determined, and the most frequent
label (or one of the most frequent labels) in the selected partition is returned.

Here we overview a simple decision tree variant called iterative dichotomizer 3 (ID3) [Quinlan,
1986]. At first let us assume that all features are categorical. The entropy of a dataset D =
{(x1, y1), . . . , (xn, yn)} denoted by H(D) is defined as

pk =
1

n + Mβ

(
β +

n∑

i=1

I{yi = ck}
)

, k = 1, . . . ,M,

H(D) = −
M∑

k=1

pk log2(pk),

where β > 0 is called the Laplace smoothing term.
Assume that the possible values of the j-th feature are v1, . . . , vN . Splitting D along the j-th

feature means that the following sub datasets are created:

Dl = {(x, y) ∈ D : xj = vl}, l = 1, . . . , N.

The information gain of the split is defined as

G = H(D)−
N∑

l=1

|Dl|
|D| H(Dl).

�

�

�

�1.8

Originally, ID3 was designed for categorical features, but it can be extended to handle con-
tinuous features too. Splitting dataset D along continuous feature j using value α results the
following sub datasets:

D1(α) = {(x, y) ∈ D : xj ≤ α},
D2(α) = {(x, y) ∈ D : xj > α}.

The information gain of the split is defined as

G = max
α∈R

H(D)−
2∑

l=1

|Dl(α)|
|D| H(Dl(α)).

�

�

�

�1.9

In practice it is often too expensive to try every possible value of α. A simple solution is to
consider only K values, α1, . . . , αK chosen so that the partitions {(x, y) ∈ D : αk < xj ≤ αk+1}
are (nearly) equally sized.

17

CHAPTER 1. INTRODUCTION

The ID3 rule splits the dataset along the feature that gives the highest information gain. ID3
training applies this rule recursively until the information gain is not lower than a predefined
limit Gmin. The split features (and α values) found by the algorithm can be stored in a tree
structure such that each node corresponds to a sub dataset. The class frequencies of the sub
datasets can also be stored in the tree.

Using this tree structure, the classification of a new input can be done in O(L) time, where
L is the depth of the tree. Note that the time requirement does not depend on the number of
features d, and only very elementary operations are needed (array indexing, scalar comparison).
Therefore, ID3 classifiers can be faster than even linear classifiers in the classification phase.

Another strong point of the ID3 is user friendly explanation generation. The path to the
selected leaf node can be viewed as a conjunction of simple statements (e.g. “you will probably
like this French restaurant, because you like wine and your favorite city is Paris.”) A disadvantage
of ID3 is that it tends to be inaccurate on problems with continuous features.

1.1.9 Multilayer perceptron

Multilayer perceptron (MLP) is one of the most popular artificial neural networks [Haykin, 2008].
An MLP consists of simple processing units called neurons that are arranged in layers. The first
layer is called input and the last is called output layer. The layers between them are termed
hidden layers.

Two neurons are connected if and only if they are in consecutive layers. A weight is associated
with each connection. The neurons of the input layer contain the identity function. Every other
neuron consists of a linear combiner and a nonlinear activation function.

Assuming one hidden layer and logistic activation function, the answer of the network to
input x denoted by g(x) is the following:

hk = sgm

bk +
d∑

j=1

wjkxj

 , k = 1, . . . ,K,
�

�

�

�1.10

g(x) = th

(
sgm

(
c +

K∑

k=1

hkvk

)
− 0.5

)
,

where wjk, vk ∈ R called weights and bk, c ∈ R called biases are the parameters of the model
(j = 1, . . . , d, k = 1, . . . ,K). The structure of this network is shown in Figure (1.1).

Denote the matrix of wjk values by W, the vector of bk values by b, and the vector of vk

values by v. Training can be done by minimizing

M(W,b,v, c) =

n∑

i=1

yi −
n∑

i=1

sgm

c +

K∑

k=1

sgm

bk +

d∑

j=1

wjkxij

 vk

2

,

the sum of squared errors between the label and the raw output of the network.
A local minimum of M can be found with the backpropagation algorithm [Werbos, 1974]

which is an efficient implementation of gradient descent for this particular objective function.

1.1.10 Support vector machine

The nonlinear support vector machine (SVM) [Boser et al., 1992] can be obtained from linear
SVM by rewriting the original optimization problem and replacing the scalar product with a

18

1.1. CLASSIFICATION

1 1

x1

xd

b1

w11

w1K

bK

wd1

wdK

c

v1

vK

h1

hK

g

Figure 1.1: The structure of an MLP with one hidden layer.

kernel function K : R
d × R

d 7→ R. This learning machine has nice theoretical properties and it
often shows outstanding performance in practice, therefore it has become very popular recently.
Here I only give a very brief overview of SVM. Those who are interested can find more details
e.g. in [Burges, 1998].

Let us assume class labels c1 = +1 and c2 = −1. The answer of the SVM classifier for input
x is the following5:

g(x) = th

(
n∑

i=1

αiyiK(x,xi)

)
.

�

�

�

�1.11

Training examples for which the corresponding αi is not zero are called support vectors. The
training procedure consists of solving the following constrained optimization problem:

variables: α ∈ R
n

maximize:

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj)
�

�

�

�1.12

subject to: 0 ≤ αi ≤ C, i = 1, . . . , n.

Two common choices for K are:

• Polynomial kernel: K(xi,xj) = (xT
i xj + 1)p,

• Gaussian kernel: K(xi,xj) = exp(−‖xi − xj‖2/2σ2).

In both cases, the objective function of (1.12) is convex quadratic, therefore the problem to
solve is a quadratic program. Similarly to linear SVM, for computing the solution one can use a
general quadratic programming solver or a specialized algorithm like SMO [Platt, 1999].

Most algorithms appearing in this thesis are so simple that they can be easily implemented
from scratch, but this is not true for SVM (and linear SVM). In most cases it is worthwhile
to use an existing fine-tuned SVM implementation like svm-light [Joachims, 1999] or libsvm
[Chang and Lin, 2001].

5It is possible to also include a bias term in the model. Here the bias was omitted for simplicity.

19

CHAPTER 1. INTRODUCTION

1.1.11 Convex polyhedron classification

Many interesting classification problems arising in practice are unbalanced, which means that the
distribution of labels is far from uniform. For example, in the case of breast cancer screening most
patients are (fortunately) healthy. This results that in the corresponding binary classification
problem most training examples belong to the “healthy” class. Convex polyhedron classifiers are
special nonlinear classifiers that fit well to unbalanced problems.

Let us consider an unbalanced binary classification problem with labels c1 and c2. Let us
call c1 the positive and c2 the negative class, and assume that the class with higher probability
is the negative class. A convex K-polyhedron (polyhedron) is the intersection of K half-spaces
(any number of half-spaces).

A convex polyhedron (K-polyhedron) classifier is a function g : R
d 7→ {c1, c2} such that

{x ∈ R
d : g(x) = c1} is a convex polyhedron (K-polyhedron). An equivalent definition is the

following: A function g : R
d 7→ {c1, c2} is called a convex K-polyhedron classifier, if it can be

written as

g(x) =th(min{wT
1 x + b1, . . . ,w

T
Kx + bK})

�

�

�

�1.13

=th(−max{−wT
1 x− b1, . . . ,−wT

Kx− bK}),

where w1, . . . ,wK are called weight vectors and b1, . . . , bK are termed biases.
When classifying an input x, we iterate over the weight vectors. If wT

k x + bk < 0 for any
k ∈ {1, . . . ,K}, then the input can be classified as negative immediately. As a consequence,
convex polyhedron classifiers tend to classify negative examples quickly. This property makes
the approach particularly suitable for unbalanced problems.

1.2 Regression

In the problem of regression the phenomenon is a fully observable pair (X, Y), where

• X taking values from R
d is called input, and

• Y taking values from R is called target.

The goal is to predict Y from X with a function g : R
d 7→ R called predictor such that the

mean squared error

L(g) = E{(g(X)− Y)2}
is minimal. Some commonly used alternative error measures are the following:

• Mean absolute error: E{|g(X)− Y)|},

• Mean percentage error: E{|g(X)/Y − 1| · 100}.

It is true again that the minimum of L(g) exists for every distribution of (X, Y). The best
possible predictor is the regression function6 [Györfi et al., 2002]:

g∗(x) = E{Y |X = x}.

The minimal mean squared error L∗ = L(g∗) is called the noise level.

6The optimum is not unique. Perturbed versions of the regression function are also optimal, if the probability
of perturbation is zero.

20

1.2. REGRESSION

Analogously with classification, we can introduce the concepts n-predictor and regression
algorithm. An n-predictor is a function that maps from R

d × (Rd × C)n to R. A regression
algorithm is a sequence of functions such that the n-th function is an n-predictor. The error of
an n-predictor gn is defined as

L(gn) = E{(gn(X,T)− Y)2|T}.
A regression algorithm {gn} is said to be universally consistent, if

lim
n→∞

E{L(gn)} = L∗

with probability one for all distributions of (X, Y).

1.2.1 Linear regression

Linear regression (LINR) is probably the oldest machine learning technique. According to
[Pearson, 1930], the first regression line was plotted at a lecture by Galton in 1877. The rigorous
description of the algorithm appeared first in [Pearson, 1896].

A predictor g : R
d 7→ R is called linear if it can be written in the following form:

g(x) = wT x + b.
�

�

�

�1.14

The goal of linear regression is to minimize

L(w, b) =
n∑

i=1

(wT xi + b− yi)
2,

the sum of squared errors on the training set. With differentiation it can be shown that the
minimum of L is located at7

w∗
1
...

w∗
d

b∗

=

n∑
i=1

xi1xi1 · · ·
n∑

i=1

xidxi1

n∑
i=1

xi1

...
. . .

...
...

n∑
i=1

xi1xid · · ·
n∑

i=1

xidxid

n∑
i=1

xid

n∑
i=1

xi1 · · ·
n∑

i=1

xid

n∑
i=1

1

−1

n∑
i=1

xi1yi

...
n∑

i=1

xidyi

n∑
i=1

yi

�

�

�

�1.15

1.2.2 Nonlinear regression

All of the discussed nonlinear classification algorithms (KNN, ID3, MLP, SVM) can be used as
nonlinear regression techniques after some modifications:

• KNN: at prediction return the average of the neighbors’ target value.

• ID3: at prediction return the average target value of the partition, at training use variance
instead of entropy.

• MLP: omit the sigmoid function from the output neuron, and omit the threshold function
from the prediction formula.

• SVM: omit the threshold function, and replace the per example loss function to the ǫ-
insensitive loss (see [Burges, 1998]).

7If the inverse exists.

21

CHAPTER 1. INTRODUCTION

Figure 1.2: The red dots represent training examples and the black squares new examples in
a regression problem. The green curve and the blue line represent two predictors. The green
predictor fits perfectly to the training examples, but the blue one generalizes better.

Convex polyhedron regression

Convex polyhedron regression can be introduced analogously with convex polyhedron classifi-
cation. A convex K-polyhedron predictor is a function g : R

d 7→ R that can be written in the
following form:

g(x) = min{wT
1 x + b1, . . . ,w

T
Kx + bK}

�

�

�

�1.16

=−max{−wT
1 x− b1, . . . ,−wT

Kx− bK}.
The only difference from convex the K-polyhedron classifier is that the threshold function is
missing. The reason behind using the term “convex polyhedron” here is that the set {(x, y) ∈
R

d+1 : y ≤ g(x)} is a convex polyhedron in R
d+1.

1.3 Techniques against overfitting

If a learning machine performs well on the training set but poorly (or not so well) on new
examples, then we talk about overfitting. Figure (1.2) illustrates the phenomenon in the case of
regression.

Overfitting is a natural consequence of using a finite training set, therefore it is an issue in
almost every machine learning project. The question is not how to eliminate it completely but
how to handle it well. Fighting against overfitting to aggressively may lead to underfitting, which
means that the learning machine performs poorly both on training and new examples.

As we have seen previously, the training procedure of a learning machine often means the
unconstrained minimization of a differentiable objective function. In this case some usual tech-
niques against overfitting are the following:

• L2 regularization: The term 1
2λ||p||2L2 = 1

2λ
∑K

k=1 p2
k is added to the objective function,

where the vector p = (p1, . . . , pK) contains a subset of the model’s parameters and the

22

1.4. COLLABORATIVE FILTERING

scalar λ is called the regularization coefficient. Introducing this term penalizes the large
magnitude of model parameters.

• L1 regularization: The term λ||p||L1 = λ
∑K

k=1 |pk| is added to the objective function.
Introducing this term may cause that the optimal value of some parameters will be exactly
zero.

• Early stopping: The iterative minimization algorithm is stopped before reaching a station-
ary point of the loss function.

• It is often useful to apply both regularization and early stopping.

Without completeness, some other common techniques against overfitting are the following:

• In the case of FDA a convenient way to decrease overfitting is to add λwT w to the denom-
inator of the objective function.

• In the case of KNN overfitting can be decreased by increasing the number of relevant
neighbors K.

• In the case of ID3 overfitting can be decreased by increasing the Laplace smoothing term
β or the information gain threshold Gmin.

• In the case of SVM and LSVM overfitting can be decreased by decreasing the tradeoff
parameter C.

1.4 Collaborative filtering

In collaborative filtering, the phenomenon is a fully observable triplet (U, I,R), where

• U taking values from {1, . . . , NU} is called the user identifier,

• I taking values from {1, . . . , NI} is called the item identifier, and

• R taking values from R is called the rating value.

A realization of (U, I,R) denoted by (u, i, r) means that the u-th user rated the i-th item with
value r. The goal is to predict R from (U , I) with a function g : {1, . . . , NU}× {1, . . . , NI} 7→ R

such that mean squared error
L(g) = E{(g(U, I)−R)2}

is minimal. The most commonly used alternative error measure is E{|g(U, I) − R|}, the mean
absolute error.

Collaborative filtering can be viewed as a special case of regression. However, classical re-
gression techniques are not suitable for solving collaborative filtering problems, because of the
unique characteristics of the input variables.

Denote the random training set by T = ((U1, I1, R1), . . . , (Un, In, Rn)), and its realization by
t = ((u1, i1, r1), . . . , (un, in, rn)). Denote the set of user–item pairs appearing in the training set
by T = {u, i : ∃k : uk = u, ik = i}.

In real life, if a user has rated an item, then it is unlikely that he/she will rate the same item
again. Therefore it is unrealistic to assume that the elements of the training set are independent.
A more reasonable assumption is

P{Uk = uk, Ik = ik, Rk ≤ rk} =

P{U = uk, I = ik, R ≤ rk| ∩k−1
l=1 (U 6= ul, I 6= il)},

23

CHAPTER 1. INTRODUCTION

which means that the training set is generated by a “sampling without replacement” procedure.
If this assumption holds, then the training data can be represented as a partially specified

matrix R ∈ R
NU×NI called rating matrix, where the matrix elements are known in positions

(u, i) ∈ T , and unknown in positions (u, i) /∈ T . The value of the matrix R at position (u, i) ∈ T ,
denoted by rui, stores the rating of user u for item i.

When we predict a given rating rui, we refer to the user u as active user and to the item i
as active item. The (u, i) pair of active user and active item is termed query. The set of items
rated by user u is denoted by Tu = {i : ∃u : (u, i) ∈ T }. The set of users who rated item i is
denoted by T (i) = {u : ∃i : (u, i) ∈ T }.

1.4.1 Double centering

Double centering (DC) is a very basic approach that gives a rough solution to the problem. The
answer of DC for user u and item i is

g(u, i) = bu + ci,

where b1, . . . , bNU
called user biases and c1, . . . , cNI

called item biases are the parameters of the
model. Training can be done by minimizing

D(b, c) =
∑

(u,i)∈T
((bu + ci)− rui)

2,

the sum of squared errors on the training set.
D is convex and quadratic therefore its minimum can be expressed in closed form. The

difficulty is that typically D has so many variables that computing the closed form solution is
intractable. A faster method that produces an approximate solution is the following:

1. Initialize b to 0.

2. Repeat E times:

– Compute the c that minimizes D for fixed b:
ci ←

∑
u∈T (i)(rui − bu)/|T (i)|, for i = 1, . . . , NI .

– Compute the b that minimizes D for fixed c:
bu ←

∑
i∈Tu

(rui − ci)/|Tu|, for u = 1, . . . , NU .

Thus, we are alternating between minimizing the objective function in c and in b. Note that
generally there is no guarantee for the speed of convergence. A possible tool for reducing the
number of iterations is the Hooke–Jeeves pattern search algorithm [Hooke and Jeeves, 1961]. I
also mention that an alternative approach for the fast approximate minimization of D is the
conjugate gradient method [Shewchuk, 1994].

1.4.2 Matrix factorization

The idea behind matrix factorization (MF) techniques is simple: we approximate the rating
matrix R as the product of two matrices:

R ≈ PQ,

where P is an NU × L and Q is an L×NI matrix. We call P the user factor matrix and Q the
item factor matrix, and L is the rank of the given factorization.

24

1.4. COLLABORATIVE FILTERING

The prediction for user u and item i is the (u, i)-th element of PQ:

g(u, i) =

L∑

l=1

pulqli.

The training can be done by minimizing

M(P,Q) =
∑

(u,i)∈T

((
L∑

l=1

pulqli

)
− rui

)2

,

the sum of squared errors at the known positions of the rating matrix.

M is a polynomial of degree 4. It is convex in P and convex in Q, but it is not necessarily
convex in (P,Q). The approximate minimization of M can be done e.g. by stochastic gradient
descent [Takács et al., 2007] or alternating least squares [Bell and Koren, 2007].

1.4.3 BRISMF

In this section, I propose a practical and efficient variant of MF, called biased regularized in-
cremental simultaneous matrix factorization (BRISMF) [Takács et al., 2009]. The prediction of
BRISMF for user u and item i is

g(u, i) = bu + ci +
L∑

l=1

pulqli,

Contrary to basic MF, now the model contains user biases b1 . . . bNU
and item biases c1 . . . cNI

too. The function to minimize is

M(P,Q,b, c) =
∑

(u,i)∈T

(
(g(u, i)− rui)

2
+ λU

L∑

l=1

p2
ul + λI

L∑

l=1

q2
li

)
.

The difference from basic MF is that now the objective function contains regularization terms too
(λU and λI are called user and item regularization coefficients). The minimization ofM is done
by stochastic (aka incremental) gradient descent. The pseudo-code of the training algorithm can
be seen in Figure 1.3.

The meanings of the algorithm’s meta-parameters are as follows:

• R ∈ R: range of random number generation at model initialization,

• E ∈ N: number of epochs (iterations over the training set),

• ηU , ηI ∈ R: user and item learning rates8 — they control the step size at model update,

• λU , λI ∈ R: user and item regularization coefficients — they control how aggressively the
factors are pushed towards zero,

• D ∈ {0, 1}: ordering flag — controls whether ordering by date should be used within users.

8The idea of using different meta-parameters for users and items was suggested by my colleague, István Pilászy.

25

CHAPTER 1. INTRODUCTION

Input: rui : (u, i) ∈ T , |T | = n // the training set

Input: R, E, ηU , ηI , λU , λI , D // meta-parameters

Output: P, Q, b, c // the trained model

P, Q, b, c ← uniform random numbers from [−R,R] // initialization1

for e ← 1 to E do // for all epochs2

for u ← 1 to NU do // for all users3

Tu ← {i : ∃u : (u, i) ∈ T }4

I ← a random permutation of the elements of Tu5

if D = 1 and dates are available for ratings then6

I ← the elements of Tu sorted by rating date (in ascending order)7

end8

for i in I do // for user’s ratings9

a ← bu + ci +
∑L

l=1 pulqli // calculate answer10

ε← a− yi // calculate error11

bu ← bu − ηUε // update biases12

ci ← ci − ηIε13

for l ← 1 to L do // update factors14

p ← pul // save current value15

pul ← pul − ηU (εqli + λUpul)16

qli ← qli − ηI(εp + λIqli)17

end18

end19

end20

end21

Figure 1.3: Training algorithm for BRISMF.

26

1.4. COLLABORATIVE FILTERING

In the time dependent version of collaborative filtering a time attribute is also given for each
rating, and a task is to predict future ratings from past ones. The setting D = 1 makes the
algorithm able to deal with this variant of the problem in a simple and computationally efficient
way.

It is important that P and Q are initialized randomly. For example, if they were initial-
ized with zeros, then they would not change during the training. The time requirement of the
algorithm is O(EL|T |), therefore it is able to deal with very large datasets.

BRISMF differs from other MF techniques in a few important aspects. Here is a summary
of differences from the most common alternatives:

• Simon Funk’s MF [Funk, 2006]: Simon Funk’s approach applies a sequence of rank 1
approximations instead of updating all factors simultaneously. It is not specified when the
learning procedure has to step to the next factor. His approach converges slower than
BRISMF, because it iterates over R more times. Moreover, Simon Funk’s MF does not
contain bias terms.

• Paterek’s MF [Paterek, 2007]: The idea of user and item bias appeared at the same time
in Paterek’s work (in section “Improved regularized SVD”) and in [Takács et al., 2007] (in
section “Constant values in matrices”). Paterek’s MF variant shares some common features
with BRISMF, but it uses Simon Funk’s approach to update factors.

• BellKor’s MF [Bell and Koren, 2007]: BellKor’s MF does not contain bias terms, and it
uses alternating least squares for the approximate minimization of the objective function.
This means that P and Q are initialized randomly, one of them is recomputed using a least
squares solver while the other is constant, then the other is recomputed, and these two
alternating steps are performed E times. The time requirement of alternating least squares
is O(E(NU + NI)L

3 + EL2|T |), and this upper bound is close to the true computational
complexity. Therefore, BellKor’s MF is less scalable than BRISMF.

• None of the previous three MF variants apply ordering by date within user ratings.

1.4.4 Neighbor based methods

Neighbor based methods exploit the observation that similar users rate similar items similarly. In
the item neighbor based version of the approach, the prediction formula contains the similarities
between the active item and other items rated by the active user.

Here I present an elegant and efficient item neighbor based method (referred as NSVD1) that
infers the similarity measure from the data. The earliest variant of the approach appeared in
Paterek’s pioneering work [Paterek, 2007].

The answer of a basic neighbor based method for user u and item i is

g(u, i) = bu + ci +
1√
|Tu|

∑

j∈Tu

sji,

where b1, . . . , bNU
and c1, . . . , cNI

are user and item biases as usual, and Tu is the set of items
rated by user u. The sji ∈ R values can be interpreted as similarities between items in a sense:
sji > 0 (sji < 0) means that if a user has rated item j, than he/she will probably like (dislike)
item i more than an average user, and sji = 0 means that there is no such connection between
items j and i.

If all sji values are 0 in the sum, then the prediction will be bu + ci, therefore bu + ci can be

considered as the default answer of the model. The role of the normalization factor 1/
√
|Tu| is

27

CHAPTER 1. INTRODUCTION

to control the deviation of the output around bu + ci. If we used 1/|Tu|0 = 1 instead, then it
would be difficult to keep the answer in a reasonable range. If we used 1/|Tu|, then the model
would be too conservative for users with many ratings.

The matrix of sji values denoted by S can be called the item–item similarity matrix (j is the
row and i is the column index). It is possible to consider S as the parameter of the model, and
do the training via stochastic gradient descent [Paterek, 2007]. However, this approach is often
inefficient, since S has N2

I elements, and in a typical collaborative filtering setting NI is large.
The key idea of NSVD1 is to approximate the similarity matrix as S ≈WQ, the product of

two lower-rank matrices. We call Q ∈ R
L×NI as the primary item factor matrix and W ∈ R

NI×L

the secondary item factor matrix.
If we introduce the the notation

pul =

 1√
|Tu|

∑

j∈Tu

wjl

 ,

then the answer of NSVD1 for user u and item i can be written as

g(u, i) = bu + ci +
L∑

l=1

pulqli.

Thus, the prediction formula is the same as in the case of BRISMF. The difference is that now
the pul values are not parameters of the model. They are instead functions of the secondary item
factors. From now we will refer to the pul values as virtual user factors.

Training can be done by minimizing

N (Q,W,b, c) =
∑

(u,i)∈T

(
(g(u, i)− rui)

2
+ λU

L∑

l=1

p2
ul + λI

L∑

l=1

q2
li

)
,

the regularized sum of squared errors on the training examples.
For the approximate minimization of N , there exist different variants of stochastic gradient

descent. Figure 1.4 presents the pseudo-code of my proposed variant that was introduced in
[Takács et al., 2008].

The meta-parameters of the algorithm are the same as in the case of BRISMF. Note that the
naive implementation of stochastic gradient descent would be inefficient, since it would iterate
over all ratings of the given user at each training example. The presented algorithm overcomes
this difficulty by processing the training examples user-wise, and iterating over the ratings of
each user three times:

• In the first iteration, the virtual user factors are computed.

