Machine Design and Modeling

Subject leader: dr. Rácz Péter

Aim of course

- Provide basic knowledge to create parts and technical drawings from them with CAD software (CREO)
- Introduce technical drawing of simple machine elements
- Capable of create and interpret assembly drawings

Course description

Computer aided engineering (CAD) in the production process. General steps of machine design and modeling.

Sketching in CAD environment, constraint. Parametric part modeling. Managing the model tree. Creating a complex geometric model with extrusion, revolution and sweeping. Creating technical drawings from a part in CAD environment.

Content of assembly and sub-assembly drawings. Title block, item numbers. Drawing and selection of bolted connections based on standards and catalogs. Drawing bearings and selecting them from an online catalog (SKF). Types and drawings of springs, welded joints and seals. Basic knowledge of constructions. Drawing of gears. Construction of shafts, torque transfer elements, connections. Calculation of fits, allowances and tolerances. Interpreting assembly drawings.

Week	Торіс	
	Drawing	CAD
1	Assessment	Basic part modeling (contracted
	CAD in the production process	rectangle)
	Assembly drawing	
2	Fits, allowances and tolerances	Sketching
3	Bolted connections	Extrude
4	Bolted connections	Revolve
5	Pins, keys, axial retaining rings	Complex part modeling (crown nut)
		Break
6	Bearings	Drawing – views, dimensioning (bearing
	Break	housing)
		Break
7 (online 1)	Geometric tolerances, technical drawing	Drawing – tolerances, surface finish
	of shafts	(slotted plate)
	Shafts, spline shafts	Revolve, cosmetic thread
		Modeling of bolts and screws
8 (online 2)	Pulleys, taper lock bush, special	Assembly modeling
	connections	Assembly drawing
	Bearings	Complex part modeling (castle nut)
9 (online 3)	Gears, springs	Break
	Geometric tolerances, technical drawing	Drawing – views, dimensioning

Content of course

	of shafts	
10 (online 4)	Welded, adhesive and riveted	Advanced part modeling (sweep, helical
	connections	sweep, cotter pin, bolt)
	Pulleys, taper lock bush	Drawing – tolerances, surface finish
11 (online 5)	Seals	Test
	Gears, springs	Drawing – technical drawing of a shaft
12 (online 6)	Mid-term test	Break
	Nonpermanent connections	Assembly modeling, assembly drawing
13 (online 7)	Re-test	Re-test
	Seals	Advanced part modeling (sweep, helical
		sweep)

Assesment

- 2 homeworks (14+20) 34%
- 2 tasks on practical classes (2x3) 6%
- 2 mid-term tests (20+40) 60%
- 2 homeworks (30+30) 60%
- 1 exam (40) 40%

Homeworks

Task	Start	Deadline
Homework 1 (<mark>14</mark> - 30) (CAD	1. week	11. week
model and drawing of a part)		13. week (online 7)
Homework 2 (<mark>16+4</mark> - 30)	1. week	12. week
(assembly drawing – by hand)		13. week (online 7)

The homeworks must be submitted up to the deadline. In case of delay 20% of the maximum score (3 and 6) will be deducted from the final score.

For Homework 2 there will be a practical class task (4 marks). It is expected on the 10. week and can be fulfilled during class!

Successful homework is max. 14 and 20 marks.

- If the task cannot be accepted (does not reach 50%), it can be re-done, but the maximum score is only 7 and 10 marks in this case.
- From the mark at least 50% of the maximum 34 marks (ie 17 marks) should be reached, otherwise the mid-term mark will be inadequate (signature denied)!
- Homework and re-done homework can only be submitted during the lecture period!

Practical class tasks

- Each task is worth 3 marks each
- Expected on the 5. week and 10. week

Mid-term tests

- 1) test: expected time 12. week, available score 20
- 2) test: expected time 12. week, available score 40
- For the mark at least 50% of the maximum marks (ie. 10 and 20 marks) should be reached on each tests, otherwise the mid-term mark will be inadequate (1)
- Inadequate test can be corrected with a re-test in the 14. week
- The maximum score of the re-test is 50% (10 and 20 marks)

Inadequate mid-term test can be corrected with an exam during the examination period, but only if the other requirements (ie. 50% from the homeworks) are fulfilled

Consultation about the homeworks and test is possible the next week after the assignment!

Homeworks must be submitted up to the deadline. In case of delay the final mark will be 0! Homeworks cannot be corrected!

Final mark will be the summary of the homework marks and the exam marks (final mark = homework mark + exam mark).

Grade:

0 - 49 marks	inadequate	1
50 - 60 marks	adequate	2
61 - 70 marks	average	3
71 - 80 marks	good	4
81 - 100 marks	excellent	5

Obligatory material

Presentation slides Tutorial videos of CREO C. Jensen, J. D. Helsel, D. R. Short: Engineering Drawing&Design

Recommended material

Standards by István Házkötő Herczeg István: Szerkesztési Atlasz (in Hungarian)

> Dr. Rácz Péter subject leader

Hajdu Flóra lecturer

Dr. Balogh Tibor head of department