SZÉCHENYI ISTVÁN EGYETEM

Végeselem módszer 4. gyakorlat Gát (SA feladat)

Feladat: sík alakváltozási feladat

Az 1. ábra egy folyó hosszú egyenes szakaszának valamely keresztmetszetét vázolja. Feltételezésünk szerint ezen a hosszú egyenes folyószakaszon a folyómeder és gátrendszer sík alakváltozási állapotban van. A feladat szimmetrikus.

Geometria: az adatokat a 2. ábra lekerekítés nélkül, a 3. ábra lekerekítéssel szemlélteti.

Terhelés: a víz nyomása, (a víz fajsúlya $\gamma = 0,00001 \frac{\text{N}}{\text{mm}^3}$).

Elmozdulási peremfeltétel: a sraffozott peremen az elmozdulás zérus.

Anyagjellemzők: a talaj és gát anyagjellemzői: E = 20,68 MPa, v = 0,29, G = 8,0155 MPa.

Végeselem háló: hat csomópontú, háromszög alakú, sík alakváltozású végeselem, elemméret 1000mm

Meghatározandó: a perem jellemző pontjainak elmozdulása, a feszültségi állapot maximális normálfeszültségei és csúsztató feszültségei és azok helyei.

Szemléltetés: elmozdulási állapot, feszültségi állapot, jellemző pontokban az elmozdulás és a feszültség számszerű értékei.

<u>Sík alakváltozási feladat (SA)</u>: Sík alakváltozásról beszélünk, ha a vizsgált testnek van egy kitüntetett síkja, amellyel párhuzamos valamennyi sík alakváltozása azonos és a síkok távolsága nem változik.

Feltételek SA esetén:

- a kitüntetett síkra merőleges b méret lényegesen nagyobb, mint a másik kettő
- a terhelés párhuzamos a kitüntetett síkkal és a legnagyobb kiterjedés irányában nem változik
- a síkok távolságának változatlanságát külső kényszer biztosítja

Elmozdulásmező: $\vec{u}(x, y) = u(x, y)\vec{e}_x + v(x, y)\vec{e}_y$

Alakváltozási állapot:
$$\underline{\underline{A}} = \begin{bmatrix} \varepsilon_x & \frac{1}{2}\gamma_{xy} & 0\\ \frac{1}{2}\gamma_{yx} & \varepsilon_y & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Indítsuk el az Abaqus CAE programot. Adjuk meg a munkakönyvtárat a **File ► Set Work Directory...** paranccsal. A megjelenő ablakban a New work directory alá írjuk/másoljuk be a munkakönyvtárunk helyét, vagy válasszuk ki a A select... ikonnal. Ezután OK-zuk le az ablakot.

A MODULE PART geometria megrajzolása

A program megnyitása után alapértelmezésként a Part Modulban vagyunk. Ez a Modul szolgál a geometria létrehozására. Ehhez az alábbi lépéseket kövessük:

- 1. Az eszköztárból kattintsunk a **Create Part** ikonra. Az ennek hatására megjelenő Create Part ablakban az alábbi beállításokat végezzük el:
 - A Name után írjuk be az alkatrészünk nevét.
 - A Modeling Space alatt válasszuk ki, hogy síkbeli, azaz **2D Planar** geometriát szeretnénk rajzolni.
 - A Type alatt hagyjuk az alapértelmezett kijelölést a **Deformable** előtt, mivel alakváltozásra képes geometriát szeretnénk.
 - A Base Feature alatt válasszuk a **Shell**-t.
 - Az Approximate size-ot, tehát a modellünk méretét itt is beállíthatnánk, de erre majd később visszatérünk a segédrács beállításánál, most hagyjuk az alapértelmezett 200-on.

A fenti beállítások elvégzése után kattintsunk lent a **Continue...** gombra.

2. A geometria megrajzolásához válasszuk az eszköztárból a **Create Lines: Connected** parancsot. Ezután a segédrács segítségével rajzoljuk meg a gát felét.

• Ha végeztünk a geometria megrajzolásával nyomjuk meg az Esc billentyűt. Ahhoz, hogy a vázlatból vonalakból álló alkatrész legyen a lenti *beviteli mező*ben kattintsunk a Sketch the section for the wire melletti **Done** gombra (vagy nyomjuk meg a középső egérgombot) Ennek hatására elkészül a Part-unk, és visszaáll a Part Modul alap eszköztára.

- 3. A geometria megrajzolása után méretezzük be a modellt és készítsük el a lekerekítést.
 - Válasszuk, az eszköztárból az **Add Dimension** parancsot és méretezzük be az ábrán látható vonalakat és szögeket. Még ne írjuk be a pontos méreteket.
 - Válasszuk a **Parameter Manager**-t és jelöljünk ki minden méretet és nevezzük el őket különböző néven. Fontos hogy a név betűvel kezdődjön.
 - Ezután a **Parameter Manager**-en belül az **Expression** oszlopba írjuk be a pontos méreteket. Majd kattintsunk az OK-ra.
 - A **Create Fillet: Between 2 Curves** paranccsal készítsük el a lekerekítést az ábrán látható módon. A lekerekítés nagysága **5000** mm ezt a lenti beviteli mezőbe adjuk meg majd válasszuk ki a két oldalt amit le akarunk kerekíteni.