• In the second iteration, the virtual user factors and the primary item factors are updated.

• In the third iteration, the change of the virtual user factors is distributed among the
secondary item factors.

The derivation of the update formula for pul is the following: If we differentiate the (u, i)-th
term of N with respect to wjl, then we get

2
1√
|Tu|

(qli + λUpul).

28

1.4. COLLABORATIVE FILTERING

Input: rui : (u, i) ∈ T , |T | = n // the training set

Input: R, E, ηU , ηI , λU , λI // meta-parameters

Output: P, Q, b, c // the trained model

P, Q, b, c ← uniform random numbers from [−R,R] // initialization1

for e ← 1 to E do // for all epochs2

for u ← 1 to NU do // for all users3

Tu ← {i : ∃u : (u, i) ∈ T } // set of rated items4

I ← a random permutation of the elements of Tu5

if D = 1 and dates are available for ratings then6

I ← the elements of Tu sorted by rating date (in ascending order)7

end8

pu1, . . ., puL, ← zeros // initialize virtual user factors9

for i in I do // calculate virtual user factors10

for l ← 1 to L do11

pul ← pul + wil/|
√Tu|12

pold
ul ← pul13

end14

end15

for i in I do16

a ← bu + ci +
∑L

l=1 pulqli // calculate answer17

ε← a− yi // calculate error18

for l ← 1 to L do19

p ← pul20

pul ← pul − ηU (εqli + λUpul) // update virtual user factor21

qli ← qli − ηI(εp + λIqli) // update primary item factor22

end23

end24

for i in I do // update secondary item factors25

for l ← 1 to L do26

wil ← wil + rui(pul − pold
ul)/

√
|Tu|27

end28

end29

end30

end31

Figure 1.4: Training algorithm for NSVD1.

29

CHAPTER 1. INTRODUCTION

Thus, the change of wjl after making a step into the direction the negative gradient is

∆wjl = −ηU
1√
|Tu|

(qli + λUpul).

Consequently, the update formula for pul is

pul ← pul +

 1√
|Tu|

∑

j∈Tu

ruj∆wjl

 = pul + ηU (qli + λUpul)

∑
j∈Tu

1

|Tu|
.

1.4.5 Convex polyhedron methods

With the generalization of matrix factorization it is possible introduce convex polyhedron models
for collaborative filtering. Assume that we have K user factor matrices P(1), . . . ,P(K), an item
factor matrix Q, a user bias vector b and an item bias vector c. The answer of the convex
polyhedron predictor for user u and item i can be defined as

g(u, i) = bu + ci + min

{(
L∑

l=1

p
(1)
ul qli

)
, . . . ,

(
L∑

l=1

p
(K)
ul qli

)}
�

�

�

�1.17

= bu + ci −max

{
−
(

L∑

l=1

p
(1)
ul qli

)
, . . . ,−

(
L∑

l=1

p
(K)
ul qli

)}
.

An analogous variant can be obtained, if we have one user factor matrix P and K item factor
matrices Q(1), . . . ,Q(K):

g(u, i) = bu + ci + min

{(
L∑

l=1

pulq
(1)
li

)
, . . . ,

(
L∑

l=1

pulq
(K)
li

)}
�

�

�

�1.18

= bu + ci −max

{
−
(

L∑

l=1

pulq
(1)
li

)
, . . . ,−

(
L∑

l=1

pulq
(K)
li

)}
.

Training such models is not easy because of the non differentiable minimum (maximum)
function appearing in the formulae.

1.5 Other machine learning problems

The rest of the thesis will focus on convex polyhedron algorithms for classification and collab-
orative filtering. Having said this, here I briefly sketch some other machine learning problems
too, in order to demonstrate the richness of the discipline.

1.5.1 Clustering

In the problem of clustering the phenomenon is a partially observable pair (X, Y), where

• the observable X taking values from R
d is called input, and

• the unobservable Y taking values from C = {c1, . . . , cM},M ≥ 2 is called label.

The goal is to estimate the joint distribution of (X, Y). We have to make assumptions about
the distribution of (X, Y), otherwise the problem is ill-defined.

30

1.5. OTHER MACHINE LEARNING PROBLEMS

1.5.2 Labeled sequence learning

In the problem of labeled sequence learning the phenomenon is a fully observable triplet (X, Y, T),
where

• X taking values from R
d is called input,

• Y taking values from Y taking values from C = {c1, . . . , cM},M ≥ 2 is called label, and

• T taking values from N is called time.

It is assumed that the event T = t has nonzero probability for all t ∈ N. The goal is to
predict Y from (X, T) with a function g : R

d × N 7→ C called classifier such that the long term
error probability

L(g) =
∞∑

t=0

P{g(X, t) 6= Y |T = t}

is minimal.

1.5.3 Time series prediction

In the problem of time series prediction the phenomenon is a fully observable triplet (X, Y, T),
where

• X taking values from R
d is called input,

• Y taking values from Y taking values from R is called target, and

• T taking values from N is called time.

It is assumed that the event T = t has nonzero probability for all t ∈ N. The goal is to
predict Y from (X, T) with a function g : R

d × R 7→ C called predictor such that the long term
mean squared error

L(g) =

∞∑

t=0

E{(g(X, t)− Y)2|T = t}

is minimal.

31

Beware of bugs in the above code;

I have only proved it correct, not

tried it.

Donald Knuth 2
Algorithms

In this chapter I will propose novel algorithms that use convex polyhedrons for solving various
machine learning problems. At first, let us consider the problem of convex separability. Assume
that P and Q are two finite point sets in R

d. One may ask different questions about separating
P and Q:

A) Is there a half-space S ⊂ R
d such that P ⊂ S and Q ⊂ S̄?1

B) Is there a convex polyhedron S ⊂ R
d such that P ⊂ S and Q ⊂ S̄?

C) For fixed K, is there a convex K-polyhedron S ⊂ R
d such that P ⊂ S and Q ⊂ S̄?

Question A is known as the problem of linear separability and question B as the problem
of convex separability. We will see that both can be decided in polynomial time. In contrast,
answering question C is NP hard2. The only easy case is K = 1, where the task is to determine
linear separability. It is interesting that even the case K = 2 called wedge separation is NP hard
[Megiddo, 1988, Arkin et al., 2006].

Roughly speaking, this implies the following for convex polyhedron classification: if an al-
gorithm using K hyperplanes wants to exactly minimize the number of misclassifications in the
training set, then it has to be slow. Only approximate algorithms can be efficient in terms of
running time, if the number of hyperplanes is fixed.

I underline that convex separability and convex polyhedron classification are different prob-
lems. A convex separability algorithm has only to say a simple yes or no answer. If the algorithm
is constructive (shows a polyhedron if the answer is yes), then the only requirement for the con-
structed polyhedron is to demonstrate convex separability.

In contrast, the output of a convex polyhedron classification algorithm is always a convex
polyhedron. The goal is not to separate the classes perfectly in the training set, but to minimize
the error probability for future examples. Sometimes it is worthwhile to commit errors in the
training set in order to achieve better generalization.

2.1 Linear programming basics

The next section of this chapter will use elements from the theory of linear programming. For
those ones who are less familiar with the topic, this section gives an overview about some basic
concepts and results (for more details see e.g. [Chvátal, 1983] or [Ferguson, 2004]).

1S̄ means R
d \ S, the complement of S.

2It is important to note that the dimension d is not fixed.

33

CHAPTER 2. ALGORITHMS

In a constrained optimization problem the task is to maximize or minimize an objective func-
tion subject to constraints on the possible values of the variables. A vector of variables is called
feasible, if it satisfies the constraints. The set of feasible vectors is called the feasible set. A
constrained optimization problem is said to be feasible, if its feasible set is not empty; other-
wise it is termed infeasible. A constrained maximization (minimization) problem is said to be
unbounded, if its objective function can assume arbitrarily large positive (negative) values at
feasible vectors; otherwise it is termed bounded. Note that infeasible problems are considered as
bounded according to the definition.

A linear program is a constrained optimization problem, in which the objective function is
linear, and the constraints are linear inequalities or equalities. The standard maximum form of
a linear program is the following:

variables: x ∈ R
d

maximize: cT x
�

�

�

�2.1

subject to: Ax ≤ b

x ≥ 0,

where x ∈ R
d contains the variables that should be set, and A ∈ R

n×d, b ∈ R
n, c ∈ R

d contain
fixed, known values. It is easy to show that every linear program can be transformed to standard
maximum form:

• The minimization of function f is equivalent with the maximization of −f .

• The constraint α ≥ β is equivalent with −α ≤ −β.

• The constraint α = β is equivalent with α ≤ β, −α ≤ −β.

• An unrestricted variable can be represented as the difference of two non-negative ones.

If maximization is replaced by minimization and Ax ≤ b is replaced by Ax ≥ b, then we get
the standard minimum form. A linear program in standard maximum (minimum) form is also
called a standard maximum (minimum) problem.

The dual of the standard maximum problem (2.1) is defined as the following standard mini-
mum problem:

variables: y ∈ R
n

minimize: bT y
�

�

�

�2.2

subject to: AT y ≥ c

y ≥ 0,

The original standard maximum problem is referred as primal in this relation. If we transform
(2.2) to standard maximum form (by multiplying A, c, and c by −1), then its dual by definition
is (2.1), transformed to standard minimum form. Therefore, it is rightful to say that (2.1) and
(2.2) are the duals of each other.

If a vector z is a feasible for the primal (dual) problem, then it termed primal (dual) feasible.
The weak duality theorem says that for any primal feasible x and dual feasible y

cT x ≤ bT y.

The theorem is a straightforward consequence of the definitions:

34

2.2. ALGORITHMS FOR DETERMINING SEPARABILITY

1. cT x ≤ yT Ax, because c ≤ AT y and x ≥ 0.

2. yT Ax ≤ bT y, because Ax ≤ b and y ≥ 0.

It follows directly from the theorem that if the primal and the dual problems are both feasible,
then both are bounded too. Moreover, if there exist a primal feasible x∗ and a dual feasible y∗

so that cT x∗ = bT y∗ then x∗ is optimal for the primal and y∗ for the dual problem.
The strong duality theorem says that if a standard maximum problem is feasible and bounded,

then so its dual, and there exists a primal feasible x∗ and a dual feasible y∗ so that cT x∗ = bT y∗.
The proof (that can be found e.g. in [Chvátal, 1983]) is not as straightforward as the weak duality
theorem’s.

Now we introduce the concept of equivalence between linear programs in order to obtain a
more general definition of duality. Let P1 and P2 be linear programs with d1 and d2 variables.
P1 and P2 are equivalent, if there exists a bijection between R

d1 and R
d2 so that the feasible sets

correspond to each other, and

• the objective function values are the same for corresponding vectors, if P1 and P2 are both
maximization or minimization problems,

• the objective function values equal −1 times each other for corresponding vectors, one of
the problems is a maximization and the other is a minimization problem.

For example, let us consider the following linear program:

variables: x ∈ R
d, s ∈ R

n

maximize: cT x

subject to: Ax + s = b

x ≥ 0, s ≥ 0.

It is easy to see that this is equivalent with the standard maximum problem (2.1). The bijection
is given by the formulae z = x and s = Ax − b. I remark that this formulation is called the
augmented form of the standard maximum problem, and the variables s1, . . . , sn are called slack
variables.

Now we are ready introduce the more general definition of duality. Let P and Q be two linear
programs. Q is said to be the dual of P, if a standard minimum equivalent of Q is the dual of a
standard maximum equivalent of P.

2.2 Algorithms for determining separability

In this section I will introduce definitions and overview conventional approaches for determining
linear and convex separability. I will also propose two new families of methods: one for linear and
one for convex separability. In the Applications chapter it will be demonstrated by experiments
that the proposed algorithms compare favorably in running time with the existing ones.

2.2.1 Definitions

Let T be a subset of R
d. The convex hull of T denoted by conv(T) is the minimal convex subset

of R
d that contains T . If T is finite, then conv(T) is a convex polyhedron. A convex polyhedron

in R
d can be given either by its vertices or its (d − 1)-dimensional facets. The former is called

vertex representation, and the latter is called half-space representation. In high dimensions it is

35

CHAPTER 2. ALGORITHMS

(a) (b) (c) (d)

Figure 2.1: Examples for linearly separable (a), mutually convexly separable (b), convexly sep-
arable (c), and convexly nonseparable (d) point sets.

typically difficult to change from a given representation to the other, because the convex hull of
points can have intractably many facets, and the intersection of half-spaces can assign intractably
many extremal points.

Let P = {p1, . . . ,pm} ⊂ R
d and Q = {q1, . . . ,qn} ⊂ R

d be two finite point sets.

Definition 2.1. P and Q are linearly separable if and only if conv(P) ∩ conv(Q) = ∅.
Definition 2.2. P and Q are convexly separable if and only if P∩conv(Q) = ∅ or Q∩conv(P) =
∅. If P ∩ conv(Q) and Q∩ conv(P) are both empty, then P and Q are called mutually convexly
separable. If Q ∩ conv(P) is empty, but P ∩ conv(Q) is not, then P is called the inner set and
Q the outer set.

Figure 2.1 shows examples for different types of separability. Note that linear separability
implies mutual convex separability, but the reverse is not true.

2.2.2 Algorithms for linear separability

The question of linear separability can be formulated as a linear programming problem:

variables: w ∈ R
d, b ∈ R

minimize: 1
�

�

�

�2.3

subject to: wT pi + b ≥ +ε, i = 1, . . . ,m

wT qj + b ≤ −ε, j = 1, . . . , n

where ε is an arbitrary positive constant. The constraints express that the elements of P and Q
have to be on the opposite sides of the hyperplane wT x + b = 0. P and Q are linearly separable
if and only if the problem is feasible. This basic and straightforward method will be referred as
LSEP1.

Maybe it is a bit unusual in LSEP1 that the function to minimize is constant. By introducing
slack variables we can obtain a formulation that has a non-constant objective function, and that
always has a feasible and bounded solution:

variables: w ∈ R
d, b ∈ R, s ∈ R

m, t ∈ R
n

minimize:
m∑

i=1

si +
n∑

j=1

tj
�

�

�

�2.4

subject to: wT pi + b ≥ +ε− si, si ≥ 0, i = 1, . . . ,m

wT qj + b ≤ −ε + tj , tj ≥ 0, j = 1, . . . , n

36

2.2. ALGORITHMS FOR DETERMINING SEPARABILITY

P and Q are linearly separable if and only if the solution is s = 0, t = 0. Linear programming
problems can be solved in polynomial time e.g. by using Karmarkar’s algorithm [Karmarkar,
1984], therefore linear separability can be decided in polynomial time.

The dual of the LSEP1 formulation (referred as LSEP∗
1) is the following:

variables: α ∈ R
m, β ∈ R

n

maximize: ε

m∑

i=1

αi +

n∑

j=1

βj

�

�

�

�2.5

subject to:
m∑

i=1

αipi =
n∑

j=1

βjqj

m∑

i=1

αi =

n∑

j=1

βj , α,≥ 0, β ≥ 0

Note that the problem is always feasible. If α and β are not zero vectors, then the constraints are
expressing that the conv(P) and conv(Q) have a common point. P and Q are linearly separable
if and only if the solution is α = 0, β = 0. If P and Q are not linearly separable, then the
solution is unbounded.

It is natural to introduce a slightly modified version of LSEP∗
1 (referred as LSEP+

1):

variables: α ∈ R
m, β ∈ R

n

maximize: ε

m∑

i=1

αi +

n∑

j=1

βj

�

�

�

�2.6

subject to:
m∑

i=1

αipi =
n∑

j=1

βjqj

m∑

i=1

αi =

n∑

j=1

βj = 1, α,≥ 0, β ≥ 0

The difference from LSEP∗
1 is that now the components must sum to 1 in α and β. P and Q are

linearly separable if and only if the problem is infeasible. If P and Q are not linearly separable,
then the problem has a feasible solution.

An interesting modification of LSEP1 (referred as LSEP2) tries to find a separating hyperplane
with a small norm:

variables: w,v ∈ R
d, b ∈ R

minimize:

d∑

k=1

(wk + vk)
�

�

�

�2.7

subject to: (w − v)T pi + b ≥ +ε, i = 1, . . . ,m

(w − v)T qj + b ≤ −ε, j = 1, . . . , n

w ≥ 0, v ≥ 0

P and Q are linearly separable if and only if the problem is feasible. The price of penalizing the
L1 norm of w and v is that LSEP2 has (nearly) twice as many variables as LSEP1. We will see
that this extra computational cost can pay off in certain cases.

37

CHAPTER 2. ALGORITHMS

The dual of LSEP2 (referred as LSEP∗
2) is the following:

variables: α ∈ R
m, β ∈ R

n

maximize: ε

m∑

i=1

αi +

n∑

j=1

βj

�

�

�

�2.8

subject to: − 1 ≤
m∑

i=1

αipi −
n∑

j=1

βjqj ≤ 1

m∑

i=1

αi =

n∑

j=1

βj , α,≥ 0, β ≥ 0

where 1 denotes the all-one vector. P and Q are linearly separable if and only if the solution is
α = 0, β = 0.

Finally, a quadratic programming based formulation (referred as LSEPS) is the following:

variables: w ∈ R
d, b ∈ R, s ∈ Rm, t ∈ R

n

minimize:
1

2
wT w + C

m∑

i=1

si +

n∑

j=1

tj

�

�

�

�2.9

subject to: wT pi + b ≥ +1− si, si ≥ 0, i = 1, . . . ,m

wT qj + b ≤ −1 + tj , tj ≥ 0, j = 1, . . . , n

Note that this is equivalent with linear SVM training. P and Q are linearly separable if and only
if there exist a C > 0 for which the solution has the following property: s1, . . . , sm, t1, . . . , tn < 1.
In practice it is not possible to check this property for all C values, just for a reasonably large
one. Therefore, we cannot completely rely on the answer, if LSEPS says no.

Recall that if the point sets are linearly separable (and there are no slack variables), then
minimizing 1

2w
T w means maximizing the distance between the separating hyperplane and the

closest points. Obviously, introducing this quadratic term into the objective function makes
the optimization problem harder. The rationale behind this formulation is that for linear SVM
training there exist efficient solving algorithms and fine-tuned software.

Proposed new methods

The algorithms presented so far try to solve the full problem in one step. Here I propose a novel
approach (referred as LSEPX) that is incremental:

1. Let P1, . . . ,PL and Q1, . . . ,QL be two systems of sets such that P1 ⊂ · · · ⊂ PL = P and
Q1 ⊂ · · · ⊂ QL = Q.

2. For k = 1, . . . , L:

– Check whether Pk and Qk are separable using LSEP1, or LSEP2. The result of this
step is a yes or no answer and a separating hyperplane wT

k x + bk = 0 if the answer is
yes.

– If the answer is no, then P and Q are not linearly separable.

– If the hyperplane wT
k x + bk = 0 separates P and Q, then P and Q are linearly

separable.

38

2.2. ALGORITHMS FOR DETERMINING SEPARABILITY

Pk and Qk can be called the active sets in the k-th iteration. The last iteration is equivalent
with solving the full problem. The advantage of the approach is that there is a chance of getting
the answer before the last iteration. However, there is no guarantee for that. A reasonable
heuristic for defining the active sets is the following:

1. P1, Q1 ← random min{d, |P|} and min{d, |Q|} element subsets of P and Q.

2. At the k-th iteration:

– For each x ∈ P ∪Q calculate δk(x) = (wT
k x + b)(−1)I{x∈Q}.

– Denote the set of γk points with smallest δk values by Uk.

– Pk+1 ← Pk ∪ (Uk ∩ P), Qk+1 ← Qk ∪ (Uk ∩Q).

Thus, in each iteration the points with largest “errors” are added to the active sets. Some
possible choices for γk are γk ≡ 1, γk ≡ d, or γk = 2kd.

A possible disadvantage of LSEPX is that points are never removed from the active sets. As
a consequence, the active sets may contain redundant elements, which can increase running time.
On the other hand, if we allow removals from the active sets without restrictions, then there is
no guarantee for stopping. A simple solution to the dilemma is to allow removing points only
once.

The modified version of LSEPX (referred as LSEPY) defines the active sets as follows:

1. P1, Q1 ← random min{d, |P|} and min{d, |Q|} element subsets of P and Q.

2. At the k-th iteration:

– For each x ∈ P ∪Q calculate δk(x) = (wT
k x + b)(−1)I{x∈Q}.

– Denote the set of γk points with smallest δk values by Uk.

– Denote the set of points with δk value greater than ε2 > 0 by Vk.

– Vk ← Vk \
(
∪k−1

l=1 Vl

)
, in order to avoid multiple removals.

– Denote the element of P and Q with minimal δk value by p′ and q′. Remove p′ and
q′ from Vk, in order to keep at least 1 point from P and Q.

– Pk+1 ← Pk ∪ (Uk ∩ P) \ (Vk ∩ P), Qk+1 ← Qk ∪ (Uk ∩Q) \ (Vk ∩Q).

It is also possible to introduce an incremental method based on the dual based formulation
LSEP+

1 . The outline of the algorithm (referred as LSEPZ) is the following:

1. Create reduced versions of P and Q by keeping only γ randomly selected coordinates
(features). Denote the result by P1 and Q1.

2. For k = 1, . . . n:

– Check whether Pk and Qk are separable using LSEP+
1 . The result of this step is a

yes or no answer and an α and a β vector, if the answer is no.

– If the answer is yes, then P and Q are linearly separable.

– If the answer is no, then:

∗ If Pk = P and Qk = Q, then P and Q are not linearly separable.

∗ Calculate s =
∑m

i=1 αipi −
∑n

j=1 βjqj , where pi-s and qj-s are from the original
P and Q sets.

∗ Denote the coordinates with largest |sk| values by Uk.

39

CHAPTER 2. ALGORITHMS

∗ Define Pk+1 and Qk+1 as the extension of Pk and Qk with the coordinates in Uk.

It is interesting to observe that the dual based LSEPZ is not perfectly “symmetric” to the
previous two primal based approaches. While LSEPX and LSEPY are able to achieve a speedup
both in the separable and the nonseparable case, LSEPZ is capable of that only in the nonsepa-
rable case. Note that only LSEP+

1 can be used among the dual based basic methods in LSEPZ,
since LSEP∗

1 and LSEP∗
2 can have unbounded solution in the nonseparable case.

Finally, I would like to mention that it is possible to define hybrid methods (referred as
LSEPZX and LSEPZY) based on the previous algorithms:

1. Run LSEPZ and try to reduce the number of coordinates (features).

2. If the answer of LSEPZ is yes, then run LSEPX or LSEPY on the reduced dataset.

2.2.3 Algorithms for convex separability

Recall that P andQ are called convexly separable, if and only if P∩conv(Q) = ∅ orQ∩conv(P) =
∅. Without loss of generality assume that we want to decide whether Q∩ conv(P) is empty. The
other property can be checked exactly the same way.

At first we overview a naive approach with exponential time complexity:

1. Compute a half-space representation of conv(P). This yields wk-s and bk-s (k = 1, . . . , r)
such that conv(P) = {x ∈ R

d : wT
1 x ≥ b1, . . . ,w

T
r x ≥ br}.

2. Q∩ conv(P) = ∅ if and only if maxj=1,...,n{mink=1,...,r{wT
k qj − bk}} < 0.

The problem with this algorithm is that the size of half-space representation r typically grows
exponentially with d.

The methods presented from now will all have polynomial time complexity. A basic and
straightforward approach (referred as CSEP) is to separate each element ofQ from P individually.
The primal based version of the algorithm is the following:

1. U ← ∅, q← a random element of Q.

2. For k = 1, . . . , n:

– Check whether P and {q} are linearly separable using LSEP1, or LSEP2, LSEPX,
LSEPY, LSEPZX or LSEPZY. The result of this step is a yes or no answer and a
separating hyperplane wT

k x + bk = 0 if the answer is yes.

– If the answer is no, then P and Q are not convexly separable.

– If the answer is yes, then:

∗ If U = Q, then P and Q are convexly separable

∗ For each x ∈ Q \ U calculate δk(x) = −(wT
k x + bk).

∗ If the smallest δk value is greater than 0, then P and Q are convexly separable.

∗ Add the point with smallest δk value to U .

The dual based version of CSEP is the following:

1. For k = 1, . . . , n:

– Check whether P and {qk} are linearly separable using LSEP∗
1, LSEP+

1 , LSEP∗
2, or

LSEPZ. The result of this step is a yes or no answer.

40

2.2. ALGORITHMS FOR DETERMINING SEPARABILITY

– If the answer is no, then P and Q are not convexly separable.

2. P and Q are convexly separable.

Note that the primal based version is able to finish in less than n iterations both in the sepa-
rable and the nonseparable case. In contrast, the dual based version always runs |Q| iterations,
if P and Q are convexly separable.

A proposed new method

At first I introduce a fast algorithm (referred as CSEPC) that performs approximate convex
separation:

1. V ← ∅. s1, . . . , sn ←∞.

2. Compute the centroid of P as p̄← 1
m (p1 + · · ·+ pm).

3. Choose qk from Q such that k = arg maxj=1,...,n{sj}.

4. If sk ≤ 0, then return V.

5. Compute w← (p̄− qk)/‖p̄− qk‖ and b← mini=1,...,m{wT pi}.

6. V ← V ∪ {(w, b)}.

7. For all sj > 0: sj ← min{sj , wT qj − b}. sk ← 0.

8. Go to step 4.

The idea of the algorithm is to define hyperplanes by connecting the elements of Q with
the centroid of P, and translate the hyperplanes to the boundary of conv(P). Therefore the
algorithm can be called the centroid method. The centroid method is often able to separate most
of the elements of Q from conv(P). However, it does not guarantee to find a convex separation
even for for convexly separable point sets.

Now I propose an exact algorithm (referred as CSEPX) that uses the centroid method as a
preprocessor:

1. Run CSEPC on P,Q. The result of this step is a set of weight–bias pairs V = {(w1, b1), . . . ,
(wr, br)} and a set of not separated points Q′ = {q ∈ Q : mink=1,...,r{wT

k q + bk} ≥ 0}.

2. Run CSEP on P,Q′. The result of this step is a yes or no answer A indicating whether
Q′ ∩ conv(P) is empty, and a set of weight–bias pairs W, if the answer is yes.

3. If A is no, then answer no. If A is yes, then answer yes and return V ∪W.

CSEPC and CSEPX were first published in [Takács and Pataki, 2007a]. In many practical
cases CSEPX can achieve a large speedup over the other presented methods. The efficiency of
the algorithm will demonstrated by experiments in the Applications chapter.

41

CHAPTER 2. ALGORITHMS

2.3 Algorithms for classification

Recall, that a convex K-polyhedron classifier is function g : R
d 7→ {c1, c2} that can be written

in the following form:

g(x) = th(min{wT
1 x + b1, . . . ,w

T
Kx + bK})

= th(−max{−wT
1 x− b1, . . . ,−wT

Kx− bK}),

where w1, . . . ,wK ∈ R
d are called weight vectors and b1, . . . , bK ∈ R are called biases. The class

associated with c1 is called the positive, and the class associated with c2 the negative class. It is
assumed that the labels are c1 = 1, c2 = 0, and also that the negative class has higher probability
(P{Y = 0} > P{Y = 1}).

If wT
k x < −bk for any k ∈ {1, . . . ,K}, then the input x can be classified as negative immedi-

ately. Therefore, convex polyhedron classifiers tend to classify negative examples quickly, which
makes the approach particularly suitable for unbalanced problems.

Despite this appealing property, convex polyhedron classifiers are not frequently used in prac-
tice currently. The main reason for that is the lack of efficient and practical training algorithms.
In the next section we will overview the small literature of the area. Then, I will propose novel
algorithms that attempt to make the convex polyhedron classifier a practical tool.

2.3.1 Known methods

Probably the best known work that applied convex polyhedron classifiers for solving a practical
problem is [Elad et al., 2001]. In this paper the authors propose the maximal rejection (MR)
approach that can be applied for training convex polyhedron classifiers. The key idea of MR is
defining the criterion function

M(w) =
(wT m1 −wT m0)

2 + wT R1w + wT R0w

wT R1w + λwT w
,

�

�

�

�2.10

where m1, m0, R1 and R0 are the empirical means and covariances of the classes (see the
description of Fisher discriminant analysis on page 14 for the details), and λ is the regularization
coefficient. If we introduce the notation Q = (m1 −m0)(m1 −m0)T + R1 + R0, then M can
be written as

M(w) =
wT Qw

wT (R1 + λI)w
,

where I is the d× d identity matrix.
It can be shown that the w that maximizesM is an eigenvector of (R1+λI)−1Q corresponding

to the largest eigenvalue. Note that the maximum is not unique, sinceM(w) =M(αw) for every
α 6= 0.

The outline of MR training is the following3:

• For k = 1, . . . ,K:

– Set wk to arg maxw∈RM(w).

– If
∑

i:yi=1 wT
k xi/

∑
i yi <

∑
i:yi=0 wT

k xi/
∑

i(1− yi), then flip the sign of wk.

– Define gk(x) as th(min{wT
1 x + b1, . . . ,w

T
k x + bk}).

– Set bk by minimizing
∑

i:yi=1 I{gk(xi) 6= yi}+ β
∑

i:yi=0 I{gk(xi) 6= yi}.
3This variant is a bit more flexible than the original one.

42

2.3. ALGORITHMS FOR CLASSIFICATION

– Exclude examples from the training set for which gk(xi) = 0.

The output of training is a convex K-polyhedron classifier. The parameter β > 0 expresses our
willingness to tolerate false negative classifications (larger β results more false negatives and less
false positives).

There also exist other known methods for training convex polyhedron classifiers, but they are
less practical than MR. Some of the alternatives are the following:

• [Pilászy and Dobrowiecki, 2007] tries to separate each negative example from the positive
class individually with an adaptation of the multiclass SVM method [Crammer and Singer,
2001]. The algorithm can be used only for small problems due to its large computational
complexity.

• The ID3 algorithm (see page 17) can also be used for training convex polyhedron classifiers,
if we introduce the following restrictions: all features have to be continuous or binary, and
one of the partitions has to be labeled as negative after each split. Unfortunately, the
modeling power of this approach is quite limited.

• The hinging hyperplanes approach [Breiman, 1993] describes one of the classes as the union
of convex 2-polyhedrons. A hinge function is the maximum (or minimum) of two linear
functions and the hinge is the intersection of the two hyperplanes defined by the linear
functions. The classification formula consists of a threshold function applied on the sum of
hinge functions. Training is done by iterating over the hinge functions, and setting their
parameters separately. The disadvantage of the approach is that it does not deal with
K-polyhedrons, and it allows only axis-parallel hinge directions.

• In the literature of probably approximately correct learning (PAC learning) [Valiant, 1984]
one can find theoretical works related to convex polyhedron classification, for example
[Fischer, 1995, Vempala, 1997, Kwek and Pitt, 1998, Klivans et al., 2004]. PAC is a for-
malism for determining how much data is needed for a given classification algorithm to
achieve a given accuracy on a given fraction of test examples. Unfortunately, the con-
vex polyhedron classification algorithms published in the PAC papers are not practical
methods. They are instead tools for proving theorems about PAC-learnability.

2.3.2 Smooth maximum functions

One of the factors that make the training of convex K-polyhedron classifiers hard is the non-
differentiable maximum function appearing in the definition formula. One possible way of han-
dling the difficulty is approximating maximum taking with a smooth4 function.

Let us start the discussion with a simple observation. Assume that we have K different real
numbers u1, . . . , uK , and a function f : R 7→ R with the following property:

∀u ∈ R : lim
∆→∞

f(u + ∆)

f(u)
=∞.

Denote the largest number by umax = max{u1, . . . , uK}, and the smallest number by umin =
min{u1, . . . , uK}. Let us apply f on the numbers and investigate the values f(u1), . . . , f(uK). If
the difference between umax and the other numbers is large enough, then the following approxi-
mation is admissible:

f(uj)

f(umax)
=

f(uj)

f(uj + (umax − uj))
≈
{

0 if uj 6= umax,
1 if uj = umax.

�

�

�

�2.11

4Infinitely many times differentiable.

43

CHAPTER 2. ALGORITHMS

It follows from (2.11) that

f(uj)∑K
k=1 f(uk)

=
f(uj)/f(umax)∑K

k=1 f(uk)/f(umax)
≈
{

0 if uj 6= umax,
1 if uj = umax.

�

�

�

�2.12

If f is monotonically increasing and smooth, then based on (2.12) it is possible to define
smooth approximations for the maximum function:

A) max{u1, . . . , uK} ≈ f−1

(
K∑

k=1

f(uk)

)
,

B) max{u1, . . . , uK} ≈ f−1

(
1

K

K∑

k=1

f(uk)

)
,

�

�

�

�2.13

C) max{u1, . . . , uK} ≈
K∑

j=1

f(uj)∑K
k=1 f(uk)

uj .

Schemes A and B are similar: the only difference between them is the 1
K factor appearing in

B. An advantage of A over B is that it approximates the max function better, if the difference
between umax and the other numbers is large. An advantage of B over A is that its result is
always between umin and umax. Scheme C is an interesting one: it calculates the answer by
assigning a weight to each variable, and it does not need the inverse of f . It is also true for C
that the output is always between umin and umax.

The most natural choice for f is the exponential function f(u) = exp(αu), α > 0. The
power function f(u) = uα, α > 1 is also suitable in the nonnegative domain. With the given
approximation schemes and f functions we can define 6 different smooth maximum functions:

smaxA1(u) =
1

α
ln

(
K∑

k=1

exp(αuk)

)

smaxA2(u) =

(
K∑

k=1

uα
k

)1/α

smaxB1(u) =
1

α
ln

(
1

K

K∑

k=1

exp(αuk)

)
�

�

�

�2.14

smaxB2(u) =

(
1

K

K∑

k=1

uα
k

)1/α

smaxC1(u) =
K∑

j=1

exp(αuj)∑K
k=1 exp(αuk)

uj

smaxC2(u) =
K∑

j=1

uα
j∑K

k=1 uα
k

uj

where u = [u1, . . . , uK] denotes the vector containing all numbers. Parameter α can be used
to control the “degree of smoothness” (larger α results better approximation, but less smooth
functions). Note that smaxA1 and smaxB1 differ only in a constant, and smaxA2, smaxB2,

44

2.3. ALGORITHMS FOR CLASSIFICATION

0

1

2

0

1

2
0

1

2

3

u1
u2

m
ax

Figure 2.2: The maximum function in 2 dimensions.

smaxC2 are admissible only if u1, . . . , uK are all non-negative 5. The surface plot of the maximum
function in 2 dimensions can be seen in Figure (2.2). The presented smooth maximum functions
are depicted in Figure (2.3) and their difference from max in Figure (2.4).

Two simple properties of the maximum function are interchangeability with constant addition
and non-negative constant multiplication:

max{u1 + C, . . . , uK + C} = max{u1, . . . , uK}+ C,

max{CuK , . . . , CuK} = C max{u1, . . . , uK},

where C is an arbitrary constant in the first case and a non-negative constant in the second case.
Interestingly, for 5 of the given smooth maximum functions exactly one of these properties is true
(smaxA1, smaxB1 and smaxC1 have the first, smaxB2 and smaxC2 have the second property).

Let us introduce the following abbreviation (j = 1, . . . ,K):

pj =
f(uj)∑K

k=1 f(uk)
.

The quantity pj can be interpreted as a “measure of dominance” of the j-th number over the

others. If f(u) = exp(αu), then pj =
exp(αuj)

P

K
k=1 exp(αuk)

. If f(u) = uα, then pj =
uα

j
P

K
k=1 uα

k

.

5smaxC2(0) can be defined as zero.

45

CHAPTER 2. ALGORITHMS

0

1

2

0

1

2
0

1

2

3

u1
u2

sm
ax

A
1

(a)

0

1

2

0

1

2
0

1

2

3

u1
u2

sm
ax

A
2

(b)

0

1

2

0

1

2
0

1

2

3

u1
u2

sm
ax

B
1

(c)

0

1

2

0

1

2
0

1

2

3

u1
u2

sm
ax

B
2

(d)

0

1

2

0

1

2
0

1

2

u1
u2

sm
ax

C
1

(e)

0

1

2

0

1

2
0

1

2

3

u1
u2

sm
ax

C
2

(f)

Figure 2.3: Smooth maximum functions in 2 dimensions (α = 2).

46

2.3. ALGORITHMS FOR CLASSIFICATION

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

A
1
−

m
ax

(a)

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

A
2
−

m
ax

(b)

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

B
1
−

m
ax

(c)

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

B
2
−

m
ax

(d)

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

C
1
−

m
ax

(e)

0

1

2

0

1

2
−1

−0.5

0

0.5

1

u1
u2

sm
ax

C
1
−

m
ax

(f)

Figure 2.4: The error of smooth maximum functions in 2 dimensions (α = 2).

47

CHAPTER 2. ALGORITHMS

The partial derivatives of the proposed smooth maximum functions are (j = 1, . . . ,K):

smax′
j,A1(u) =

∂smaxA1

∂uj
(u) = pj ,

smax′
j,A2(u) =

∂smaxA2

∂uj
(u) = pj

s

uj
,

smax′
j,B1(u) =

∂smaxB1

∂uj
(u) = pj ,

�

�

�

�2.15

smax′
j,B2(u) =

∂smaxB2

∂uj
(u) = pj

s

Kuj
,

smax′
j,C1(u) =

∂smaxC1

∂uj
(u) = pj (1 + α(uj − s)) ,

smax′
j,C2(u) =

∂smaxC2

∂uj
(u) = pj

(
1 + α

(
1− s

uj

))
,

where s is the value of smax at u (always the same smooth max type is used as on the corre-
sponding left hand side).

Interestingly, each derivative contains the factor pj . In the case of power function based
approximations (smaxA2, smaxB2 and smaxC2), the derivative also depends on the ratio of the
approximated maximum and the j-th number. In the case of smaxC1, the derivative also depends
on the difference of the approximated maximum and the j-th number.

The second partial derivatives are the following (j, k = 1, . . . ,K):

smax′′
jk,A1(u) =

∂2smaxA1

∂uj∂uk
(u) = (−pjpk + δjkpj)α,

smax′′
jk,A2(u) =

∂2smaxA2

∂uj∂uk
(u) = (−pjpk + δjkpj)

(α− 1)s

ujuk
,

smax′′
jk,B1(u) =

∂2smaxB1

∂uj∂uk
(u) = (−pjpk + δjkpj)α,

�

�

�

�2.16

smax′′
jk,B2(u) =

∂2smaxB2

∂uj∂uk
(u) = (−pjpk + δjkpj)

(α− 1)s

K2ujuk
,

smax′′
jk,C1(u) =

∂2smaxC1

∂uj∂uk
(u) =

(
−pjs

′
k − pks′j + δjk(s′j + pj)

)
α,

smax′′
jk,C2(u) =

∂2smaxC2

∂uj∂uk
(u) =

(
−pjs

′
k

uj
−

pks′j
uk

+ δjk

(
s′j
uj

+
pjs

u2
j

))
α,

where δjk = I{j = k} is the Kronecker delta symbol and s′j is the value of ∂smax
∂uj

at u (always

the same smooth max type is used as on the corresponding left hand side).

2.3.3 Smooth maximum based algorithms

A large family of training algorithms can be introduced for convex polyhedron classifiers with
the help of smooth maximum functions. One branching point is what smooth maximum type to
use. Another is how to approximate the convex polyhedron classifier itself.

48

2.3. ALGORITHMS FOR CLASSIFICATION

Let us introduce the notation z = [z1, . . . , zK] = [wT
1 x+ b1, . . . ,w

T
Kx+ bK]. Three equivalent

forms of the convex polyhedron classifier are:

g(x) = th(min{z1, . . . , zK})
= min{th(z1), . . . , th(zK)}
= min{th(z1)− 1, . . . , th(zK)− 1}+ 1

Using the maximum function the previous formulae can be written as

g(x) = th(−max{−z1, . . . ,−zK})
= −max{−th(z1), . . . ,−th(zK)}
= −max{1− th(z1), . . . , 1− th(zK)}+ 1.

Note that in the third case we always take the maximum of positive numbers.
Now we are ready to introduce smooth versions of g, since max can be replaced with a smooth

max and th(γ) with sgm(γ) or γ + 0.5. After filtering out some irrelevant combinations we get
the following smooth versions of g:

hA(x) = sgm(−smax(−z1, . . . ,−zK)),

hB(x) = −smax(−z1, . . . ,−zK) + 0.5,

hC(x) = −smax(1− sgm(z1), . . . , 1− sgm(zK)) + 1.

In the first two cases, smax takes value from {smaxA1, smaxB1, smaxC1}. In the third case, smax
takes value from {smaxA1, smaxA2, smaxB1, smaxB2, smaxC1, smaxC2}.

It will be useful to unify the three branches by decomposing h functions into three parts:

h(x) = h2(smax(h1(z1), . . . , h1(zK))),

where h1 and h2 are R 7→ R mappings. The h1 and h2 parts of the given h functions are the
following:

hA1(z) = −z, hA2(s) = sgm(−s),

hB1(z) = −z, hB2(s) = −s + 0.5,
�

�

�

�2.17

hC1(z) = 1− sgm(z), hC2(s) = −s + 1.

The first and the second derivatives of the above functions are:

h′
A1(z) = −1, h′

A2(s) = −hA2(s)(1− hA2(s)),

h′
B1(z) = −1, h′

B2(s) = −1,
�

�

�

�2.18

h′
C1(z) = −hC1(z)(1− hC1(z)), h′

C2(s) = −1,

h′′
A1(z) = 0, h′′

A2(s) = −h′
A2(s)(1− 2hA2(s)),

h′′
B1(z) = 0, h′′

B2(s) = 0,
�

�

�

�2.19

h′′
C1(z) = h′

C1(z)(1− 2hC1(z)), h′′
C2(s) = 0.

Let us denote the output of h for input x by a = h(x). The error of the classifier on example
(x, y) can be measured with differentiable loss functions. Two possible choices are the squared
loss and the logistic loss:

lossS(a, y) = 1
2 (a− y)

2
,

�

�

�

�2.20

lossL(a, y) = − ln
(
ay(1− a)1−y

)
.

49

CHAPTER 2. ALGORITHMS

In the first case, h takes value from {hA, hB , hC}. In the second case, a has to fall into [0, 1],
therefore h takes value from {hA, hC}, but if h = hC , then the smooth maximum function cannot
be smaxA1 or smaxA2.

The first and the second derivatives of the proposed loss functions with respect to a are:

loss′S(a, y) =
∂lossS

∂a
(a, y) = a− y,

�

�

�

�2.21

loss′L(a, y) =
∂lossL

∂a
(a, y) =

1− y

1− a
− y

a
,

loss′′S(a, y) =
∂2lossS

∂2a2
(a, y) = 1,

�

�

�

�2.22

loss′′S(a, y) =
∂2lossL

∂2a2
(a, y) =

1− y

(1− a)2
− y

a2
.

Based on the per example loss, the regularized total loss can be defined as

L(b1,w1, . . . , bK ,wK) =

(
n∑

i=1

loss(h(xi), yi)

)
+ λ

1

2

K∑

j=1

wT
j wj

 ,
�

�

�

�2.23

where loss ∈ {lossS , lossL}, and λ is called regularization coefficient. The number of allowed
choices for (smax, h, loss) is 19. In every case, a local minimum of L can be found by derivative
based algorithms. This proposed approach of training convex polyhedron classifiers will be
referred SMAX in the rest of the thesis.

It is worthwhile to mention that SMAX contains various linear classification methods as
special cases:

• If K = 1, h ∈ {hA, hC}, and loss = lossL, then SMAX is equivalent with LOGR.

• If K = 1, h ∈ {hA, hC}, and loss = lossS , then SMAX is equivalent with SPER.

• If K = 1, h = hB , and loss = lossS , then SMAX is equivalent with ALN.

It is important to note that smooth approximations are used only during the training. In
the classification phase, the original formula of the convex polyhedron classifier is applied. Ob-
viously, using different prediction formulae at training and classification may deteriorate the
accuracy. A possible way to to handle this problem is to gradually decrease the smoothness of
the approximation during the training by increasing the value of α.

The first proposed training method uses stochastic gradient descent for the approximate
minimization of L. The pseudo-code of the algorithm can be seen in Figure (2.5).

The meanings of the algorithm’s meta-parameters are as follows:

• smax ∈ {smaxA1, smaxA2, smaxB1, smaxB2, smaxC1, smaxC2}: smooth max function,

• α ∈ R: initial value of the smoothness parameter,

• h ∈ {hA, hB , hC}: smooth replacement of g,

• loss ∈ {lossS , lossL}: per example loss function,

• K ∈ N: number of hyperplanes in the convex polyhedron classifier,

50

2.3. ALGORITHMS FOR CLASSIFICATION

Input: (x1, y1), . . . , (xn, yn) // the training set

Input: smax, α, h, loss, K, R, E, B, η, µ, λ, A0, A1 // meta-parameters

Output: (w1, b1), . . . , (wK , bK) // the trained model

(w1, b1), . . . , (wK , bK) ← uniform random numbers from [−R,R] // initialization1

(wold
1 , bold

1), . . . , (wold
K , bold

K) ← (w1, b1), . . . , (wK , bK)2

(w′
1, b

′
1), . . . , (w

′
K , b′K) ← zeros3

macro AccumlateGradient(i) begin4

for j ← 1 to K do zj ← wT
j xi + bj // calculate branch activations5

u ← [h1(z1), . . . , h1(zK)]T6

s ← smax(u)7

a ← h2(s) // calculate answer8

for j ← 1 to K do // update gradient9

c′j ← loss′(a, yi) · h′
2(s) · smax′

j(u) · h′
1(zj)10

w′
j ← w′

j + c′jxi + λwj/n11

b′j ← b′j + c′j12

end13

end14

for e← 1 to E do // for all epochs15

α ← A1α + A0 // update smoothness16

for i ← 1 to n do // for all examples17

AccumlateGradient(i)18

if i ≡ 0 (mod B) then // update model19

for j ← 1 to K do20

∆ ← wj −wold
j , wold

j ← wj21

wj ← wj − ηw′
j + µ∆22

∆ ← bj − bold
j , bold

j ← bj23

bj ← bj − ηb′j + µ∆24

end25

(w′
1, b

′
1), . . . , (w

′
K , b′K) ← zeros // reset gradient26

end27

end28

end29

Figure 2.5: Stochastic gradient descent with momentum for training the convex polyhedron
classifier.

51

CHAPTER 2. ALGORITHMS

• R ∈ R: range of random number generation at model initialization,

• E ∈ N: number of epochs (iterations over the training set),

• B ∈ N: batch size — the model is updated after each B example,

• η ∈ R: learning rate — step size at model update,

• µ ∈ R: momentum factor — the weight of the previous update in the current one,

• λ ∈ R: regularization coefficient — how aggressively the weights are pushed towards 0,

• A0, A1 ∈ R: coefficients for controlling the change of α.

The time requirement of one iteration is O(ndK), and the time requirement of the algorithm
is O(EndK), therefore the algorithm can be run on very large problems. In practice it is not
always necessary to find a local minimum. It is often enough to reach a sufficiently small objective
function value. Of course, there is no guarantee that the trained model will be acceptable after
a modest number of iterations, but at least we are able to test it.

The second proposed training algorithm uses Newton’s method for the approximate minimiza-
tion of L. The pseudo-code of the algorithm can be seen in Figure (2.6). The meta-parameters
of the algorithm are the same as before except that there is no batch size B, learning rate η,
and momentum factor µ, and there is a new parameter S, the number of step sizes tried before
model update. The role of parameter S is to make the algorithm more stable. In the presented
version of the algorithm the S step sizes does not depend on each other. Of course it would be
possible to replace this simple solution to a more sophisticated one like golden section search
[Kiefer, 1953].

The time requirement of one iteration is O(nd2K2 + d3K3) and the time requirement of the
algorithm is O(End2K2 + Ed3K3). An advantage of Newton’s method over stochastic gradient
descent is better accuracy. A disadvantage is the substantially increased time complexity of
iterations. It may happen that we are unable to run even one iteration.

It is also true that Newton’s method is typically less robust than gradient method. It is more
sensible to stuck in minor local minima, and also it is more prone to diverge. A possible way to
overcome these difficulties is to introduce a hybrid approach that starts the minimization with
gradient method, and then switches to Newton’s method.

Handling missing data

The previous algorithms assume that the phenomenon is fully observable. However, there are
many real-world problems (e.g. in the medical domain) in which this assumption is not true,
and the training examples contain unknown feature values.

Finding a specialized technique for handling this difficulty that fits well to convex polyhedron
classifiers is out of the scope of this thesis. If the training set is incomplete, then I recommend
to use a well-known, simple heuristic for handling missing data. Some possible choices are:

• Replacing the missing values with zero.

• Replacing the missing values with the empirical mean or median of the given feature.

• Using one of the previous methods and introducing new binary features that indicate if the
value of the original feature was known.

52

2.3. ALGORITHMS FOR CLASSIFICATION

Input: (x1, y1), . . . , (xn, yn) // the training set

Input: smax, α, h, loss, K, R, E, λ, A0, A1, S // meta-parameters

Output: (w1, b1), . . . , (wK , bK) // the trained model

(w1, b1), . . . , (wK , bK) ← uniform random numbers from [−R,R] // initialization1

(w′
1, b

′
1), . . . , (w

′
K , b′K), H, g ← zeros2

Lmin ← ∞3

macro AccumlateHessian(i) begin4

xi0 ← 1 // consider the 0-th coordinate as 15

for j ← 1 to K do6

for k ← 1 to K do7

c′′jk ← loss′′(a, yi) · h′
2(s)

2 · smax′
j(u)smax′

k(u) · h′
1(zj)h

′
1(zk) +8

loss′(a, yi) · h′′
2(s) · smax′

j(u)smax′
k(u) · h′

1(zj)h
′
1(zk) +9

loss′(a, yi) · h′
2(s) · smax′′

jk(u) · h′
1(zj)h

′
1(zk) +10

loss′(a, yi) · h′
2(s) · smax′

j(u)δjk · h′′
1(zj)δjk11

for l ← 0 to d do // update Hessian12

for m ← 0 to d do13

ĵ ← (j − 1)(d + 1) + l + 114

k̂ ← (k − 1)(d + 1) + m + 115

h
bjbk ← h

bjbk + c′′jkxilxim + λδl0δm016

end17

end18

end19

end20

end21

for e ← 1 to E do // for all epochs22

α ← A1α + A0 // update smoothness23

for i ← 1 to n do // for all examples24

AccumlateGradient(i)25

AccumlateHessian(i)26

end27

v ← [(b1w11 · · ·w1d) · · · (bKwK1 · · ·wKd)]
T

28

g ← [(b′1w
′
11 · · ·w′

1d) · · · (b′Kw′
K1 · · ·w′

Kd)]
T

29

for σ in {1, 2−1, . . . , 2−S+2, 0} do // try S step sizes30

vnew ← v − σH−1g31

Lnew ← L(vnew) // use (2.23)32

if Lnew < Lmin then Lmin ← Lnew, vbest ← vnew33

end34

[(b1w11 · · ·w1d) · · · (bKwK1 · · ·wKd)] ← vT
best // update model35

(w′
1, b

′
1), . . . , (w

′
K , b′k), H, g ← zeros // reset gradient and Hessian36

end37

Figure 2.6: Newton’s method for training the convex polyhedron classifier.

53

CHAPTER 2. ALGORITHMS

2.4 Algorithms for regression

Recall that a convex K-polyhedron predictor is a function g : R
d 7→ R that can be written in the

following form:
g(x) = −max{−wT

1 x− b1, . . . ,−wT
Kx− bK}.

Analogously with classification, we can define smooth maximum based algorithms for training.
The only difference is that now the only reasonable choice for h and loss is hB and lossS , because
the target takes value from R. Apart from this restriction, the training algorithms remain the
same.

Note that in the case of regression we always have to evaluate all scalar products at prediction.
Therefore, unlike the case of classification, there is no extra speedup in the prediction phase,
however, the prediction is still not slow. Applying a convex polyhedron predictor can be a
reasonable choice, if we know a priori that the optimal predictor g∗ is convex.

2.5 Algorithms for collaborative filtering

Recall that in the case of collaborative filtering the answer of the convex polyhedron predictor
for user u and item i is

g(u, i) = bu + ci −max

{
−
(

L∑

l=1

p
(1)
ul qli

)
, . . . ,−

(
L∑

l=1

p
(K)
ul qli

)}
,

where P(k) ∈ R
NU×L, [P(k)]ul = p

(k)
ul , k = 1, . . . ,K called user factor matrices, Q ∈ R

L×NI ,
[Q]li = qli called item factor matrix, b ∈ R

NU called user bias vector, and c ∈ R
NI called item

bias vector are the parameters of the model.
An analogous variant can be obtained, if we have one user factor matrix P and K item factor

matrices Q(1), . . . ,Q(K):

g(u, i) = bu + ci −max

{
−
(

L∑

l=1

pulq
(1)
li

)
, . . . ,−

(
L∑

l=1

pulq
(K)
li

)}
.

Let us assume the first variant and introduce the notation z = [z1, . . . , zK], zk =
∑L

l=1 p
(k)
ul qli

(k = 1, . . . ,K). The smooth version of g can be obtained as

h(u, i) = bu + ci + smax(z),

where smax ∈ {smaxA1, smaxB1, smaxC1}.
Now it is possible measure the error at example (u, i) with a differentiable loss function:

Lui(w) =
1

2
(h(u, i)− rui)

2
+ λU

1

2

K∑

k=1

L∑

l=1

(
p
(k)
ul

)2

+ λI
1

2

L∑

l=1

(qli)
2
,

where w denotes the vector containing all parameters of the model (P(1), . . . ,P(K),Q,b, c), and
λU , λI are the regularization coefficients. The total loss on the training set is the sum of the per
example losses:

L(w) =
∑

(u,i)∈T
Lui(w).

54

2.5. ALGORITHMS FOR COLLABORATIVE FILTERING

Similarly to classification and regression, the approximate minimization of L can be done
with stochastic gradient descent. This approach of training the convex polyhedron predictor
will be referred as SMAXCF. Note that in the case of collaborative filtering the typical problem
size is large (say NU , NI > 1000, L > 10), therefore Newton’s method is computationally too
expensive.

The partial derivatives of Lui can be written as

∂Lui

∂p
(k)
ul

(w) = (h(u, i)− rui)(smax′
k(z)qui) + λUp

(k)
ul ,

∂Lui

∂qli
(w) = (h(u, i)− rui)

(
K∑

k=1

smax′
k(z)p

(k)
ul

)
+ λIqli,

�

�

�

�2.24

∂Lui

∂bu
(w) = h(u, i)− rui,

∂Lui

∂ci
(w) = h(u, i)− rui,

Note that the second equation builds upon the assumption smax ∈ {smaxA1, smaxB1, smaxC1},
and it would not be true, if smax was an arbitrary differentiable function.

The pseudo-code of stochastic gradient descent based training can be seen in Figure (2.7).
The meanings of the meta-parameters are the same as before, except that now we have different
learning rate and regularization coefficient for users and items. The role of parameter D is to
control whether ordering by date within user ratings should be used.

Relationship with Mangasarian’s results

If we are talking about optimization techniques applied to solve machine learning problems,
then we should definitely mention the work of Mangasarian and his colleagues. They have been
working in this field since long ago, and they have published many interesting results. An
incomplete survey about their results can be found e.g. in [Bradley et al., 1999].

Although there are some intersections between that article and this thesis, generally the two
works investigate different problems. The main differences are the following:

• This thesis contains numerous algorithms for determining the linear and convex separability
of point sets. That paper contains some basic algorithms for linear separability, but instead
of separability they mainly focus on classification, regression, clustering, and dependency
modeling.

• They do not investigate the problem of convex separability.

• They usually formulate learning algorithms as constrained optimization problems. In this
thesis the proposed classification and regression algorithms are all formulated as uncon-
strained optimization problems.

• They propose several interesting algorithms for training linear models but they do not deal
with training convex polyhedron models.

55

CHAPTER 2. ALGORITHMS

Input: rui : (u, i) ∈ T , |T | = n // the training set

Input: smax, α, K, R, E, ηU , ηI , λU , λI , D, A0, A1 // meta-parameters

Output: P(1), . . . ,P(K),Q // the trained model

P(1), . . . ,P(K), Q, b, c ← uniform random numbers from [−R,R] // initialization1

for e ← 1 to E do // for all epochs2

α ← A1α + A0 // update smoothness3

for u ← 1 to NU do // for all users4

Tu ← {i : ∃u : (u, i) ∈ T }5

I ← a random permutation of the elements of Tu6

if D = 1 and dates are available for ratings then7

I ← the elements of Tu sorted by rating date (in ascending order)8

end9

for i in I do // for user’s ratings10

for k ← 1 to K do zk ←
∑L

l=1 p
(k)
ul qli11

for k ← 1 to K do s′k ← smax′
k(−z)12

a ← bu + ci − smax(−z) // calculate answer13

ε ← a− yi // calculate error14

bu ← bu − ηUε // update biases15

ci ← ci − ηIε16

for l ← 1 to L do // update factors17

p ← ∑K
k=1 s′kpk

ul18

for k ← 1 to K do p
(k)
ul ← p

(k)
ul − ηU (εs′kqli + λUp

(k)
ul)19

qli ← qli − ηI(εp + λIqli)20

end21

end22

end23

end24

Figure 2.7: Stochastic gradient descent for training the convex polyhedron predictor.

56

Technical skill is a mastery of com-

plexity, while creativity is a mas-

tery of simplicity.

Erik Christopher Zeeman 3
Model complexity

From a point of view, machine learning can be seen as modeling. The input is a dataset that
was collected by observing a phenomenon. The output is a model that explains certain aspects
of the phenomenon, and that can be used for making prediction.

In a typical machine learning project many experiments are performed and many models are
created. It is non-trivial to decide which of them should be used for prediction in the final system.
Obviously, if two models achieve the same accuracy on the training set, then it is reasonable to
choose the simpler one. The question is how to characterize the complexity of machine learning
models in a well-defined way.

The Vapnik–Chervonenkis dimension [Vapnik and Chervonenkis, 1971] is a widely accepted
model complexity measure for sets of binary classifiers. The first part of this chapter will intro-
duce the concept and show its utility in machine learning. Then, I will present known and new
results about the Vapnik–Chervonenkis dimension of convex polyhedron classifiers.

3.1 Definitions

Recall that a binary classifier is an R
d 7→ {c1, c2} mapping, where the values c1, c2 ∈ R are called

labels. Without loss of generality assume that c1 = 1 and c2 = 0. Suppose that we have a set of
binary classifiers G and a finite set of points P ⊂ R

d. We say that G shatters P, if the elements
of P can be arbitrarily labeled by the elements of G.

For example, if d = 1, G = {g1(x) = th(x−5), g2(x) = −th(x−3), g3(x) = −th(3−x), g4(x) =
−th(5 − x)}, and P = {2, 4}, then G shatters P, because classifier g1 produces the labeling
(2 → 0, 4 → 0), g2 produces (2 → 0, 4 → 1), g3 produces (2 → 1, 4 → 0), and g4 produces
(2→ 1, 4→ 1). If G is the same as before, and P = {2, 4, 6}, then G does not shatter P, because
e.g. the labeling (2→ 0, 4→ 1, 6→ 0) cannot be obtained.

The m-th shatter coefficient of G denoted by s(G,m) is the maximum number of different
labelings that can be produced with the members of G over m points. The 0-th shatter coefficient
is defined as 1 for any G. In the previous example s(G, 0) = 1, s(G, 1) = 2, and s(G,m) = 4, if
m ≥ 2.

The Vapnik–Chervonenkis (VC) dimension of G, denoted by h(G), is the maximum number
of points that can be shattered by G. If G can shatter arbitrarily many points, then h(G) is
defined as ∞. With shatter coefficients h(G) can be expressed as

h(G) = max{m ∈ N : s(G,m) = 2m}.

The VC dimension of G in the previous example is 2, because there exist a 2-element point set
that can be shattered by G, but there is no such 3-element point set.

57

CHAPTER 3. MODEL COMPLEXITY

The concept was originally defined by Vapnik and Chervonenkis [Vapnik and Chervonenkis,
1971]. It can be viewed as a measure of complexity for binary classification models. The main
utility of the concept is that we can obtain an upper bound on the error probability of a classifier
on new examples with the help of it.

Given a binary classifier g, there is no general connection between its test error probability
L(g) = P{g(X) 6= Y } and its training error rate L̂n(g) = 1

n

∑n
i=1 I{g(xi) 6= yi}. However, if we

know a priori that g ∈ G and h(G) <∞, then with probability 1− δ:

L(g) ≤ L̂n(g) +

√
8
h(G) ln(2en/h(G)) + ln(2/δ)

n
.

�

�

�

�3.1

A nice consequence of the above inequality is that if the VC dimension is finite, then we are
able to bound the test error without using a test set. The proof of the theorem can be found e.g.
in [Bousquet et al., 2004], along with other interesting results.

3.1.1 Convex polyhedron function classes

Recall that a function g : R
d 7→ {1, 0} is a linear classifier, if it can be written as

g(x) = th(wT x + b),

where w ∈ R
d and b ∈ R are the parameters of the model. Let LINd denote the set of all

d-dimensional linear classifiers.

We get a richer function class, if the label is decided by combining the outputs of K linear
classifiers:

g(x) = f(l1(x), . . . , lK(x)),

lk(x) = th(wT
k x + bk), k = 1, . . . ,K,

where f is an arbitrary {1, 0}K 7→ {1, 0} mapping called composition function. Classifiers that
can be expressed in this form are called polyhedron classifiers. Let POLd,K denote the set of all
d-dimensional polyhedron classifiers using K linear decisions. The function class ∪∞k=1POL(d, k)
is quite extensive: among others it contains all d-dimensional linear classifiers, ID3 decision trees
and nearest neighbor classifiers.

We obtain interesting subsets of POLd,K , if we restrict the composition function to minimum
and maximum taking:

MINd,K = {g : g ∈ POLd,K , f = min},
MAXd,K = {g : g ∈ POLd,K , f = max},

MINMAXd,K = {g : g ∈ POLd,K , f ∈ {min,max}}.

It is true for all of the above cases that the decision boundary is the surface of a d-dimensional
convex K-polyhedron. The label of the inner (convex) region is always 1 in MINd,K always 0
in MAXd,K , and unrestricted in MINMAXd,K . Therefore, MINd,K and MAXd,K refer to the
case in which we know in advance what the label of the inner class is, and MINMAXd,K to the
general case of convex polyhedron classification. Note that the decision boundary belongs to the
inner region in the case of MINd,K and to the outer region in the case of MAXd,K .

58

3.2. KNOWN FACTS

3.2 Known facts

In this section, we will overview some known facts about the VC dimension MINd,K , MAXd,K ,
and MINMAXd,K . Clearly, h(MINd,K) = h(MAXd,K), therefore it is enough to state theorems
for MINd,K and MINMAXd,K .

Let us start with the simplest special cases. If d = 1 and K = 1, then h(MINd,K) =
h(MINMAXd,K) = 2. If d = 1 and K > 1, then h(MINd,K) = 2 and h(MINMAXd,K) = 3. If
K = 1, then MINd,K , MINMAXd,K , and LINd are identical. It is known since long ago that
h(LINd) = d + 1. For showing this, we will use a simple lemma [Rodŕıguez, 2004].

Lemma 3.1. Let F be a set of R
d 7→ R functions, and let G be the set of binary classifiers

that can be written as g(x) = th(f(x)), f ∈ F . If F is an m-dimensional vector space, then
h(G) ≤ m.

Proof. Assume that we have m + 1 arbitrary points p1, . . . ,pm+1 ∈ R
d. Consider the linear

transformation L : F 7→ R
m+1 defined by

L(f) = [f(p1), . . . , f(pm+1)] .

Since the image space LF is of dimension m, there must exist a nonzero vector α ∈ R
m

orthogonal to LF . Thus, there exist scalars α1, . . . , αm+1 not all zero such that

m+1∑

i=1

αif(pi) = 0, for all f ∈ F .

Separate the sum above according to whether αi is negative (i ∈ I−) or not (i ∈ I+), to
obtain ∑

i∈I+

αif(ii) =
∑

i∈I
−

−αif(pi).

Without loss of generality we can assume that I− is not empty. G does not shatter P, because
it is impossible to obtain f(pi) ≥ 0 for all i ∈ I+ and f(pi) < 0 for all i ∈ I−. (For this we
should make the left hand side of the above equation greater or equal zero, and the right hand
side less than zero.)

Now we are ready to prove the classical result about h(LINd).

Theorem 3.1. h(LINd) = d + 1.

Proof. Let us consider the point set P = {p0, . . . ,pd} ⊂ R
d, where p0 = 0, and pi is the i-th

unite vector, for i ≥ 1. The system of linear equations wT pi +b = yi (i = 0, . . . , d) has a solution
for every y0, . . . , yd ∈ R, therefore P can be arbitrarily labeled by the elements of LINd. This
proves h(LINd) ≥ d + 1.

Let F denote the set of linear functions in d variables. F is (d+1)-dimensional vector space,
and the elements of LINd can be written as g(x) = th(f(x)). Applying the previous lemma
proves h(LINd) ≤ d + 1.

For MIN2,K , MIN3,K , and MIN3,4 we can find results in [Dobkin and Gunopulos, 1995].

Theorem 3.2. If K ≥ 2, then h(MIN2,K) = 2K + 1.

Proof. If we place 2K + 1 points into the vertices of a regular (2K + 1)-gon, then every labeling
can be produced with K lines. This implies h(MIN2,K) ≥ 2K +1. For proving the upper bound,
consider an arbitrary point set P of size (2K+2). If one of the points is located inside the convex

59

CHAPTER 3. MODEL COMPLEXITY

Figure 3.1: How to choose the independent faces based on the label of the extra points. Note
that some faces are never chosen.

hull of the others, then P cannot be shattered by MIN2,K , because it is impossible to classify the
inside point as 0 and the outside points as 1. If the convex hull of P is a convex (2K + 2)-gon,
then P cannot be shattered by MIN2,K again, because it is impossible to obtain the alternating
labeling with K lines.

Theorem 3.3. h(MIN3,K) ≤ 4K.

Proof. Let P be an arbitrary 3-dimensional point set of size 4K +1. If one of the points is inside
the convex hull of the others, then P cannot be shattered by MIN3,K , because it is impossible
to label the outside points as 1 and the inside point as 0.

If the convex hull of P has |P| vertices, then let A be the vertex adjacency graph of the convex
hull. Each vertex of A corresponds to an element of P. A is a planar graph, therefore its vertices
can be four colored [Appel and Haken, 1977]. As a consequence, A contains an independent set
of vertices of size K + 1. P cannot be shattered by MIN3,K , because it is impossible to label the
independent points as 1 and the other points as 0 with K planes.

Theorem 3.4. h(MIN(3, 4)) ≥ 14.

Proof. Let us place the first 12 points into the vertices of a regular icosahedron. Clearly, these
points can be shattered by MIN3,4. (The 4 planes are obtained from small perturbations of 4
independent faces.) Now place 2 extra points outside the the icosahedron but close to its surface,
above 2 faces that are third neighbor of each other. Surprisingly, this larger point set can still be
shattered by MIN3,4. This can be easily verified if we draw the planar graph of the icosahedron.
The key is that the 4 independent faces are chosen based on the label of the 2 extra points (see
Figure 3.1).

In the general case it is possible to get a nice upper bound with combinatorial tools. The
theorem we will prove now originally appeared in [Haussler and Welzl, 1987] (in a bit stronger
form, but with a less detailed proof).

Theorem 3.5. h(MINd,K) < 2(d + 1)K log2((d + 1)K).

Proof. If d = 1, then the statement is true therefore we can assume d ≥ 2. We will exploit
that MINd,K classifiers consist of simple components that are combined in a simple way. Denote
the m-th shatter coefficient of MINd,K by Sm and that of LINd by sm. Given m points, each
component classifier is able to produce at most sm different labelings. This implies that

Sm ≤ (sm)K .

60

3.3. THE VC DIMENSION OF MINMAX2,K

From Sauer’s lemma [Sauer, 1972] we know that

sm ≤
d+1∑

i=0

(
m

i

)
.

If m ≥ d + 1, then the sum of binomial coefficients can be bounded from above as

d+1∑

i=0

(
m

i

)
≤
(

m

d + 1

)d+1
[

d+1∑

i=0

(
m

i

)(
d + 1

m

)i
]
≤

(
m

d + 1

)d+1(
1 +

d + 1

m

)m

<

(
em

d + 1

)d+1

.

If d ≥ 2, then (
em

d + 1

)d+1

< md+1.

Putting the inequalities together yields

Sm ≤ (sm)K < m(d+1)K .

Let us introduce the notation x = (d + 1)K. If m = 2x log2(x) and x ≥ 2, then it can be
shown that m(d+1)K ≤ 2m. Rewriting m and (d + 1)K yields

[2x log2(x)]
x ≤

[
x2
]x

.

The above inequality is true for all x ≥ 2, therefore m(d+1)K ≤ 2m.
Moreover, it follows easily that m(d+1)K ≤ 2m is true also for m = ⌈2x log2(x)⌉, if m ≥ 2. We

got that the m-th shatter coefficient of MINd,K is smaller than 2m, if m = ⌈2(d + 1)K log2((d +
1)K)⌉. Therefore, h(MINd,K) < 2(d + 1)K log2((d + 1)K).

The straightforward way of obtaining results for h(MINMAXd,K) is applying Assouad’s
lemma [Assouad, 1983]. The lemma states that for any function classes F and G with finite VC
dimension, h(F ∪G) ≤ h(F) + h(G) + 1. As a consequence, h(MINMAXd,K) ≤ 2h(MINd,K) + 1.

In the cases studied so far we get the following upper bounds:

• h(MINMAX2,K) ≤ 4K + 3, if K ≥ 2,

• h(MINMAX3,K) ≤ 8K + 1,

• h(MINMAXd,K) ≤ 4(d + 1)K log2((d + 1)K) + 1.

3.3 The VC dimension of MINMAX2,K

We have seen previously that h(MIN2,K) = 2K + 1. Determining the Vapnik–Chervonenkis di-
mension of MINMAX2,K is a substantially harder problem. Now I will show that MINMAX2,K =
2K + 2, if K ≥ 2. I remark that the proof first appeared in [Takács, 2007].

Theorem 3.6.

h(MINMAX2,K) =

{
3 if K = 1,
2K + 2 if K ≥ 2.

61

CHAPTER 3. MODEL COMPLEXITY

Figure 3.2: A point set in convex position. The
red and a blue signs cannot be separated with
a triangle, because for this we should intersect
all edges of a convex 8-gon with 3 lines.

Figure 3.3: A point set in tangled position.
The red and the blue signs can never be sep-
arated with a convex K-gon, regardless of the
value of K.

3.3.1 Concepts for the proof

Definition 3.1. A planar point set is said to be in convex position, if its elements are the vertices
of a convex polygon.

In other words, P does not have two distinct subsets Q1 and Q2 such that the convex hull of
Q1 contains a point from Q2. The following simple properties will also be used in the proof:

• P is in convex position, if and only if every 4-element subset of P is in convex position.

• A 2-element subset of P is called an edge, if the line segment connecting the two points
is an edge of the convex hull of P. P is in convex position, if and only if every 5-element
subset of P containing an edge is in convex position.

Note that MINMAX2,K cannot shatter 2K + 2 convexly positioned points, because for the
alternating labeling we should intersect all edges of a convex (2K + 2)-gon with K lines (see
Figure 3.2). This is also true for MIN2,K , moreover it implies that h(MIN2,K) ≤ 2K + 1, since
MIN2,K can shatter only convexly positioned point sets. The main difference between the two
function classes is that MINMAX2,K is able to shatter non-convexly positioned point sets too.

Definition 3.2. A planar point set P is said to be in tangled position, if it has two distinct
subsets Q1 and Q2, such that the convex hull of Q1 contains a point from Q2 and the convex
hull of Q2 contains a point from Q1.

Q1 and Q2 are called the tangled subsets. If P is not in tangled position, then it is said to be
tangle-free. Note that for any K, a tangled set of points cannot be shattered by MINMAX2,K ,
because it is impossible to separate Q1 from Q2 (see Figure 3.3).

3.3.2 The proof

The case K = 1 is trivial, therefore we consider only the case K ≥ 2. We want to prove that
h(MINMAX2,K) = 2K + 2. It is easy to see that h(MINMAX2,K) ≥ 2K + 2. For this we should
just place 2K + 1 points along a circle, in the vertices of a regular (2K + 1)-gon and put an
additional point in the center.

Consider an arbitrary labeling of these 2K + 2 points. We will refer to the points that have
the same label as the center as red points while to the others as blue points. There can be at
most K blue sequences along the circle. If the longest blue sequence is at most K long, then

62

3.3. THE VC DIMENSION OF MINMAX2,K

each blue sequence can be separated from the red points with 1 line. If the length of the longest
blue sequence is more than K, then that blue sequence can be separated from the red points
with 2 lines, and each remaining one with 1 line. The number of the remaining blue sequences
is not greater than K − 2 (assuming K ≥ 2). Therefore, K lines are always enough.

Proving the upper bound h(MINMAX2,K) ≤ 2K + 2 is somewhat more difficult. We should
show that no 2K + 3 points can be shattered by MINMAX2,K . It suffices to consider point set
in which no 3 points are co-linear. If there is a point set that can be shattered by MINMAX2,K ,
then there also exists a generally positioned point set of the same size that can be shattered by
MINMAX2,K . (The second point set can be constructed from the first with small perturbations.)

Assume that MINMAX2,K shatters a generally positioned point set P. So far we know two
necessary conditions for this:

• P does not contain 2K + 2 points that are in convex position.

• P is tangle-free.

In the rest of the proof we will show that if K ≥ 2 and |P| ≥ 2K + 3, then these requirements
are contradictory, therefore no 2K + 3 points can be shattered by MINMAX2,K .

Theorem 3.7. Let P be a planar point set in general position. If P is tangle-free and |P| 6= 6,
then P contains |P| − 1 points that are in convex position.

Corollary 3.1. If |P| = 2K +3, and K ≥ 2, then P is in tangled position or it contains 2K +2
convexly positioned points. Therefore, P cannot be shattered by MINMAX2,K .

Proof. Denote the convex hull of P by conv(P). If conv(P) is a point or a line segment, then the
statement is trivial. The other cases are not so easy, because we can put arbitrarily many points
into conv(P) such that the requirements of the theorem are fulfilled. Along the property of being
a vertex of conv(P) or not, the elements of P can be classified as outside or inside points.

At first consider the case when conv(P) is a triangle. Denote the 3 outside points by A, B,
and C. If |P| ≤ 5, then the statement of the theorem can be easily verified. Therefore we can
assume that |P| ≥ 7, and we have at least 4 inside points.

Now select two arbitrary inside points and denote them by D and E. The line DE intersects
two edges of the triangle ABC. Without loss of generality we can assume that the line DE
intersects the edge AB in the direction of D and intersects the edge AC in the direction of E.
Draw the following line segments into the triangle ABC:

• Segment DE, extended to the edges AB and AC,

• Segment BD, extended to the edge AC,

• Segment CE, extended to the edge AB,

• The extension of segment AD in the direction of D,

• The extension of segment AE in the direction of E,

• Segment BE,

• Segment CD.

These line segments partition the triangle ABC into 14 distinct regions (R1,R2, . . . ,R14).
Number them according to Figure 3.4. Now try to put a third inside point F into the triangle
ABC without introducing a tangle.

63

CHAPTER 3. MODEL COMPLEXITY

1

2
3

4

5

6

7

8 9
10

11

12

13 14

A

B

C

D
E

Figure 3.4: The 14 regions generated by placing two points into a triangle.

Lemma 3.2. If F /∈ R3 ∪R5 ∪R11 ∪R13, then P is in tangled position.

Proof.

• If F ∈ R1 ∪R2, then Q1 = {A,C,D} and Q2 = {B,E, F} are the tangled subsets.

• If F ∈ R1 ∪R4, then Q1 = {A,B,E} and Q2 = {C,D,F}.

• If F ∈ R6 ∪R7 ∪R8, then Q1 = {B,D,E} and Q2 = {A,C, F}.

• If F ∈ R8 ∪R9 ∪R10, then Q1 = {C,D,E} and Q2 = {A,B, F}.

• If F ∈ R6 ∪R12, then Q1 = {B,C,D} and Q2 = {A,E, F}.

• If F ∈ R10 ∪R14, then Q1 = {B,C,E} and Q2 = {A,D,F}.

Lemma 3.3. If F ∈ R13, then P is in tangled position.

Proof. If F ∈ R13, then lines DE, DF and EF partition the triangle ABC into 13 distinct
regions (S1,S2, . . . ,S13). Number them according to Figure 3.5. Now try to place a 4th inside
point G without introducing a tangle.

• If G ∈ S1∪S2∪S4∪S5∪S6∪S10∪S11∪S12∪S13, then P is in tangled position by Lemma
3.2.

• If G ∈ S3 ∪ S8, then Q1 = {A,D,E, F} and Q2 = {B,C,G} are the tangled subsets.

• If G ∈ S7 ∪ S8, then Q1 = {B,D,E, F} and Q2 = {A,C,G}.

64

3.3. THE VC DIMENSION OF MINMAX2,K

A

B

C

D
E

F

1

2 3

4

8
10

6
7

9

5

11
12 13

Figure 3.5: The 13 regions generated by placing the third point into R13.

• If G ∈ S8 ∪ S9, then Q1 = {C,D,E, F} and Q2 = {A,B,G}.

Remark. If F is a non-boundary point of R13, then {A,B,C,D,E, F} is tangle-free, but has
no 5-element subset in convex position. This is why the restriction |P| 6= 6 had to be made.
However, by Lemma 3.3 this arrangement is an irrelevant branch that cannot be continued.

The following fact is a simple consequence of Lemma 3.2 and Lemma 3.3:

Corollary 3.2. If a set of two outside and three inside points is not in convex position, then
then P is in tangled position.

Now we are ready to finish the special case, when conv(P) is a triangle.

Lemma 3.4. Let P be a planar point set in general position. If P is tangle-free, |P| 6= 6 and
conv(P) is a triangle, then we can select |P| − 1 points from P that are in convex position.

Proof. Let us analyze the situation after placing m inside points. Denote the union of {B,C}
and the first m inside points with Tm. We know that T2 is in convex position. We will show
that if m ≥ 2, then the convex position of Tm implies the convex position of Tm+1. To verify
this assume indirectly that Tm is in convex position but Tm+1 is not. Since {B,C} is always
an edge of conv(Tm+1) and m ≥ 2, this means that Tm+1 has a 5-element subset that contains
{B,C} and is not in convex position. Then by Corollary 3.2, P is in tangled position, which is
a contradiction. Thus the convex position of Tm+1 follows from the convex position of Tm. As a
consequence, the set T|P|−3 = P \ {A} is also in convex position.

Remark. If we prohibit to place the third inside point into R13, then the condition |P| 6= 6 can
be omitted.

65

CHAPTER 3. MODEL COMPLEXITY

A

B

C

D

FE

1

2
3

Figure 3.6: Regions in BCDEF , case I.

3

A

B

C

D

FE

1

2

4

Figure 3.7: Regions in BCDEF , case II.

Now consider the case when conv(P) is a quadrangle. Denote the 4 outside points with A,
B, C and D. If |P| ≤ 5, then the statement is trivial, therefore we can assume that we have at
least two inside points. Select two arbitrary inside points and denote them by E and F . The line
EF intersects two adjacent edges of the quadrangle ABCD, because otherwise P would be in
tangled position. Without loss of generality we can assume that the line EF intersects the edge
AB in the direction of E and intersects the edge AC in the direction of F . Now try to place a
third inside point G into the quadrangle ABCD.

Lemma 3.5. If G is inside the pentagon BCDEF , then P is in tangled position.

Proof. There are two possible cases:

1. The extension of AD in the direction of D and the extension of AE in the direction E
intersect different edges of the quadrangle ABCD.

2. The extension of AD in the direction of D and the extension of AE in the direction E
intersect the same edge of the quadrangle ABCD. We can assume without loss of generality
that the intersected edge is BD.

In the first case, the line segments DE and DF partition the pentagon BCDEF into 3
distinct regions (R1, R2, R3), as it can be seen in Figure 3.6. If G ∈ R1∪R2, then {B,D,E, F}
and {A,C,G} are the tangled subsets. If G ∈ R2 ∪R3, then {C,D,E, F} and {A,B,G} are the
tangled subsets.

In the second case, DE and the extension of AF in the direction of F partitions the pentagon
BCDEF into 4 distinct regions (S1, S2, S3, S4), as it can be seen in Figure 3.7. If G ∈ S1 ∪ S2,
then {B,D,E, F} and {A,C,G} are the tangled subsets. If G ∈ S2 ∪ S3, then {C,D,E, F} and
{A,B,G} are the tangled subsets. If G ∈ S4, then {B,C,D, F} and {A,E,G} are the tangled
subsets.

By Lemma 3.5, inside points up from the third can be placed only into the region ABC \
BCEF without introducing a tangle. This and Lemma 3.4 (applied to P \ {D}) implies that

66

3.3. THE VC DIMENSION OF MINMAX2,K

A

B

C

E

GF

1

2

3

D
4

Figure 3.8: Regions in BCDEFG.

P \ {A,D} is in convex position. The restriction |P \ {D}| 6= 6 can be now omitted, because the
quadrangle BCEF is a forbidden area. If P \ {A,D} is in convex position, then P \ {A} is too.
This completes the proof of the special case when conv(P) is a quadrangle.

Now consider the case when conv(P) is a pentagon. Denote the 5 outside points by A, B, C,
D and E. Using the same reasoning as before we can assume that we have at least two inside
points. Pick two arbitrary inside points F and G. The line FG intersects two adjacent edges
of the pentagon ABCDE, because otherwise P would be in tangled position. Without loss of
generality assume that the line FG intersects the edge AB in the direction of F , intersects the
edge AC in the direction of G, moreover BD and CE are edges of the pentagon ABCDE. Now
try to place a third inside point H into the pentagon ABCDE.

Lemma 3.6. If H is inside the hexagon BCDEFG, then P is in tangled position.

Proof. Line segments BE and CD partition the hexagon BCDEFG into 4 distinct regions
(R1,R2,R3,R4), as it can be seen in Figure 3.8. If H ∈ R1 ∪ R2 ∪ R3, then P is in tangled
position by Lemma 3.5. If H ∈ R4, then P is tangled too, because there exists a line connecting
two inside points that intersects non-adjacent edges of conv(P). For example the line FH cannot
intersect adjacent edges of conv(P).

By Lemma 3.6, inside points up from the third can be placed only into the region ABC \
BCFG without introducing a tangle. This and Lemma 3.4 (applied to P \ {D,E}) implies that
P \ {A,D,E} and this wise P \ {A} is in convex position.

Finally consider the case when conv(P) is a k-gon (k ≥ 6). Denote the outside points by
A1, A2, . . . , Ak and the inside points by B1, B2, . . . , Bm. The line B1B2 intersects again two
adjacent edges of conv(P). Without loss of generality assume that the line B1B2 intersects the
edges A1Ak and A1Ak. No inside point can be located in the (k + 1)-gon A2A3 . . . AkB1B2,
because otherwise P would be in tangled position by Lemma 3.6. But then it follows as before
that {A2, Ak} ∪ {B1, B2, . . . , Bm} = P \A1 is in convex position.

67

CHAPTER 3. MODEL COMPLEXITY

3.4 New lower bounds

This section contains new lower bounds on the Vapnik–Chervonenkis dimension of various convex
polyhedron classifier types. The results presented here first appeared in [Takács and Pataki,
2007b].

Let us start with two easily obtainable lower bounds for h(MINd,K) and h(MINMAXd,K).

Theorem 3.8 (sphere slicing). h(MINd,K) ≥ dK.

Proof.We have to arrange dK points such that they can be shattered by MINd,K . At first cut K
distinct slices from a d-dimensional hypersphere with K hyperplanes. Denote the i-th hyperplane
with Hi and denote the intersection of the hypersphere surface and the i-th hyperplane with Ci.

Now define the point set P by assigning d different points in each Ci. Points belonging to
the same Ci can be shattered by one hyperplane, moreover, it can be required too, that the label
of all the other points have to be 1 according to this hyperplane. (The i-th hyperplane of the
MINd,K classifier is obtained from a small perturbation of Hi.) Because of the requirement, the
i-th hyperplane influences only the the labeling of the i-th group, therefore P can be arbitrarily
labeled by the members of MINd,K .

Theorem 3.9. h(MINMAXd,K) ≥ dK + 1.

Proof. Arrange the first dK points as in the proof of the previous theorem, but now put an
additional point into the center of the hypersphere. The previous theorem implies that the first
dK points can be shattered by both MINd,K and MAXd,K . In the first case, the label of the
central point is always 1, in the second case it is always 0. This means, that the dK + 1 points
can be arbitrarily labeled by the members of MINMAXd,K . (The label of the central point
determines whether to use a MINd,K or a MAXd,K classifier.)

The previous proofs are so simple that h(MINd,K) ≥ dK and h(MINMAXd,K) ≥ dK + 1 will
be referred as the basic lower bounds. The following theorem improves the basic lower bounds
by one:

Theorem 3.10. If K ≥ 2, then h(MINd,K) ≥ dK + 1 and h(MINMAXd,K) ≥ dK + 2.

Proof. We begin with the proof of the first statement in the special case d = 3. Denote the
coordinates by x, y, and z. Place the first 5 points p1, . . . ,p5 on the plane xy, into the vertices
of an origin-centered regular pentagon. On the plane xy these points can be shattered by 2 lines,
moreover, the following constraints can be satisfied too:

• The lines have to be parallel.

• The lines cannot be axis-parallel.

• For any labeling, there exists an ε0 > 0 such that the circle of radius ε0 around the origin
must belong to the inner region.

Place the next 2 points into p6 = [1 0 1] and p7 = [−1 0 1]. Now we show that the
first 7 points can be arbitrarily labeled by the members of MIN3,2, even if we require that an
ε0-ball around the origin have to belong to the inner region.

Consider an arbitrary labeling p1 → y1, . . . ,p7 → y7 that we want to obtain with a member
of MIN3,2. Recall that a MIN3,2 classifier can be given by 8 parameters: (w11, w12, w13, b1) and
(w21, w22, w32, b2).

If the input is one of the first 5 points, then the answer of the classifier is fully determined by
the parameters (w11, w12, b1) and (w21, w22, b2). Adjust these parameters such that the classifier
labels the first 5 points as desired. This can be done, moreover the following constraints can be
satisfied too (i = 1, 2):

68

3.4. NEW LOWER BOUNDS

• w2i = −w1i 6= 0 (the lines are parallel but not axis-parallel),

• ∀δ2
1 +δ2

2 ≤ ε2
0 : mini{δ1wi1 +δ2wi2 +bi} ≥ 0 (the ball of radius ε0 around the origin belongs

to the inner region).

Based on y6 and y7 there are 4 possible cases (i = 1, 2):

• If y6 = y7 = 1, then the desired labeling can be obtained by wi3 ≫ 0.

• If y6 = y7 = 0, then the desired labeling can be obtained by wi3 ≪ 0.

• If y6 = 1, y7 = 0, then the desired labeling can be obtained by wi3 = −wi1 − bi + |wi1|.

• If y6 = 0, y7 = 1, then the desired labeling can be obtained by wi3 = +wi1 − bi + |wi1|.

If we choose a sufficiently small ε, then the ε-ball around the origin belongs to the inner
region in all of the 4 cases.

Now define a sphere surface that encloses the 7 points arranged so far and passes through the
point [0 0 −ε/2]. On this surface there exist a segment, that belongs to the inner region at
each labeling of the first 7 points. Let us place the remaining 3(K−2) points onto this subsurface
in 3-element groups with the sphere slicing method. Each group can be shattered by one plane,
moreover it can be assured, that the planes does not affect the labeling of the other groups and
the first 7 points. Therefore the 7 + 3(K − 2) = 3K + 1 points can be shattered by MIN3,K .

The proof of the d-dimensional case is analogous with the 3-dimensional one. Now the first 5
points are placed onto the plane of the first 2 coordinates. The next 2(d−2) points are arranged
in the following way:

p6 = [+1 0 1 0 0 . . . 0],

p7 = [−1 0 1 0 0 . . . 0],

p6 = [+1 0 0 1 0 . . . 0],

p9 = [−1 0 0 1 0 . . . 0],

...

p2d = [+1 0 0 0 . . . 0 1],

p2d+1 = [−1 0 0 0 . . . 0 1].

It can be shown (exactly the same way as in the case d = 3) that the first 2d + 1 points can be
shattered by MINd,2, moreover it can be required too that an ε-ball around the origin have to
belong to the inner region at each labeling. Then a hypersphere surface is defined that encloses
the first 2d + 1 points and passes through the point [0 0 −ε/2 . . . −ε/2]. There exist a
segment on this surface that belongs to the inner region at each labeling. The remaining d(K−2)
points are placed onto this subsurface with the sphere slicing method.

The statement on MINMAXd,K can be proved with the same construction with an additional
point in the origin. The label of this point determines whether to use a MINd,K or a MAXd,K

classifier.

The bound h(MINd,K) ≥ dK +1 is not tight, if d > 2. For example, in the case d = 3,K = 4
it states that h(MIN3,4) ≥ 13 We have seen previously that even h(MIN3,4) ≥ 14 can be proved
with the help of an icosahedron-based arrangement [Dobkin and Gunopulos, 1995]. This better
bound can easily be extended to the case d = 3,K > 4.

69

CHAPTER 3. MODEL COMPLEXITY

Theorem 3.11. If K > 4, then h(MIN3,K) ≥ 3K + 2 and h(MINMAX3,K) ≥ 3K + 3.

Proof. Place the first 14 points exactly as in the proof of Theorem 3.4. From the proof of
Theorem 3.4 we know that these points can be shattered by MIN3,4, and there exist a face of the
icosahedron that is never selected. This means that we can define a sphere surface that encloses
the first 14 points and has a segment that is always in the inner region. If we place the remaining
3(K − 4) points on this subsurface with the sphere slicing method, then this point set of size
14 + 3(K − 4) = 3K + 2 can be shattered by MIN3,K .

The second statement of the theorem can be proved the same way. The only difference is
that if we can use MAX3,K classifiers too, then we can put an additional point into the center
of the icosahedron.

We got that in R
3 the basic lower bounds can be improved by 2. With a more sophisticated

version of the icosahedron trick it is possible to improve the basic lower bounds by 4 in R
4.

Theorem 3.12. If K ≥ 30, then h(MIN4,K) ≥ 4K + 4 and h(MINMAX4,K) ≥ 4K + 5.

Proof. Let us consider a 600-cell, which is a finite regular 4-dimensional polytope, containing
600 tetrahedral cells (with 5 to an edge), 1200 triangular faces, 720 edges, and 120 vertices. The
600-cell is also called hypericosahedron, because it can be viewed as the 4-dimensional analog of
the 3-dimensional icosahedron.

The vertices of an origin-centered 600-cell with edges of length 1/φ (where φ = 1+
√

5
2 is the

golden ratio) can be given as follows:

• 16 vertices of the form [± 1
2 ± 1

2 ± 1
2 ± 1

2].

• The 8 possible permutations of [±1 0 0 0].

• 96 vertices, obtained from the even permutations of [± 1
2 ± 1

2φ ± 1
2φ−1 0].

The topological structure of the 600-cell is a system of subsets over the 120 vertices that gives
which k vertices form a k-facet (k = 2, 3, 4; 2-facets are called edges, 3-facets are called faces
and 4-facets are called cells). The topological structure of the 600-cell can be computed easily.
At first we should generate the coordinates of the 120 vertices according to the previous scheme.
Then we should identify the k-facets by examining every possible k vertices an checking whether
they are at distance 1/φ from each other not. The vertex adjacency graph of the 600-cell can be
seen in Figure 3.9.

We say that 2 cells are adjacent, if they have at least 1 common vertex and 2 cells are
independent, if they have no common vertices. The cell adjacency graph of the 600-cell can be
easily obtained from its topological structure.

Remember that in the 3-dimensional case we tried to cover the vertices of the icosahedron
with independent facets in many different ways. Now we want to cover the vertices of the
600-cell with independent cells in many possible ways. This means that we want to find many
independent points in the cell adjacency graph.

With a simple program performing brute force computation, it is possible to find 1920 different
coverings.1 These coverings can be represented as a 1920-by-600 binary matrix C so that the
element at position (i, j) is 1 if the i-th covering contains the j-th cell and 0 otherwise.

Now let us turn back to the statement h(MIN4,K) ≥ 4K + 4, if K ≥ 30. Place the first 120
points into the vertices of a 600-cell. These points can be shattered by MIN4,30, because it is

1The topological structure of the 600-cell, the cell adjacency graph and the coverings can be found at
http://www.sze.hu/~gtakacs/600cell.html. It is difficult to verify these results by hand but it is easy to write
a program that performs this.

70

http://www.sze.hu/~gtakacs/600cell.html

3.4. NEW LOWER BOUNDS

Figure 3.9: The vertex adjacency graph of the 600-cell.

possible to cover the 120 vertices with 30 independent cells. (The different labelings are obtained
from small perturbations of the 30 independent cells.)

If there exist an L-column submatrix in the covering matrix C that has 2L different rows, then
L extra points can be placed into the arrangement such that the point set can still be shattered
by MIN4,30. With a simple program it is possible to count the number of different rows in every
L-column submatrices of C. The largest L for that an appropriate subset of columns could be
selected was L = 4. This means that it is possible to arrange 120 + 4 = 124 points in R

4 such
that they can be shattered by MIN4,30.

Like in the previous theorems, we can define a 4-dimensional sphere that encloses the first
124 points and contains a surface segment that belongs to the inner region at each labeling of the
first 124 points. If the remaining 4(K − 30) points are placed onto this surface segment with the
sphere slicing method, then the resulted (dK + 4)-element point set can be arbitrarily labeled
by MIN4,K (assuming that K ≥ 30). In the case of MINMAX4,K the construction is the same,
except that an additional point can be placed into the origin too.

71

No amount of experimentation can

ever prove me right; a single exper-

iment can prove me wrong.

Albert Einstein 4
Applications

This chapter contains experiments demonstrating the utility of the algorithms proposed in the
thesis. The organization of the chapter is the following: The first part will be about determining
the linear and convex separability of point sets. The second part will deal with convex polyhedron
methods for classification. The third part will be about convex polyhedron and other methods
for collaborative filtering.

4.1 Determining linear and convex separability

4.1.1 Datasets

The datasets involved in the experiments were the following:

• VOTES: This dataset is part of the UCI (University of California, Irvine) machine learning
repository [Asuncion and Newman, 2007], which is a well known collection of benchmark
problems for testing machine learning algorithms. The dataset includes votes for each of
the U.S. House of Representatives Congressmen on the d = 16 key votes identified by the
Congressional Quarterly Almanac (98th Congress, 2nd session, 1984). The Congressional
Quarterly Almanac lists nine different types of votes: voted for, paired for, and announced
for (these three are encoded as 1), voted against, paired against, and announced against
(these three are encoded as −1), voted present, voted present to avoid conflict of interest,
and did not vote or otherwise make a position known (these three are encoded as 0). The
dataset contains M = 2 classes (democrat or republican) and n = 435 examples (267
democrat, 168 republican).

• WISCONSIN: This dataset is also part of the UCI machine learning repository. It was
originally obtained from the University of Wisconsin Hospitals, Madison, Wisconsin. The
task to solve is to determine the benignness or malignancy (M = 2) of tumors based on
d = 9 features extracted from mammograms. After removing examples with missing feature
values the number of examples is n = 683 (444 benign, 239 malignant).

• MNIST28: This dataset is the training set part of the MNIST handwritten digit recogni-
tion database [LeCun and Cortes, 1999]. The d = 784 features represent pixel intensities
of 28× 28 sized images. The classes are associated with the digits, therefore the number of
classes is M = 10. The number of examples is n = 60000 (5923 zeros, 6742 ones, 5958 twos,
6131 threes, 5842 fours, 5421 fives, 5918 sixes, 6265 sevens, 5851 eights, 5949 nines). Fig-
ure 4.1 shows some example images from the database. The dataset is sparse, the average
frequency of 0 as a feature value is 80.9 %.

73

CHAPTER 4. APPLICATIONS

Figure 4.1: Examples from the MNIST28 database.

• MNIST14: This dataset was extracted from the MNIST28 by reducing image size to
14×14 pixels. Intensity values of the 14×14 images were obtained by averaging intensities
in the corresponding 2× 2 part of the original image. The average frequency 0 as a feature
value is 74.4 %

• MNIST7: This dataset was extracted from the MNIST28 by reducing image size to 7× 7
pixels. Intensity values of the 7 × 7 images were obtained by averaging intensities in the
corresponding 4 × 4 part of the original image. The average frequency of 0 as a feature
value is 62.3 %

• MNIST4: This dataset was extracted from the MNIST28 by reducing image size to 4× 4
pixels. Intensity values of the 4 × 4 images were obtained by averaging intensities in the
corresponding 7 × 7 part of the original image. The average frequency of 0 as a feature
value is 41.3 %

If we want to refer to the subset of an MNIST dataset containing only classes A and B, then
we will use postfix /AB (e.g. MNIST04/49).

4.1.2 Algorithms

This subsection overviews the algorithms that were used in the experiments. For determining
linear separability the following basic algorithms were tested:

• LSEP1: The most straightforward, linear programming based method. It tries to find an
arbitrary separating hyperplane (see page 36 for the details).

• LSEP∗
1: The dual formulation of LSEP1 (see page 37).

• LSEP+
1 : A modified version of LSEP∗

1 (see page 37).

• LSEP2: An alternative linear programming based method that tries to find a solution
with small norm (see page 37).

• LSEP∗
2: The dual formulation of LSEP2 (see page 38).

• LSEPS : The support vector machine based method (see page 38). In the experiments it
was used with setting C = 106.

All of these algorithms try to answer the question whether two point sets are linearly separable
or not. The primal based methods (LSEP1, LSEP2) are constructive in the sense that they also

74

4.1. DETERMINING LINEAR AND CONVEX SEPARABILITY

provide a separating hyperplane, if the answer is yes. The dual based methods (LSEP∗
1, LSEP+

1

and LSEP∗
2) cannot do this, but they are able to output an easily verifiable proof, if the answer

is no. The parameter ε was always set to 0.001 in the experiments.
The support vector based approach (LSEPS) can only be considered as an approximate

method, because C cannot be set to ∞, therefore the answer is not perfectly reliable in the
nonseparable case.

For determining linear separability the following enhanced algorithms were tested:

• LSEPX1, LSEPX2: The first proposed method (see page 38). It tries to solve the problem
incrementally. The index indicates which basic method (LSEP1, LSEP2) is used for solving
subproblems.

• LSEPY1, LSEPY2: The modified version of the previous method (see page 39). It tries
to further reduce running time by removing points from the active sets.

• LSEPZ: A dual based alternative of the previous two approaches (see page 39). It uses
LSEP+

1 for solving subproblems. It can be able to reduce the number of features in the
linearly separable case.

• LSEPZX1, LSEPZX2, LSEPZY1, LSEPZY2: A hybrid method that tries to reduce
the number of features with LSEPZ first, and then runs LSEPX1, LSEPX2, LSEPY1, or
LSEPY2 on the reduced dataset (see page 40).

The variants of LSEPX, LSEPY, LSEPZX and LSEPZY are constructive methods, while
LSEPZ is not. LSEPX and LSEPY was always run with setting γk ≡ d. The parameter ε was
always set to 0.001 and ε2 to 0.002.

For determining convex separability the following algorithms were tested:

• CSEPX2, CSEPY 2, CSEPZX2, CSEPZY 2: Straightforward, linear programming based
approach that tries to separate each outer point from the inner set individually (see page
40). The indices indicate which primal based method is used for the individual linear
separations.

• CSEP∗
2, CSEPZ : The dual based version of the the previous approach (see page 40). The

indices indicate which dual based method is used for the individual linear separations.

• CSEPC: Proposed method for approximate convex separation (see page 41). It consid-
ers the lines connecting the centroid of the inner set with the outer points, and places
hyperplanes perpendicular to these lines.

• CSEPXX2, CSEPXY 2, CSEPXZX2, CSEPXZY 2, CSEPX∗
2, CSEPXZ : Proposed

method for fast and exact convex separation (see page 41). At first it tries to reduce
the size of the outer set by applying CSEPC, and then it runs a variant of CSEP on the
reduced dataset. The indices indicate which version of CSEP is used in the second phase.

All algorithms were implemented in Python [Rossum, 2006], using the numerical (NumPy)
[Ascher et al., 2001] and the scientific (SciPy) [Jones et al., 2001] modules. The internal lin-
ear programming solver was the primal simplex method of the GNU Linear Programming Kit
(GLPK) [Makhorin, 2009]. The reasons behind this choice were the following:

• GLPK is not the most sophisticated library for linear programming, but it is free, very well
documented, and easy to use.

75

CHAPTER 4. APPLICATIONS

• The primal simplex method is a bit old fashioned and slow, but it is suitable for our
purposes. The main goal is not to achieve the lowest possible running times but to compare
different separation approaches.

• I did some experiments on small problems with the built-in interior point method of GLPK,
and also with an own interior point solver written from scratch, but the running times were
not promising. (However it is likely that a sophisticated interior point solver would beat
the primal simplex method on large problems.)

GLPK was accessed from Python via the PyGLPK interface [Finley, 2008]. The internal
support vector machine implementation was libsvm [Chang and Lin, 2001]. The hardware envi-
ronment was a notebook PC with Intel Pentium M 2 GHz CPU and 1 Gb memory.

4.1.3 Types of separability

As we have seen previously, if we have point sets P and Q, then it is possible to define different
types of separability between them:

• S0: P and Q are (convexly) inseparable, if P ∩ conv(Q) 6= ∅ and Q∩ conv(P) 6= ∅.

• S1: P and Q are convexly separable, if P ∩ conv(Q) = ∅ or Q∩ conv(P) = ∅.

• S2: P and Q are mutually convexly separable, if P ∩ conv(Q) = ∅ and Q∩ conv(P) = ∅.

• S3: P and Q are linearly separable, if conv(P) ∩ conv(P) = ∅.

Note that S3 implies S2, and S2 implies S1, therefore S3 can be considered as the strongest
and S1 as the weakest type of separability. Also observe that S1 is the opposite of S0.

In the following experiments the type of separability is determined for each pair of classes in
the given datasets. At first, linear separability was checked with the LSEPZ method. If the point
sets were not linearly separable, then also convex separability was checked with the CSEPXX2

method.
The type of separability in the VOTES and the WISCONSIN dataset turned out to be S1.

The results for the MNIST28 dataset can be seen in Table 4.1, for the MNIST 14 dataset in
Table 4.2, for the MNIST7 dataset in Table 4.3, and for the MNIST4 dataset in Table 4.4.

In the case of the MNIST28 dataset 38 of the subproblems are S3- and 7 are S2-type. This
means that the majority of the 2-class subproblems are linearly separable, therefore it would be
reasonable to use simple models, if we wanted to build classifiers.

If we reduce the size of the images, then it is natural to expect that the subproblems will
become less separable. In the case of the MNIST14 dataset 18 of the subproblems are S3- and 27
are S2-type. In the case of the MNIST7 dataset 2 of the subproblems are S3- and 43 are S2-type.
In the case of the MNIST4 dataset 2 of the subproblems are S2-, 3 are S1- and 40 are S0-type.
An interesting observation is that S2 (mutual convex separability) occurs more frequently than
S1 (non-mutual convex separability).

If two point set are not convexly separable (or not mutually convexly separable), then it is
natural to ask that how far they are from convex separability (mutual convex separability). A
possible measure of inseparability is IPQ = |P ∩ conv(Q)|, the number of points from P that are
contained in the convex hull Q.

The original versions of the presented convex separability algorithms are not able to determine
the value of IPQ, because they exit when the first inseparable outer point is found. However,
it is trivial to modify the algorithms so that they calculate IPQ. We just have to introduce a
counter for the inseparable outer points and not exit when we find one.

76

4.1. DETERMINING LINEAR AND CONVEX SEPARABILITY

Class 1 Class 2

1 2 3 4 5 6 7 8 9

0 S3 S3 S3 S3 S3 S3 S3 S3 S3

1 S3 S3 S3 S3 S3 S3 S3 S3

2 S2 S3 S3 S3 S3 S2 S3

3 S3 S2 S3 S3 S2 S3

4 S3 S3 S3 S3 S2

5 S3 S3 S2 S3

6 S3 S3 S3

7 S3 S2

8 S3

Table 4.1: Types of separability in the MNIST28 dataset.

Class 1 Class 2

1 2 3 4 5 6 7 8 9

0 S3 S2 S2 S3 S2 S2 S3 S2 S2

1 S2 S2 S3 S3 S3 S3 S2 S2

2 S2 S3 S3 S3 S3 S2 S3

3 S2 S2 S2 S2 S2 S2

4 S3 S3 S3 S3 S2

5 S2 S2 S2 S2

6 S3 S2 S3

7 S2 S2

8 S2

Table 4.2: Types of separability in the MNIST14 dataset.

77

CHAPTER 4. APPLICATIONS

Class 1 Class 2

1 2 3 4 5 6 7 8 9

0 S3 S2 S2 S2 S2 S2 S2 S2 S2

1 S2 S2 S2 S2 S2 S2 S2 S2

2 S2 S2 S2 S2 S2 S2 S2

3 S2 S2 S2 S2 S2 S2

4 S2 S2 S2 S2 S2

5 S2 S2 S2 S2

6 S3 S2 S2

7 S2 S2

8 S2

Table 4.3: Types of separability in the MNIST7 dataset.

Class 1 Class 2

1 2 3 4 5 6 7 8 9

0 S0 S0 S0 S1 S0 S0 S1 S0 S0

1 S0 S0 S0 S0 S0 S0 S0 S0

2 S0 S1 S0 S0 S0 S0 S0

3 S0 S0 S2 S0 S0 S0

4 S0 S0 S0 S0 S0

5 S0 S0 S0 S0

6 S2 S0 S0

7 S0 S0

8 S0

Table 4.4: Types of separability in the MNIST4 dataset.

78

4.1. DETERMINING LINEAR AND CONVEX SEPARABILITY

Class 1 Class 2

0 1 2 3 4 5 6 7 8 9

0 5923 57 36 67 3 110 22 0 389 21

1 36 6742 43 228 14 21 14 126 260 109

2 1 6 5958 34 0 3 3 4 16 2

3 1 74 151 6131 7 65 0 119 41 58

4 0 13 15 4 5842 27 17 102 9 490

5 1 8 1 34 4 5421 5 11 27 13

6 5 7 22 0 7 8 5918 0 13 2

7 1 17 7 44 50 1 0 6265 4 372

8 273 310 162 498 2 458 9 69 5851 160

9 2 66 5 129 933 42 3 945 65 5949

Table 4.5: Number of examples from Class 1 contained in the convex hull of Class 2 in the
MNIST4 dataset.

The IPQ values for the MNIST4 dataset calculated by modified CSEPXX2 are shown in
Table 4.5. It is true to a certain degree that digit pairs considered to be more similar by humans
have higher values. For example, there are 490 fours in the convex hull of nines and 933 nines in
the convex hull of fours, but only 1 seven in the convex hull of zeros and 0 zeros in the convex
hull of sevens.

4.1.4 Running times

Linear separability

The running times of basic methods for determining linear separability can be seen in Table
4.6. We get a measure of relative efficiency, if we rank the algorithms by running time for each
problem, and then calculate the average rank of each algorithm 1. According to this measure
the order of basic methods on the given problems is the following: 1. LSEP∗

2 (1.95), 2. LSEP∗
1

(2.2), 3. LSEP+
1 (2.45), 4. LSEP1 (4.5), 5. LSEPS (4.6), 6. LSEP2 (5.3). The first 3 methods

are the dual based ones. The fastest primal based method was LSEP1.

It is interesting that sometimes LSEPS was the fastest method, however its performance
was not very stable. The running time of LSEPS was more than 1800 seconds in every linearly
nonseparable case (and even in some linearly separable ones).

The running times of the proposed incremental algorithms (LSEPX, LSEPY, and LSEPZ)
are shown in Table 4.7. The order of the methods according to the average rank measure is: 1.
LSEPX2 (2.3), 2. LSEPY2 (2.5), 3. LSEPX1 (2.6), 4. LSEPY1 (3.6), 5. LSEPZ (4.2).

If we consider the average running time instead of the average rank, then the superiority
of LSEPX2 and LSEPY2 is even stronger. For example, on the MNIST14/01 dataset LSEPX2

was 12 times faster than LSEPX1, and LSEPY2 was 17 times faster than LSEPY1. Recall that
among the basic methods LSEP2 was always slower than LSEP1 (since LSEP2 tries to find a

1If there is a tie from position A to position B, then the rank is considered as (A + B)/2.

79

CHAPTER 4. APPLICATIONS

Problem Running time (seconds)

LSEP1 LSEP∗
1 LSEP+

1 LSEP2 LSEP∗
2 LSEPS

VOTES S1 0.089 0.035 0.039 0.134 0.034 >1800

WISCONSIN S1 0.177 0.033 0.034 0.228 0.032 >1800

MNIST04/24 S1 122.0 1.01 0.89 135.9 1.03 >1800

MNIST04/49 S0 87.3 0.94 0.91 97.0 0.87 >1800

MNIST07/01 S3 259.7 2.10 2.06 299.6 2.03 15.1

MNIST07/02 S2 310.1 2.54 2.59 333.1 2.59 >1800

MNIST14/01 S3 744.0 9.56 9.60 1010.3 9.91 19.7

MNIST14/02 S2 872.0 13.0 14.8 1243.5 14.9 >1800

MNIST28/01 S3 >1800 97.9 107.7 >1800 56.3 36.3

MNIST28/02 S3 >1800 232.7 232.2 >1800 179.9 52.7

Table 4.6: Running times of basic algorithms for determining linear separability.

small norm solution, and uses nearly twice as many variables to achieve this). It is interesting
to see that it can pay off to apply the slower basic method in the incremental algorithm. The
reason for that is that the hyperplanes found by LSEP2 have larger margin, and therefore less
of them are needed.

On the largest datasets (MNIST28/01 and MNIST28/02) LSEPY2 was significantly faster
than LSEPX2. This demonstrates that removing points from the active sets can convey large
speedups in certain cases. It can also be observed that on the largest datasets the dual based
LSEPZ was the fastest method, while on the other datasets it was the slowest one.

The running times of the proposed hybrid algorithms (LSEPZX and LSEPZY) are shown
in Table 4.8. The order of the methods according to the average rank is: 1. LSEPZY2 (1.9),
2. LSEPZX1 (2.25), 3. LSEPZX2 (2.6), 4. LSEPZY2 (3.25). The differences between the
running times are not as drastic as in the previous experiments. This is because the first step
of the algorithm is the same in each case: running LSEPZ and possibly reducing the number of
features. The unique second step is run only on the reduced dataset.

If we compare primal based basic methods with the proposed ones, then it turns out that the
proposed algorithms are better. Typically, the speedup factor between a basic method and its
corresponding LSEPX/LSEPY/LSEPZX/LSEPZY variant is greater than 100.

The dual based basic methods (LSEP∗
1, LSEP+

1 and LSEP∗
2) are sometimes slightly faster than

the proposed LSEPX/LSEPY/LSEPZX/LSEPZY algorithms, but in contrast with the proposed
methods they do not construct a separating hyperplane in the separable case.

Convex separability

The running times of basic methods for determining convex separability can be seen in Table
4.9. Each experiment consisted of two runs: at first the first class was the inner set, and then the
second. The numbers shown in the table are the summed running times of the two runs (given
in seconds).

80

4.1. DETERMINING LINEAR AND CONVEX SEPARABILITY

Problem Running time (seconds)

LSEPX1 LSEPX2 LSEPY1 LSEPY2 LSEPZ

VOTES S1 0.029 0.041 0.029 0.038 0.11

WISCONSIN S1 0.049 0.031 0.048 0.055 0.081

MNIST04/24 S1 0.27 0.28 0.47 0.37 2.63

MNIST04/49 S0 0.26 0.36 0.36 0.36 2.37

MNIST07/01 S3 1.08 0.68 1.55 0.69 4.52

MNIST07/02 S2 0.39 0.49 0.67 1.57 12.7

MNIST14/01 S3 31.2 2.44 36.2 2.10 7.45

MNIST14/02 S2 5.38 3.59 5.67 4.78 133.5

MNIST28/01 S3 >1800 388.0 >1800 88.1 14.8

MNIST28/02 S3 >1800 640.6 >1800 284.9 143.2

Table 4.7: Running times of LSEPX, LSEPY, and LSEPZ.

Problem Running time (seconds)

LSEPZX1 LSEPZX2 LSEPZY1 LSEPZY2

VOTES S1 0.11 0.11 0.11 0.11

WISCONSIN S1 0.088 0.083 0.093 0.083

MNIST04/24 S1 2.61 2.96 3.01 2.70

MNIST04/49 S0 2.39 2.49 2.37 2.74

MNIST07/01 S3 5.70 5.40 5.54 5.17

MNIST07/02 S2 12.7 12.9 12.6 13.6

MNIST14/01 S3 10.2 16.3 15.9 8.24

MNIST14/02 S2 136.1 151.2 160.5 161.0

MNIST28/01 S3 26.1 27.0 31.1 15.5

MNIST28/02 S3 338.1 228.8 378.0 215.0

Table 4.8: Running times of LSEPZX and LSEPZY.

81

CHAPTER 4. APPLICATIONS

Problem Running time (seconds)

CSEPX2 CSEPY 2 CSEPZX2 CSEPZY 2 CSEP∗

2 CSEPZ

VOTES S1 0.78 0.80 1.47 1.48 4.38 5.36

WISCONSIN S1 0.62 0.53 0.89 0.92 5.42 4.13

MNIST04/24 S1 44.0 49.4 136.8 143.4 >1800 >1800

MNIST04/49 S0 4.63 5.65 11.8 24.7 >1800 >1800

MNIST07/01 S3 10.3 10.8 29.2 29.4 >1800 >1800

MNIST07/02 S2 58.1 58.8 152.6 170.3 >1800 >1800

MNIST14/01 S3 54.6 51.8 68.7 67.8 >1800 >1800

MNIST14/02 S2 >1800 >1800 310.5 375.1 >1800 >1800

MNIST28/01 S3 >1800 >1800 221.3 222.4 >1800 >1800

MNIST28/02 S3 >1800 >1800 >1800 >1800 >1800 >1800

Table 4.9: Running times of basic algorithms for determining convex separability.
.

Problem Pruning efficiency Problem Pruning efficiency

VOTES S1 98.92 % MNIST07/02 S2 98.91 %

WISCONSIN S1 93.24 % MNIST14/01 S3 99.99 %

MNIST04/24 S1 47.62 % MNIST14/02 S2 100 %

MNIST04/49 S0 12.69 % MNIST28/01 S3 100 %

MNIST07/01 S3 99.73 % MNIST28/02 S3 100 %

Table 4.10: Percentage of outer points cut by the centroid method (CSEPC).

The order of the basic methods according to the average rank measure is: 1. CSEPX2 (2.15),
2. CSEPY 2 (2.45), 3. CSEPZX2 (2.75), 4. CSEPZY 2 (3.45), 5–6. CSEP∗

2, CSEPZ (5.1). The
dual based methods (CSEP∗

2 and CSEPZ) performed much worse than the other ones. This is
because the dual based methods are not able to cut more than 1 outer point in 1 iteration. None
of the basic methods was able to finish on MNIST28/02 in less than 1800 seconds.

The proposed CSEPX approach consist of two steps: at first the outer set is pruned by
running the centroid (CSEPC) method, and then a basic method (CSEP) is run on the pruned
dataset. The more outer points CSEPC can cut, the smaller problem the CSEP step has to solve,
therefore the “pruning efficiency” of the CSEPC step can greatly influence the running time of
CSEPX.

Table 4.10 shows the percentage of outer points cut by CSEPC for each dataset. (In each
cell the values of the corresponding 2 runs are averaged.) We can see that the pruning efficiency
was typically high on the given problems: in 8 cases it was greater than 90 %, and in 3 cases it
was 100 %.

The running times of the proposed CSEPC and CSEPX methods can be seen in Table 4.11

82

4.1. DETERMINING LINEAR AND CONVEX SEPARABILITY

Problem Running time Problem Running time

VOTES S1 0.043 MNIST07/02 S2 1.69

WISCONSIN S1 0.041 MNIST14/01 S3 0.40

MNIST04/24 S1 11.3 MNIST14/02 S2 2.47

MNIST04/49 S0 15.2 MNIST28/01 S3 0.85

MNIST07/01 S3 0.26 MNIST28/02 S3 6.26

Table 4.11: Running times of the centroid method (CSEPC).

Problem Running time (seconds)

CSEPXX2 CSEPXY 2 CSEPXZX2 CSEPXZY 2 CSEPX∗

2 CSEPXZ

VOTES S1 0.14 0.17 0.24 0.26 0.080 0.13

WISCONSIN S1 0.60 0.53 0.80 0.84 0.51 0.61

MNIST04/24 S1 53.9 51.4 111.6 116.8 >1800 >1800

MNIST04/49 S0 22.2 23.8 50.4 44.2 >1800 >1800

MNIST07/01 S3 3.21 3.48 11.6 12.0 20.3 13.1

MNIST07/02 S2 21.0 20.1 58.4 58.5 125.5 62.2

MNIST14/01 S3 0.86 0.86 1.18 1.25 1.98 1.04

MNIST14/02 S2 2.47 2.47 2.47 2.47 2.47 2.47

MNIST28/01 S3 0.85 0.85 0.85 0.85 0.85 0.85

MNIST28/02 S3 6.26 6.26 6.26 6.26 6.26 6.26

Table 4.12: Running times of enhanced algorithms for determining convex separability.

and Table 4.12. The order of CSEPX variants according to the average measure rank is: 1–2.
CSEPXX2, CSEPXY 2 (2.4), 3. CSEPXZX2 (3.75), 4. CSEPXZ (4.05), 5. CSEPX∗

2 (4.15), 6.
CSEPXZY 2 (4.25). The difference between the running times is smaller than in the case of basic
methods, since each CSEPX variant runs CSEPC as the first step.

If we compare the best basic method (CSEPX2) with the best proposed one (CSEPXX2),
then we can observe the following: In the case of the S0-typed MNIST04/49 problem the basic
method was ∼5 times faster, and in the case of the S1-typed MNIST04/24 it was slightly faster.
This situation can happen, because CSEPX2 exits immediately after finding an inseparable outer
point, while the CSEPC step of CSEPXX2 cannot do this. In every other cases, CSEPXX2 was
faster than CSEPX2, often with orders of magnitude. For example, in the case of S3-typed
MNIST14/01 the speedup factor was ∼60, and in the case of MNIST28/01 it was more than
2000. In terms of average and maximal running time the proposed CSEPXX2 method is far
better than CSEPX2, indicating that the performance of the proposed method is more stable.

83

CHAPTER 4. APPLICATIONS

Figure 4.2: The TOY dataset.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a)

−1

0

1

−1

0

1
−1

0

1

2

(b)

Figure 4.3: The V distribution with settings d = 2, α = 0.05 (a) and d = 3, α = 0.05 (b). The
optimal decision boundary is indicated with green.

4.2 Experiments with classification

In this section, we will compare convex polyhedron classification algorithms with other methods
both on artificial and real-life datasets. The artificial datasets involved in the experiments are
the following:

• TOY: This dataset contains 6 examples: x1 = [−1, 2], y1 = 1, x2 = [0, 1], y2 = 1, x3 =
[1, 2], y3 = 1, x4 = [−1, 1], y4 = 0, x5 = [0, 0], y5 = 0, x6 = [1, 2], y6 = 0. The classes can
be separated from each other with 2 lines (see Figure 4.2). One may find it interesting
to analyze the differences between the many proposed training algorithms on such an
extremely simple dataset.

• V2: Let us define the V distribution as the following: The components of the input
vector X are drawn independently, according to uniform distribution over [−1,+1]. If

Xd ≥
∑d−1

j=1 |Xj |, then the class label Y is set to 1, otherwise it is set to 0. Finally, the value
of Y is flipped with probability α. Note, that the Bayes classifier for the V distribution is
a convex 2d−1-polyhedron classifier. The V2 dataset contains n = 105 examples generated
according to the V distribution with settings d = 2 and α = 0.05 (see Figure 4.3).

• V3: The 3-dimensional (d = 3, n = 105) version of the previous dataset (see Figure 4.3).

The real-life datasets involved in the experiments were extracted from the UCI machine
learning repository [Asuncion and Newman, 2007]. Convex polyhedron classification assumes

84

4.2. EXPERIMENTS WITH CLASSIFICATION

two classes, therefore all problems were transformed to binary ones by merging classes. The
specific datasets were the following:

• ABALONE: Here the task is to predict from various physical characteristics (e.g. length,
diameter, height) whether the number of rings of an abalone is greater than 12. The
number of input features in the dataset after variable encoding is d = 10, and the number
of of examples is n = 4177 (16.6 % of the examples belong to the positive class).

• BLOOD: This dataset originates from the donor database of Blood Transfusion Service
Center in Hsin-Chu City, Taiwan. The goal is to predict whether a donor donated blood at
a given date in 2007. The dataset contains d = 4 input features (months since last donation,
total number of donations, total blood donated in c.c., months since first donation), and
n = 748 examples (23.8 % positives).

• CHESS: This dataset came from the domain of chess endgames. The d = 6 input features
are integers, representing the location of the white king, the white rook and the black king.
The task is to decide whether black can escape from being mated in 14 (or less) moves.
The number of examples is n = 28056 (9.1 % positives).

• SEGMENT: The instances were drawn randomly from a database of 7 outdoor images.
The images were hand-segmented to create a classification for every pixel. The task is to
predict whether a pixel is part of a window object in the image. The number of features is
d = 19, and the number of examples is n = 2310 (14.3 % positives).

The classification algorithms included in the comparison were the following:

• FDA: Fisher discriminant analysis (see page 14 for the description). Regularization was
done by adding the term λwT w to the denominator of the objective function. The sole
parameter of the algorithm is the regularization coefficient λ (default value: 10−6).

• LOGR: Logistic regression (see page 14) with L2 regularization applied on the weight
vector w (see page 22). The minimization of the objective function was done by Newton’s
method. The starting point was the zero vector. The algorithm has 2 parameters: the
regularization coefficient λ (default value: 10−6) and the number of iterations E.

• SPER: Smooth perceptron (see page 15) with L2 regularization applied on the weight
vector w. The minimization of the objective function was done by Newton’s method. The
starting point was the all-zero vector. The algorithm has 2 parameters: the regularization
coefficient λ (default value: 10−6) and the number of iterations E.

• ALN: Adaptive linear neuron (see page 16) with L2 regularization applied on the weight
vector w. The only parameter of the algorithm is the regularization coefficient λ (default
value: 10−6).

• LSVM: Linear support vector machine (see page 16). The algorithm has one parameter:
the tradeoff coefficient C.

• KNN: K nearest neighbors (see page 16). The only parameter of the approach is the
number of relevant neighbors K.

• ID3: ID3 decision tree (see page 17). All features were treated as continuous ones. The
algorithm has 3 parameters: the number of splitting values tried K (default value: 10), the
Laplace smoothing term β, and the information gain threshold Gmin.

85

CHAPTER 4. APPLICATIONS

• MLP: Multilayer perceptron (see page 18) with L2 regularization applied on matrix W and
vector v. The objective function was minimized by batch gradient descent with momentum.
The parameters of the algorithm are the regularization coefficient λ (default value: 10−6),
the number of hidden units K (default value: 5), the range of random initialization R, the
number of epochs E, the learning rate η, and the momentum factor µ.

• SVM: Support vector machine with Gaussian kernel (see page 18). The only parameter
of the algorithm is the tradeoff coefficient C.

• MR: Convex polyhedron classifier with maximal rejection based training (see page 42).
The parameters of the algorithm are the number of hyperplanes K, and the tolerance β.

• SMAX: The proposed smooth maximum function based approach for convex polyhedron
classification (see page 42). The parameters of the algorithm are the training method (G:
gradient method, see page 51, N: Newton’s method, see page 53, G+N: start with gradient
method, and then continue with Newton’s method — default: G+N), the smooth max
function (smaxA1, smaxA2, smaxB1, smaxB2, smaxC1, or smaxC2 — default: smaxA1), the
smoothness parameter α (default value: 2), the smoothness change coefficients A1 and A0

(default values: A1 = 1, A0 = 0) the h function (hA, hB , or hC — default: hA), the per
example loss function (lossS or lossL — default: lossS), the number of hyperplanes K, the
range of random initialization R, the number of epochs in the G phase E, the number of
epochs in the N phase E2, the batch size B (default value: n, which means batch mode),
the regularization coefficient λ (default value: 10−6), the learning rate η, the momentum
factor µ (default value: 0.95), and the number of step sizes tried before Newton updates S
(default value: 10).

For LSVM and SVM the libsvm [Chang and Lin, 2001] implementation was used, via the
built-in Python interface. All other algorithms were implemented from scratch in Python
[Rossum, 2006], using the NumPy [Ascher et al., 2001] module. The hardware environment
was a notebook PC with Intel Pentium M 2 GHz CPU and 1 Gb memory. If the value of a
parameter is not specified, then the default value is used.

4.2.1 Comparing the variants of SMAX

In these experiments I ran the variants of SMAX training on the TOY dataset. Every valid
combination of optimization method, loss, h and smax were tested with the 3 different optimiza-
tion methods (G, N, G+N). The parameters E (number of epochs in the G phase), η (learning
rate), E2 (number of epochs in the N phase), and R (range of random initialization) were set
heuristically via “trial and error” for each setting. The other parameters were kept fixed at their
default values. The results can be seen in Table 4.13. The meaning of the last 3 columns are:

• ‖W‖: The Frobenius norm of weight matrix part of the solution (
√∑K

k=1

∑d
j=1 w2

kj).

• L01: The number of training examples misclassified by the trained model.

• L: The value of the regularized total loss at the solution.

It can be seen, that the G and the G+N methods were always able to build a classifier that
does not err on the training set. In contrast, the N method sometimes converged to local minima
with relatively high L value. This is because gradient descent with momentum is less prone to
stuck in local minima than Newton’s method (however, it needs more iterations to converge).

If we consider the categories defined by the second and third columns, then we can observe
the following:

86

4.2. EXPERIMENTS WITH CLASSIFICATION

variant loss h smax method parameters ‖W‖ L01 L

#1 S A A1 G E = 1000, η = 0.1, R = 1 9.6 0 0.0478
#2 S A A1 N E2 = 10, R = 0.5 4.8 1 0.3493
#3 S A A1 G+N E = 50, η = 0.1, E2 = 10, R = 1 9.6 0 0.0474
#4 S A B1 G E = 1000, η = 0.1, R = 1 9.6 0 0.0487
#5 S A B1 N E2 = 10, R = 1 9.6 0 0.0483
#6 S A B1 G+N E = 50, η = 0.1, E2 = 10, R = 1 9.6 0 0.0483
#7 S A C1 G E = 1000, η = 0.1, R = 1 9.3 0 0.0478
#8 S A C1 N E2 = 10, R = 0.5 9.3 0 0.0449
#9 S A C1 G+N E = 50, η = 0.1, E2 = 10, R = 1 9.3 0 0.0476

#10 S B A1 G E = 1000, η = 0.001, R = 1 2.4 0 0.0013
#11 S B A1 N E2 = 10, R = 1 2.4 0 0.0014
#12 S B A1 G+N E = 200, η = 0.001, E2 = 10, R = 1 2.4 0 0.0013
#13 S B B1 G E = 1000, η = 0.001, R = 1 2.4 0 0.0015
#14 S B B1 N E2 = 10, R = 1 2.4 0 0.0015
#15 S B B1 G+N E = 100, η = 0.001, E2 = 10, R = 1 2.4 0 0.0014
#16 S B C1 G E = 1000, η = 0.001, R = 1 2.0 0 0.0011
#17 S B C1 N E2 = 10, R = 1 0.7 1 0.3533
#18 S B C1 G+N E = 200, η = 0.001, E2 = 10, R = 1 2.0 0 0.0011

#19 S C A1 G E = 1000, η = 0.1, R = 1 10.2 0 0.2362
#20 S C A1 N E2 = 20, R = 1 10.2 0 0.2362
#21 S C A1 G+N E = 200, η = 0.1, E2 = 10, R = 1 10.2 0 0.2362
#22 S C A2 G E = 1000, η = 0.1, R = 1 9.5 0 0.0488
#23 S C A2 N E2 = 20, R = 1 9.5 0 0.0488
#24 S C A2 G+N E = 50, η = 0.1, E2 = 10, R = 1 9.5 0 0.0488
#25 S C B1 G E = 1000, η = 0.1, R = 1 10.5 0 0.1442
#26 S C B1 N E2 = 10, R = 0.5 10.4 0 0.1440
#27 S C B1 G+N E = 100, η = 0.1, E2 = 10, R = 1 10.5 0 0.1442
#28 S C B2 G E = 1000, η = 0.1, R = 1 8.7 0 0.1628
#29 S C B2 N E2 = 20, R = 0.5 9.8 0 0.1576
#30 S C B2 G+N E = 200, η = 0.1, E2 = 10, R = 1 8.8 0 0.1623
#31 S C C1 G E = 1000, η = 0.1, R = 1 10.0 0 0.0714
#32 S C C1 N E2 = 10, R = 1 4.0 1 0.3665
#33 S C C1 G+N E = 50, η = 0.1, E2 = 10, R = 1 10.0 0 0.0714
#34 S C C2 G E = 1000, η = 0.1, R = 1 9.3 0 0.0464
#35 S C C2 N E2 = 10, R = 0.5 4.0 1 0.3117
#36 S C C2 G+N E = 50, η = 0.1, E2 = 10, R = 1 9.3 0 0.0464

#37 L A A1 G E = 1000, η = 0.05, R = 1 17.5 0 0.1652
#38 L A A1 N E2 = 10, R = 1 17.5 0 0.1620
#39 L A A1 G+N E = 200, η = 0.05, E2 = 10, R = 1 17.5 0 0.1620
#40 L A B1 G E = 1000, η = 0.05, R = 1 17.5 0 0.1662
#41 L A B1 N E2 = 10, R = 1 17.5 0 0.1592
#42 L A B1 G+N E = 50, η = 0.05, E2 = 10, R = 1 17.5 0 0.1639
#43 L A C1 G E = 1000, η = 0.05, R = 1 17.2 0 0.1643
#44 L A C1 N E2 = 10, R = 1 17.2 0 0.1508
#45 L A C1 G+N E = 50, η = 0.05, E2 = 10, R = 1 17.2 0 0.1638

#46 L C B1 G E = 1000, η = 0.05, R = 1 17.1 0 0.8212
#47 L C B1 N E2 = 10, R = 0.5 11.3 0 1.3688
#48 L C B1 G+N E = 50, η = 0.05, E2 = 10, R = 1 17.1 0 0.8210
#49 L C B2 G E = 1000, η = 0.05, R = 1 14.8 0 0.8795
#50 L C B2 N E2 = 10, R = 0.5 7.5 2 3.2423
#51 L C B2 G+N E = 100, η = 0.05, E2 = 10, R = 1 14.8 0 0.8783
#52 L C C1 G E = 1000, η = 0.05, R = 1 17.1 0 0.4095
#53 L C C1 N E2 = 10, R = 0.5 8.4 1 1.9603
#54 L C C1 G+N E = 50, η = 0.05, E2 = 10, R = 1 17.1 0 0.4094
#55 L C C2 G E = 1000, η = 0.05, R = 1 17.2 0 0.1583
#56 L C C2 N E2 = 10, R = 0.5 8.4 1 1.9607
#57 L C C2 G+N E = 50, η = 0.05, E2 = 10, R = 1 17.3 0 0.1582

Table 4.13: Results of SMAX training on the TOY dataset.

87

CHAPTER 4. APPLICATIONS

• SA (loss = lossS , h = hA): In this category the G+N method required a relatively short
G phase. The lowest L value was achieved by smax = smaxC1.

• SB (loss = lossS , h = hB): This category required 2 magnitudes smaller learning rates
than the other ones. (This is because in the case of hB the changes of the weights are
not “dampened” by the sigmoid function.) The ‖W‖ values were relatively small. The
G+N method required a relatively long G phase. The lowest L value was achieved by
smax = smaxC2.

• SC (loss = lossS , h = hC): The L value was typically higher than in SA and SB. The
lowest L value was achieved by smax = smaxC2.

• LA (loss = lossL, h = hA): In this category the pure N method was more stable than in
the other categories: it was always able to achieve zero misclassifications. The lowest L
value was achieved by smax = smaxC1.

• LC (loss = lossL, h = hC): In this category the pure N method performed poorly in terms
of misclassifications. The L value was typically higher than in LA. The lowest L value was
achieved by smax = smaxC2.

4.2.2 Comparing SMAX with other methods

In the next experiments we will compare the proposed SMAX approach with other classification
algorithms. The algorithms were tested on the given problems using 10-fold cross validation.
This means that each dataset was partitioned randomly into 10 parts. Then, each algorithm was
run on each problem 10 times, so that in the i-th run the i-th part was used as the test set, and
the other parts as the training set.

The performance measures used in the experiments were the following:

• AUC: The area under the receiver operating characteristics [Egan, 1975]. Given a predictor
g and a test dataset (x1,y1), . . . , (xm, ym) the AUC value can be obtained as follows: At
first, the values g(x1), . . . , g(xm) are calculated, and sorted in descending order. If we
denote the indices of the sorted sequence by (1), . . . , (m), and introduce the notations

TP0 = 0, FP0 = 0, TPk =
∑k

i=1 y(i)/
∑m

i=1 yi, and FPk =
∑m

i=k+1 y(i)/
∑m

i=1(1 − yi)
(k = 1 . . . ,m), then the AUC value can be written as:

AUC =

m∑

k=1

(FPk − FPk−1)(TPk + TPk−1)/2.

In each experiment, we measure the empirical mean and standard deviation of the AUC
values obtained from the 10 runs.

• ∆AUC: The difference of the AUC value from the value from the AUC of FDA, which is
treated as the baseline result. Again, we measure the empirical mean and the standard de-
viation of the ∆AUC values obtained from the 10 runs. Note that the standard deviation of
AUC and ∆AUC provide different information about the uncertainty of the measurement.
The second value is typically smaller than the first, and it is more useful for comparing
algorithms.

• TTIME: Training time in seconds, summed over the 10 runs.

• VTIME: Validation time in seconds, summed over the 10 runs.

88

4.2. EXPERIMENTS WITH CLASSIFICATION

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.877 (±0.017) +0.000 (±0.000) 0.08 0.006

LOGR E = 1 0.877 (±0.017) +0.000 (±0.000) 0.45 0.006

SPER E = 1 0.877 (±0.017) +0.000 (±0.000) 0.47 0.006

ALN 0.877 (±0.017) +0.000 (±0.000) 0.43 0.006

LSVM C = 10 0.877 (±0.017) +0.000 (±0.000) 79.0 0.006

KNN K = 35 0.930 (±0.015) +0.053 (±0.010) 0.00 27.6

ID3 β = 1, Gmin = 0.001 0.929 (±0.014) +0.052 (±0.009) 31.6 0.18

MLP R = 0.2, E = 200,
η = 0.0005, µ = 0.9

0.923 (±0.014) +0.046 (±0.005) 120 0.07

SVM C = 10 0.927 (±0.013) +0.050 (±0.010) 61.5 3.28

MR K = 6, β = 0.2 0.920 (±0.014) +0.043 (±0.006) 0.31 0.010

SMAX
K = 2, R = 0.1,
E = 500, E2 = 0,

η = 0.005
0.925 (±0.013) +0.048 (±0.007) 54.6 0.009

Table 4.14: Results of classification algorithms on the V2 dataset.

The results of classification algorithms on the V2 dataset can be seen in Table 4.14. Not sur-
prisingly, nonlinear methods outperformed linear ones on this problem in terms of AUC. Accord-
ing to the (mean) AUC value, SMAX was the third best algorithm. According to ∆AUC/VTIME,
it was the best one.

Results on the V3 dataset can be seen in Table 4.15. The accuracy of the methods is generally
lower than in the case of V2 in terms of AUC. This is because now the optimal decision surface
is more complex, and the input space is less densely filled with training examples as in previous
case. Again, according to the AUC value, SMAX was the third best algorithm, and according
to ∆AUC/VTIME, it was the best one.

Results for the ABALONE dataset can be seen in Table 4.16. Although the highest AUC
values were achieved by nonlinear methods, the accuracy of linear methods was relatively good.
Nevertheless, SMAX was still the best algorithm in terms of ∆AUC/VTIME, slightly outper-
forming SPER. According to the AUC value, SMAX was the third best method. The other
convex polyhedron method, MR performed weak on this problem.

Results for the BLOOD dataset can be seen in Table 4.17. The best accuracies achieved by
linear and nonlinear methods were close to each other. Some nonlinear methods (including MR)
performed weak. According to the AUC value, SMAX was the third best algorithm. According
to ∆AUC/VTIME, it was the second best one (beaten by MLP, tied with LOGR).

Results for the CHESS dataset can be seen in Table 4.18. We can observe that ID3 and KNN
show outstanding accuracy. This interesting phenomenon can be explained by the characteristics
of the chess endgames domain. Recall that the inputs are 6 integers, representing the coordinates
of the pieces, and the task is to decide if black can avoid being mated in 14 moves. All of the
given methods except ID3 and KNN base their model upon the linear combination(s) of the
features. In chess, this information is not very useful, because the position value is a highly
nonlinear function of the coordinates of the pieces (e.g. the relation is not monotonic). If we
analyze the performance of SMAX, then we can see that it was the fourth best method in terms

89

CHAPTER 4. APPLICATIONS

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.846 (±0.017) +0.000 (±0.000) 0.08 0.006

LOGR E = 1 0.846 (±0.017) +0.000 (±0.000) 0.45 0.006

SPER E = 1 0.846 (±0.017) +0.000 (±0.000) 0.47 0.006

ALN 0.846 (±0.017) +0.000 (±0.000) 0.43 0.006

LSVM C = 10 0.846 (±0.018) +0.000 (±0.000) 60.7 0.006

KNN K = 35 0.887 (±0.020) +0.041 (±0.010) 0.00 27.5

ID3 β = 1, Gmin = 0.001 0.877 (±0.019) +0.031 (±0.009) 22.1 0.19

MLP R = 0.2, E = 200
η = 0.0005, µ = 0.9

0.877 (±0.016) +0.031 (±0.005) 120 0.07

SVM C = 10 0.888 (±0.015) +0.041 (±0.007) 125 3.17

MR K = 12, β = 0.2 0.867 (±0.017) +0.021 (±0.006) 0.47 0.012

SMAX
K = 6, R = 0.1,
E = 500, E2 = 0,

η = 0.005
0.884 (±0.017) +0.038 (±0.007) 105 0.011

Table 4.15: Results of classification algorithms on the V3 dataset.

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.844 (±0.018) +0.000 (±0.000) 0.067 0.004

LOGR E = 1 0.849 (±0.018) +0.006 (±0.002) 0.206 0.004

SPER E = 2 0.852 (±0.018) +0.009 (±0.005) 0.256 0.004

ALN 0.849 (±0.018) +0.006 (±0.002) 0.195 0.004

LSVM C = 10 0.850 (±0.021) +0.007 (±0.005) 16.47 0.004

KNN K = 25 0.847 (±0.017) +0.003 (±0.007) 0.000 7.037

ID3 β = 2, Gmin = 0.001 0.821 (±0.024) −0.023 (±0.011) 164.2 0.153

MLP R = 0.2, E = 500
η = 0.002, µ = 0.95

0.866 (±0.017) +0.022 (±0.006) 138.1 0.031

SVM C = 1000 0.863 (±0.015) +0.019 (±0.007) 30.23 1.517

MR K = 6, β = 0.2 0.748 (±0.030) −0.095 (±0.020) 0.481 0.007

SMAX
K = 5, R = 0.2,

E = 5000, E2 = 5,
η = 0.01

0.855 (±0.019) +0.012 (±0.008) 430.1 0.007

Table 4.16: Results of classification algorithms on the ABALONE dataset.

90

4.2. EXPERIMENTS WITH CLASSIFICATION

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.754 (±0.043) +0.000 (±0.000) 0.009 0.002

LOGR E = 2 0.755 (±0.044) +0.001 (±0.007) 0.039 0.002

SPER E = 4 0.754 (±0.043) +0.000 (±0.008) 0.055 0.002

ALN 0.753 (±0.041) −0.002 (±0.010) 0.034 0.002

LSVM C = 0.1 0.745 (±0.048) −0.009 (±0.020) 1.738 0.002

KNN K = 35 0.759 (±0.053) +0.004 (±0.047) 0.000 0.157

ID3 β = 5, Gmin = 0.005 0.732 (±0.056) −0.022 (±0.038) 1.538 0.010

MLP R = 0.5, E = 2000
η = 0.01, µ = 0.95

0.768 (±0.053) +0.013 (±0.024) 93.35 0.008

SVM C = 2000 0.744 (±0.053) −0.010 (±0.035) 17.74 0.067

MR K = 4, β = 0.1 0.711 (±0.067) −0.043 (±0.052) 0.054 0.003

SMAX
K = 6, R = 0.2,
E = 500, E2 = 5,

η = 0.0001
0.757 (±0.040) +0.002 (±0.009) 55.64 0.004

Table 4.17: Results of classification algorithms on the BLOOD dataset.

of AUC, and it was the best method in terms of ∆AUC/VTIME.
Results for the SEGMENT dataset are shown in Table 4.19. We can see that linear methods

were strongly outperformed by nonlinear ones in terms of accuracy on this problem. The only
nonlinear method that performed poorly was MLP. According to the AUC value, SMAX was the
best algorithm, tied with SVM. According to ∆AUC/VTIME, it was the sole best.

Summarizing the results of the experiments, we can say that SMAX proved to be a useful
classification algorithm. Typically, it was less accurate than sophisticated nonlinear methods but
more accurate than linear methods. Compared to MR, the other convex polyhedron algorithm,
SMAX was more accurate in all of the 6 test problems. If take both accuracy and classification
speed into account, then SMAX performed particularly well.

A disadvantage of SMAX on the given problems was relatively long training time (however it
was still acceptable). I emphasize that the complexity of gradient method based SMAX training
is O(EndK), therefore the approach is able to deal with very large problems (as it will be
demonstrated in the collaborative filtering experiments).

Notes on running times

Because the implementation environment was Python + NumPy, the measured running times not
always reflect the true time requirements of the algorithms. The reason why such phenomena
can occur is that Python is a relatively slow, interpreted language, while NumPy is a highly
optimized library of numerical routines.

In most cases (FDA, LOGR, SPER, ALN, KNN, MLP, MR, SMAX with gradient training),
it was possible to translate every important step of the algorithm to linear algebra operations
supported by NumPy, and therefore the overhead of using an interpreted language was small.

In other cases (ID3, SMAX with Newton training), there were critical parts written in pure
Python, which resulted a significantly increased running time. These algorithms could be speeded
up greatly (up to a constant factor only of course), if we implemented them in C/C++.

91

CHAPTER 4. APPLICATIONS

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.853 (±0.005) +0.000 (±0.000) 0.353 0.013

LOGR E = 5 0.854 (±0.005) +0.001 (±0.002) 1.949 0.013

SPER E = 6 0.854 (±0.005) +0.001 (±0.001) 2.711 0.013

ALN 0.832 (±0.006) −0.020 (±0.004) 1.282 0.013

LSVM C = 0.001 0.651 (±0.123) −0.201 (±0.120) 106.9 0.013

KNN K = 15 0.982 (±0.002) +0.129 (±0.005) 0.000 279.5

ID3 β = 0.1, Gmin = 0.001 0.993 (±0.003) +0.140 (±0.006) 192.9 0.700

MLP R = 0.01, E = 500
η = 0.0002, µ = 0

0.836 (±0.006) −0.017 (±0.004) 916.1 0.178

SVM C = 100 0.955 (±0.006) +0.102 (±0.007) 277.5 18.76

MR K = 6, β = 0.2 0.916 (±0.008) +0.063 (±0.008) 0.783 0.026

SMAX
K = 6, R = 0.2,

E = 1000, E2 = 5,
η = 0.0002

0.937 (±0.006) +0.085 (±0.009) 2231 0.026

Table 4.18: Results of classification algorithms on the CHESS dataset.

Method Parameters AUC ∆AUC TTIME VTIME

FDA 0.930 (±0.019) +0.000 (±0.000) 0.077 0.003

LOGR E = 10 0.945 (±0.017) +0.015 (±0.009) 0.420 0.003

SPER E = 10 0.942 (±0.020) +0.012 (±0.011) 0.448 0.003

ALN 0.931 (±0.024) +0.001 (±0.011) 0.127 0.003

LSVM C = 10 0.939 (±0.024) +0.009 (±0.014) 5.519 0.003

KNN K = 15 0.988 (±0.009) +0.058 (±0.019) 0.000 2.748

ID3 β = 0.01, Gmin = 0.001 0.987 (±0.005) +0.057 (±0.018) 39.09 0.045

MLP R = 0.01, E = 500
η = 5 · 10−6, µ = 0.95

0.858 (±0.026) −0.072 (±0.025) 76.75 0.018

SVM C = 5 · 105 0.989 (±0.010) +0.058 (±0.019) 84.82 0.260

MR K = 8, β = 0.2 0.973 (±0.013) +0.042 (±0.017) 0.342 0.006

SMAX
K = 6, R = 0.05,
E = 500, E2 = 5,

η = 0.008
0.989 (±0.010) +0.059 (±0.016) 195.6 0.006

Table 4.19: Results of classification algorithms on the SEGMENT dataset.

92

4.3. EXPERIMENTS WITH COLLABORATIVE FILTERING

In the case of the support vector machines (LSVM, SVM), Python was used only as a wrapper.
Most of the computation was done by the highly optimized libsvm library, therefore, the measured
running times can be considered as “state of the art”.

Notes on setting meta-parameters

Many of the algorithms involved in the experiments have meta-parameters that should be set
appropriately in order to get a reasonable performance. For doing this, I generally applied the
following heuristic greedy search method:

1. Choose a meta-parameter to optimize based on intuition, or draw it randomly, if we have
no guess!

2. Optimize the value of the selected meta-parameter by “doubling and halving” (if it is
numerical) or by exhaustive search (if it is categorical)!

3. Go to step 1, if we want to continue optimizing!

It is important to note that meta-parameter optimization should use a different dataset or
at least a different cross-validation split as the main experiment (in this work the latter solution
was applied).

One may notice that the proposed SMAX approach has more meta-parameters than the other
algorithms involved in the comparison. This is true, but I have found that for the given test
problems the performance is not very sensitive to the values of most meta-parameters. The
meta-parameters with largest influence on performance are the number of hyperplanes K, the
range of random initialization R, the learning rate η, and the number of epochs E.

4.3 Experiments with collaborative filtering

The NETFLIX dataset

This collaborative filtering dataset is currently one of the largest publicly available machine
learning datasets. It contains about 100 million rating from over 480 thousand users on nearly
18 thousand items (movies). The dataset was provided generously by Netflix, the popular movie
rental service, for the Netflix Prize (NP) competition [Bennett and Lanning, 2007].

The examples are (u, i, r, d) quadruplets, representing that user u rated item i as r on date
d. The ratings values are integers from 1 to 5, where 1 is the worst, and 5 is the best. The
data were collected between October, 1998 and December, 2005 and reflect the distribution of
all ratings received by Netflix during this period. The collected data was released in a train–test
setting in the following manner (see also Figure 4.4).

Netflix selected a random subset of users from their entire customer base with at least 20
ratings in the given period. A Hold-out set was created from the 9 most recent ratings of the
users, consisting of about 4.2 million ratings. The remaining data formed the Training set. The
ratings of the Hold-out set were split randomly with equal probability into three subsets of equal
size: Quiz, Test and Probe. The Probe set was added to the Training set and was released with
ratings. The ratings of the Quiz and Test sets were withheld as a Qualifying set to evaluate
competitors. The Quiz/Test split of the qualifying set is unknown to the public. I remark
that the date based partition of the entire NP dataset into train–test sets reflects the original
aim of recommender systems, which is the prediction of future interest of users from their past
ratings/activities.

93

CHAPTER 4. APPLICATIONS

Known ratings Ratings withheld by
Netflix for scoring

Random 3-
way split

Training Data Probe Quiz Test

All Data
(~100 M user item pairs)

Training Data

Held-Out Set
(last 9 rating
for each user:
4.2 M pairs)

Figure 4.4: The train–test split and the naming convention of the NETFLIX dataset (after
[Bell et al., 2007])

As the aim of the competition is to improve the prediction accuracy of user ratings, Netflix
adopted RMSE (root mean squared error) as evaluation measure. The goal of the competition
is to reduce the RMSE on the Test set by at least 10 percent, relative to the RMSE achieved by
Netflix’s own system Cinematch.2 The contestants have to submit predictions for the Qualifying
set. The organizers return the RMSE of the submissions on the Quiz set, which is also reported
on a public leaderboard.3 Note that the RMSE on the Test set is withheld by Netflix.

There are some interesting characteristics of the data and the set-up of the competition that
pose a difficult challenge for prediction:

• The distribution over the time of the ratings of the Hold-out set is quite different from the
Training set. As a consequence of the selection method, the Hold-out set does not reflect
the skewness of the movie-per-user, observed in the much larger Training set. Therefore the
Qualifying set contains approximately equal number of queries for often and rarely rating
users.

• The designated aim of the release of the Probe set is to facilitate unbiased estimation of
RMSE for the Quiz/Test sets despite of the different distributions of the Training and the
Hold-out sets. In addition, it permits off-line comparison of predictors before submission.

• We already mentioned that users’ activity at rating is skewed. To put this into numbers,
ten percent of users rated 16 or fewer movies and one quarter rated 36 or fewer. The
median is 93. Some very active users rated more than 10,000 movies. A similar biased
property can be observed for movies: The most-rated movie, Miss Congeniality was rated

2The first team achieving the 10 percent improvement is promised to be awarded by a Grand Prize of $1
million by Netflix. Not surprisingly, this prospective award drawn much interest towards the competition. So far,
more than 3 000 teams submitted entries for the competition.

3http://www.netflixprize.com/leaderboard

94

http://www.netflixprize.com/leaderboard

4.3. EXPERIMENTS WITH COLLABORATIVE FILTERING

by almost every second user, but a quarter of titles were rated fewer than 190 times, and
a handful were rated fewer than 10 times [Bell et al., 2007].

• The variance of movie ratings is also very different. Some movies are rated approximately
equally by the user base (typically well), and some partition the users. The latter ones
may be more informative in predicting the taste of individual users.

Experiments

The algorithms involved in the experiments were the following:

• DC: Double centering (see page 24 for the details). The only parameter of the algorithm
is the number of epochs E (default value: 2).

• BRISMF: Biased regularized incremental simultaneous matrix factorization (see page 25).
The parameters of the algorithm are the number of epochs E, the number of factors L, the
user learning rate ηU (default value: 0.016), the item learning rate ηI (default value: 0.005),
the user regularization coefficient λU (default value: 0.015), and the item regularization
coefficient λI (default value: 0.015).

• NSVD1: Item neighbor based approach with factorized similarity (see page 27). The
parameters of the algorithm are the number of epochs E, the number of factors L, the user
learning rate ηU (default value: 0.005), the item learning rate ηI (default value: 0.005),
the user regularization coefficient λU (default value: 0.015), and the item regularization
coefficient λI (default value: 0.015).

• SMAXCF: The proposed smooth maximum based convex polyhedron approach (see page
54). The parameters of the algorithm are the smooth max function (default value: smaxA1),
the smoothness parameter α (default value: 2), the smoothness change parameters A1 and
A0 (default value: A1 = 1, A0 = 0.25), the number of epochs E, the number of factors
L, the user learning rate ηU (default value: 0.016), the item learning rate ηI (default
value: 0.005), the user regularization coefficient λU (default value: 0.015), and the item
regularization coefficient λI (default value: 0.015).

All algorithms were implemented in C++ from scratch. The hardware environment was a
server PC with Intel Pentium Q9300 2.5 GHz CPU and 3 Gb memory.

Let us denote the NETFLIX Training set by T = {(u1, i1, r1, d1), . . . , (un, in, rn, dn)}, and
the Probe set by P = {(u1, i1, r1, d1), . . . , (um, im, rm, dm)}. The exact sizes of the sets are
n = 100, 480, 507 and m = 1, 408, 395. All algorithms were trained using T \ P, and then the
Probe RMSE of the trained predictor g was calculated as

Probe RMSE =

√√√√ 1

|P|
∑

(u,i,r,d)∈P
(g(u, i)− r)2.

The results of individual algorithms are shown in Table 4.20. Recall that SMAXCF can be
considered as a generalization of BRISMF. We can see, that the SMAXCF approach was able to
boost the accuracy of BRISMF, however if we used more factors, then the benefit was smaller.
The NSVD1 approach was less accurate than than BRISMF and SMAXCF, and not surprisingly,
DC was the worst in terms of RMSE. It is true for all of BRISMF, NSVD1, and SMAXCF that
the accuracy was increasing with introducing more factors.

Each experiment consists of three main phases: data loading, training, and validation. The
last column of the table shows the total running time of the experiments in seconds. If we take

95

CHAPTER 4. APPLICATIONS

No. Method Parameters Probe RMSE
Running time

(seconds)

#1 DC 0.9868 11

#2 BRISMF L = 10, E = 13 0.9190 161

#3 BRISMF L = 20, E = 12 0.9125 263

#4 BRISMF L = 50, E = 12 0.9081 598

#5 NSVD1 L = 10, E = 26 0.9492 568

#6 NSVD1 L = 20, E = 24 0.9459 1057

#7 NSVD1 L = 50, E = 22 0.9435 1900

#8 SMAXCF L = 10, E = 18 0.9169 861

#9 SMAXCF L = 20, E = 18 0.9114 1234

#10 SMAXCF L = 50, E = 18 0.9079 2692

Table 4.20: Results of collaborative filtering algorithms on the NETFLIX dataset.

into account that more than 99 million examples were used for training, then we can conclude
that all of the presented algorithms are efficient in terms of time requirement.

In the last experiments the predictions of the previous methods for the Probe set were blended
with L2 regularized linear regression (LINR, see page 21). The value of the regularization coef-
ficient was λ = 1.4. The results can be seen in Table 4.21.

The last column shows the 10-fold cross validation Probe RMSE of the optimal linear com-
bination of the inputs. The reason why the single-input blends (#11, #12, and #13) have lower
RMSE than the inputs themselves is that the LINR blender introduces a bias term too. We can
see that the SMAXCF approach was able to improve the result of the combination of BRISMF
and NSVD1 models. This indicates that SMAXCF was able to capture new aspects of the data
that was not captured by BRISMF and NSVD1.

96

4.3. EXPERIMENTS WITH COLLABORATIVE FILTERING

No. Inputs Probe RMSE

#11 #4 0.9069

#12 #7 0.9430

#13 #10 0.9069

#14 #2+#3+#4 0.9065

#15 #5+#6+#7 0.9429

#16 #8+#9+#10 0.9068

#17 #14+#15 0.9035

#18 #14+#16 0.9050

#19 #15+#16 0.9033

#20 #14+#15+#16 0.9021

Table 4.21: Results of linear blending on the NETFLIX dataset.

97

Conclusion

This thesis was about convex polyhedron based methods for machine learning. The first chapter
(Introduction) briefly introduced the field of machine learning and located convex polyhedron
learning in it. The second chapter (Algorithms) dealt with the problem of linear and convex
separation, and gave algorithms for training convex polyhedron classifiers and predictors. The
third chapter (Model complexity) collected known facts about the Vapnik–Chervonenkis dimen-
sion of convex polyhedron classifiers and proved new results. The fourth chapter (Applications)
presented experiments with the given algorithms on real and artificial datasets.

The summary of new scientific results contained in the thesis is the following:

• Direct and incremental approaches were investigated for determining the linear separability
of point sets. Heuristics were proposed for choosing the active constraints and variables
of the next step (LSEPX, LSEPY, LSEPZX, LSEPZY). A novel algorithm with low time
requirement was given for the approximate convex separation of point sets (CSEPC). A
novel exact algorithm with low expected time requirement was introduced for determining
the convex separability of point sets (CSEPX).

• The possibility of approximating the maximum operator by smooth functions was inves-
tigated, and six, parameterizable smooth maximum function families were introduced. A
novel, smooth maximum function based approach was introduced for training convex poly-
hedron classifiers (SMAX). A novel, smooth maximum function based algorithm was given
for training convex polyhedron models in the case of collaborative filtering (SMAXCF).

• The Vapnik–Chervonenkis dimension of 2-dimensional convex K-gon classifiers was deter-
mined so that the label of the inner (convex) region is unrestricted. A new lower bound
was proved for the Vapnik–Chervonenkis dimension of d-dimensional convex K-polyhedron
classifiers. In the special cases d = 3 and d = 4 the bound was further improved.

• Scalable and accurate algorithms were introduced for collaborative filtering. A novel matrix
factorization technique called BRISMF (biased regularized incremental simultaneous ma-
trix factorization) was introduced. A new training algorithm for Paterek’s NSVD1 model
was given.

99

List of publications

[P1] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering approaches
for large recommender systems. Journal of Machine Learning Research (Special Topic on
Mining and Learning with Graphs and Relations), 10: 623–656, 2009.

[P2] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Matrix factorization and neighbor based
algorithms for the Netflix Prize problem. Proc. of the 2008 ACM Conference on Recom-
mender Systems (RECSYS’08), pages 267–274, Lausanne, Switzerland, 2008.

[P3] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix factorization
methods for large recommender systems. Proc. of the 2nd KDD Workshop on Large Scale
Recommender Systems and the Netflix Prize Competition, Las Vegas, Nevada, USA, 2008.

[P4] G. Takács, I. Pilászy, B. Németh, and D. Tikk. A unified approach of factor models and
neighbor based methods for large recommender systems. Proc. of the 1th IEEE ICADIWT
Workshop on Recommender Systems and Personalized Retrieval, pages 186–191, Ostrava,
Czech Republic, 2008.

[P5] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major components of the Gravity Recom-
mendation System. ACM SIGKDD Explorations Newsletter, 9(2): 80–83, 2007.

[P6] G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the Gravity Recommendation System.
Proc. of the KDD Cup and Workshop 2007, pages. 22–30, San Jose, California, USA, 2007.

[P7] G. Takács and B. Pataki. Case-level detection of mammographic masses. International
Journal of Applied Electromagnetics and Mechanics, 25(1–4): 395–400, 2007.

[P8] G. Takács. The Vapnik–Chervonenkis dimension of convex n-gon classifiers. Hungarian
Electronic Journal of Sciences, 2007.

[P9] G. Takács and B. Pataki. Lower bounds on the Vapnik–Chervonenkis dimension of convex
polytope classifiers. Proc. of the 11th International Conference on Intelligent Engineering
Systems (INES 2007), Budapest, Hungary, 2007.

[P10] G. Takács and B. Pataki. Deciding the convex separability of pattern sets. Proc. of
the 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS’2007), Dortmund, Germany, 2007.

[P11] G. Takács and B. Pataki. An efficient algorithm for deciding the convex separability of
point sets. Proc. of the 14th PhD Mini-Symposium, Budapest University of Technology and
Economics, Department of Measurement and Information Systems, pages 54–57, Budapest,
Hungary, 2007.

[P12] G. Takács and B. Pataki. Nearest local hyperplane rules for pattern classification. AI*IA
2007: Artificial Intelligence and Human-Oriented Computing, pages 302–313, Rome, Italy,
2007.

[P13] G. Takács and B. Pataki. A lépcsőzetes döntéshozás elvének műszaki alkalmazásai, (in
Hungarian). Elektronet, 16(8): 76–78, 2007.

[P14] M. Altrichter, G. Horváth, B. Pataki, Gy. Strausz, G. Takács and J. Valyon. Neurális
hálózatok, (in Hungarian). Panem, 2006.

101

CHAPTER 4. APPLICATIONS

[P15] G. Takács and B. Pataki. Local hyperplane classifiers. Proc. of the 13th PhD Mini-
Symposium, Budapest University of Technology and Economics, Department of Measure-
ment and Information Systems, pages 44–45, Budapest, Hungary, 2006.

[P16] G. Takács and B. Pataki. Fast detection of masses in mammograms with difficult case
exclusion. International Scientific Journal of Computing, 4(3): 70–75, 2005.

[P17] G. Takács and B. Pataki. Case-level detection of mammographic masses. Proc. of the 12th
International Symposium on Interdisciplinary Electromagnetic, Mechanic and Biomedical
Problems (ISEM 2005), pages 214–215, Bad Gastein, Austria, 2005.

[P18] G. Takács and B. Pataki. Fast detection of mammographic masses with difficult case
exclusion. Proc. of the 3rd IEEE Workshop on Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS’2005), pages 424–428, Sofia, Bulgaria, 2005.

[P19] G. Takács and B. Pataki. Computer-aided detection of mammographic masses. Proc. of
the 12th PhD Mini-Symposium, Budapest University of Technology and Economics, Depart-
ment of Measurement and Information Systems, pages 24–25, Budapest, Hungary, 2005.

[P20] N. Tóth, G. Takács, and B. Pataki. Mass detection in mammograms combining two meth-
ods. Proc. of the 3rd European Medical & Biological Engineering Conference (EMBEC’05),
Prague, Czech Republic, 2005.

[P21] G. Horváth, B. Pataki, Á. Horváth, G. Takács, and G. Balogh. Detection of microcalcifi-
cation clusters in screening mammography. Proc. of the 3rd European Medical & Biological
Engineering Conference (EMBEC’05), Prague, Czech Republic, 2005.

[P22] G. Takács. The smooth maximum classifier. Accepted at: Second Győr Symposium on
Computational Intelligence, 2009.

[P23] G. Takács. Smooth maximum based algorithms for classification, regression, and collabora-
tive filtering. Accepted at: Acta Technica Jaurinensis, Series Intelligentia Computatorica,
2009.

[P24] G. Takács. Efficient algorithms for determining the linear and convex separability of point
sets. Accepted at: Acta Technica Jaurinensis, Series Intelligentia Computatorica, 2009.

[P25] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Unifying collaborative filtering approaches.
Veszprém Optimization Conference: Advanced Algorithms (VOCAL 2008), Veszprém,
Hungary, 2008.

[P26] R. Horváth-Bokor, Z. Horváth, and G. Takács. Kockázatelemzés logisztikus regresszióval
nagy adathalmazokon, (in Hungarian). 28. Magyar Operációkutatási Konferencia, Bala-
tonőszöd, Hungary, 2009.

102

Bibliography

K. Appel and W. Haken. Every planar map is four colorable. Ilinois Journal of Mathematics,
21:439–567, 1977.

E.M. Arkin, F. Hurtado, J.S.B. Mitchell, C. Seara, and S.S. Skiena. Some lower bounds on
geometric separability problems. International Journal of Computational Geometry and Ap-
plications, 161:1–26, 2006.

D. Ascher, P.F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical Python, 2001.
URL: http://www.numpy.org/.

P. Assouad. Densité et dimension. Annales de l’Institut Fourier, 33:233–282, 1983.

A. Asuncion and D.J. Newman. UCI Machine Learning Repository, 2007.
URL: http://www.ics.uci.edu/~mlearn/MLRepository.html.

R. Bell and Y. Koren. Improved neighborhood-based collaborative filtering. In Proc. of the KDD
Cup and Workshop 2007, pages 7–14, 2007.

R. Bell, Y. Koren, and C. Volinsky. Chasing $1,000,000: How we won the Netflix Progress Prize.
ASA Statistical and Computing Graphics Newsletter, 18(2):4–12, 2007.

J. Bennett and S. Lanning. The Netflix Prize. In Proc. of the KDD Cup and Workshop 2007,
pages 3–6, 2007.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proc.
of the Fifth Annual Workshop on Computational Learning Theory, pages 144–152, 1992.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. Lecture
Notes in Artificial Intelligence, 3176:169–207, 2004.

P.S Bradley, U.M. Fayyad, and O.L. Mangasarian. Mathematical programming for data mining:
Formulations and challenges. INFORMS Journal on Computing, 11(3):217–238, 1999.

L. Breiman. Hinging hyperplanes for regression, classification, and function approximation. IEEE
Transactions on Information Theory, 39(3):999–1013, 1993.

C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

C. Chang and C. Lin. LIBSVM: a library for support vector machines. National Taiwan Univer-
sity, 2001. URL: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

V. Chvátal. Linear programming. W. H. Freeman & Co., 1983.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition. Springer,
New York, 1996.

D.P. Dobkin and D. Gunopulos. Concept learning with geometric hypotheses. In Proc. 8th Annual
Conference on Computational Learning Theory, pages 329–336. ACM Press, New York, 1995.

J.P. Egan. Signal detection theory and ROC analysis. Academic Press, New York, 1975.

103

http://www.numpy.org/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

BIBLIOGRAPHY

M. Elad, Y. Hel-Or, and R. Keshet. Pattern detection using a maximal rejection classifier. In
Proc. of the 4th International Workshop on Visual Form, pages 514–524, 2001.

T.S. Ferguson. Linear programming – A concise introduction, 2004.
URL: http://www.math.ucla.edu/~tom/LP.pdf.

T. Finley. PyGLPK, version 0.3, 2008.
URL: http://www.cs.cornell.edu/~tomf/pyglpk/.

P. Fischer. More or less efficient agnostic learning of convex polygons. In Proc. of the 8th Annual
Conference on Computational Learning Theory, pages 228–236. ACM Press, New York, 1995.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:
179–188, 1936.

E. Fix and J.L. Hodges. Discriminatory analysis: Non-parametric discrimination: Consistency
properties. Technical Report 4, US Air Force School of Aviation Medicine, 1951.

S. Funk. Netflix update: Try this at home, 2006.
URL: http://sifter.org/~simon/journal/20061211.html.

L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of nonparametric
regression. Springer, New York, 2002.

D. Haussler and E. Welzl. Epsilon nets and simplex range queries. Discrete Computational
Geometry, 2:127–151, 1987.

S. Haykin. Neural networks and learning machines. Prentice Hall, 3rd edition, 2008.

R. Hooke and T.A. Jeeves. “direct search” solution of numerical and statistical problems. Journal
of the ACM, 8(2):212–229, 1961.

T. Joachims. Making large-scale SVM learning practical. In B. Schlkopf, C. Burges, and A. Smola,
editors, Advances in kernel methods - Support vector learning. MIT Press, 1999.

E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for python, 2001.
URL: http://www.scipy.org/.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:
373–395, 1984.

J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American Mathematical
Society, 4(1):502–506, 1953.

A.R. Klivans, R. O’Donnell, and R.A. Servedio. Learning intersections and thresholds of halfs-
paces. Journal of Computer and System Sciences, 68(4):804–840, 2004.

S. Kwek and L. Pitt. PAC learning intersections of halfspaces with membership quieries. Algo-
rithmica, 22:53–75, 1998.

Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1999.
URL: http://yann.lecun.com/exdb/mnist/.

A. Makhorin. GNU Linear Programming Kit, version 4.37, 2009.
URL: http://www.gnu.org/software/glpk/.

104

http://www.math.ucla.edu/~tom/LP.pdf
http://www.cs.cornell.edu/~tomf/pyglpk/
http://sifter.org/~simon/journal/20061211.html
http://www.scipy.org/
http://yann.lecun.com/exdb/mnist/
http://www.gnu.org/software/glpk/

BIBLIOGRAPHY

W. McCullogh and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Biophysics, 7:115–133, 1943.

N. Megiddo. On the complexity of polyhedral separability. Discrete and Computational Geome-
try, 3:325–337, 1988.

A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In
Proc. of the KDD Cup and Workshop 2007, pages 39–42, 2007.

K. Pearson. The life, letters and labors of Francis Galton. Cambridge University Press, 1930.

K. Pearson. Mathematical contributions to the theory of evolution. III. Regression, heredity and
panmixia. Philosophical Transactions of the Royal Society of London, 187:253–318, 1896.

I. Pilászy and T. Dobrowiecki. Constructing large margin polytope classifiers with a multiclass
classification algorithm. In Proc. of the 4th IEEE Workshop on Intelligent Data Acquisition
and Advanced Computing Systems (IDAACS’2007), pages 261–264, 2007.

J.C. Platt. Fast training of support vector machines using sequential minimal optimization, pages
185–208. MIT Press, 1999.

J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1), 1986.

C.C. Rodŕıguez. Learning theory notes, VC dimension: Examples and tools, 2004.
URL: http://omega.albany.edu:8008/ml/.

F. Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of brain mechanisms.
Spartan Books, Washington D.C., 1962.

G. van Rossum. An introduction to Python, 2006.
URL: http://www.network-theory.co.uk/docs/pytut/.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13:145–147,
1972.

J.R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical Report CMU-CS-94-125, Carnegie Mellon University, School of Computer Science,
1994.

C. Stone. Consistent nonparametric regression. Annals of Statistics, 8:1348–1360, 1977.

G. Takács. The Vapnik–Chervonenkis dimension of convex n-gon classifiers. Hungarian Electronic
Journal of Sciences, 2007.

G. Takács and B. Pataki. Deciding the convex separability of pattern sets. In Proc. of
the 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS’2007), pages 278–80, 2007a.

G. Takács and B. Pataki. Lower bounds on the Vapnik–Chervonenkis dimension of convex
polytope classifiers. In Proc. of the 11th International Conference on Intelligent Engineering
Systems (INES 2007), 2007b.

G. Takács, I. Pilászy, B. Németh, and D. Tikk. On the Gravity Recommendation System. In
Proc. of the KDD Cup and Workshop 2007 (KDD 2007), pages 22–30, 2007.

105

http://omega.albany.edu:8008/ml/
http://www.network-theory.co.uk/docs/pytut/

BIBLIOGRAPHY

G. Takács, I. Pilászy, B. Németh, and D. Tikk. A unified approach of factor models and neighbor
based methods for large recommender systems. In Proc. of the 1st IEEE ICADIWT Workshop
on Recommender Systems and Personalized Retrieval, pages 186–191, 2008.

G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering approaches for
large recommender systems. Journal of Machine Learning Research (Special topic on Mining
and Learning with Graphs and Relations), 10:623–656, 2009.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
In Proc. of the 38th Annual Symposium on Foundations of Computer Science, pages 508–513,
1997.

P.J. Werbos. Beyond regression: New tools for prediction and analysis in the behaviour sciences.
PhD thesis, Harvard University, Cambridge, MA, 1974.

B. Widrow. An adaptive “adaline” neuron using chemical “memistors”. Technical Report 1553-2,
Stanford Electronics Laboratories, 1960.

E.B. Wilson and J. Worcester. The determination of L.D.50 and its sampling error in bio-assay.
Proceedings of the National Academy of Sciences, 29:79–85, 1943.

106

	Introduction
	Classification
	Linear classification
	Fisher discriminant analysis
	Logistic regression
	Artificial neuron
	Linear support vector machine
	Nonlinear classification
	K nearest neighbors
	ID3 decision tree
	Multilayer perceptron
	Support vector machine
	Convex polyhedron classification

	Regression
	Linear regression
	Nonlinear regression

	Techniques against overfitting
	Collaborative filtering
	Double centering
	Matrix factorization
	BRISMF
	Neighbor based methods
	Convex polyhedron methods

	Other machine learning problems
	Clustering
	Labeled sequence learning
	Time series prediction

	Algorithms
	Linear programming basics
	Algorithms for determining separability
	Definitions
	Algorithms for linear separability
	Algorithms for convex separability

	Algorithms for classification
	Known methods
	Smooth maximum functions
	Smooth maximum based algorithms

	Algorithms for regression
	Algorithms for collaborative filtering

	Model complexity
	Definitions
	Convex polyhedron function classes

	Known facts
	The VC dimension of MINMAX2,K
	Concepts for the proof
	The proof

	New lower bounds

	Applications
	Determining linear and convex separability
	Datasets
	Algorithms
	Types of separability
	Running times

	Experiments with classification
	Comparing the variants of SMAX
	Comparing SMAX with other methods

	Experiments with collaborative filtering

	List of publications
	Bibliography