Ahhoz, hogy a vázlatból vonalakból álló alkatrész legyen a lenti *beviteli mező*ben kattintsunk a Sketch the section for the wire melletti **Done** gombra (vagy nyomjuk meg a középső egérgombot) Ennek hatására elkészül a Part-unk, és visszaáll a Part Modul alap eszköztára.

B MODULE PROPERTY tulajdonságok megadása

Válasszuk ki fent a Property modult. Itt tudjuk megadni az anyagjellemzőket, illetve rúd esetén a keresztmetszeti jellemzőket. Ehhez az alábbi 3 lépésen kell végmenni:

- <u>Anyag definiálása</u>: Első lépésként egy anyagot kell definiálnunk. Ehhez a Property modul eszköztárából kattintsunk a Create Material ikonra. A megjelenő Edit Material ablakban végezzük el a következő beállításokat:
 - Nevezzük el az anyagot: a Name: után írjuk be, hogy talaj
 - A lineárisan rugalmas anyagjellemzők megadásához a Material Behaviors mezőben adjuk ki a Mechanical ► Elasticity ► Elastic parancsot
 - Az ekkor megjelenő Elastic mezőben az alábbi beállításokat végezzük el:
 - A **Type** mellett hagyjuk az alapértelmezett **Isotropic**-ot (az anyagtulajdonságok irányfüggetlenek)

 A lenti Data táblázatban a Young's Modulus alá írjuk be a rugalmassági tényezőt, azaz 20.68 (MPa) –t, a Poisson's Ratio alá pedig a Poisson tényezőt, azaz 0.29-at.

- 2. <u>Section definiálása</u>: A Property Modul eszköztárából kattintsunk a **Create Section** ikonra. Az ekkor megjelenő Create Section ablakban az alábbi beállításokat végezzük el:
 - A Category alatt válasszuk ki a Solid -ot
 - A Type alatt válasszuk a Homogeneous –t

Ezután kattintsunk a **Continue**... gombra. Az ekkor megjelenő Edit Section ablakban a Material mellett megjelent az előző pontban definiált acél (többféle anyag esetén itt választhatnánk ki a kívánt anyagot). Kapcsoljuk be a pipát a **Plane stress/strain thickness** –nél és a vastagságot hagyjuk 1 értéken. Ezután kattintsunk az **OK** gombra.

Module: Property	Create Section X	💠 Edit Section X
Create Section	Name: Section=1 Category Type Solid Homogeneous Shell Generalized plane strain Beam Eulerian One out Composite	Name: Section-1 Type: Solid, Homogeneous Material: talaj
➡ ♥; ➡ ■ ➡ = = B3.1	Continue Cancel B3.2	OK Cancel B3.3

 Section geometriához rendelése: Ehhez kattintsunk a Property modul eszköztárából az Assign Section ikonra. Ezután jelöljük ki az egész geometriát, majd a lenti beviteli mezőben kattintsunk a Done gombra. Ekkor megjelenik az Edit Section Assignement ablak, ahol kiválaszthatjuk a section-t. Mivel csak egy section-t definiáltunk, így csak OKzuk le az ablakot.

C MODULE ASSEMBLY összeállítás

Ennek a lépésnek több alkatrészből álló szerkezetek esetében van igazán jelentősége, mivel itt tudjuk létrehozni az összeállítást. Jelenleg csak egy alkatrészünk van, ennek ellenére nem hagyható ki a lépés, készítenünk kell egy egy alkatrészből álló összeállítást. Ehhez kattintsunk az Assembly modul **Create Instance** ikonjára, majd a megjelenő ablakot **OK**-zuk le.

	🜩 Create Instance 🛛 🗙
Module: Assembly	Create instances from:
	Parts O Models
	Parts
Create	Part-1
d Instance	
	Instance Type
<u> </u>	Dependent (mesh on part)
0.0	O Independent (mesh on instance)
<u></u>	Note: To change a Dependent instance's mesh, you must edit its part's mesh.
-+	
R, 📴	
a .	OK Apply Cancel
C1	C2

D MODULE STEP lépések megadása

A Step modulban a végrehajtandó vizsgálat(ok) típusát (pl. statikus, dinamikus, hőtani...), azok részleteit és sorrendjét tudjuk beállítani. Jelenleg 1 db statikus lépést kell definiálnunk. Ehhez kattintsunk a Step modul **Create Step** ikonjára. a megjelenő Create Step ablakban nevezzük el a lépést: a Name -nél. A Procedure type-nál válasszuk a **General**-t és a **Static, General** -t. Ezután kattintsunk a **Continue**... gombra, majd a megjelenő Edit Setup ablakban hagyjunk mindent alapértelmezésen, csak **OK**-zuk le.

Module: Step	 Create Step × Name: Step-I I Insert new step after Initial Procedure type: General Procedure type: General Dynamic, Temp-disp, Explicit Geostatic Heat transfer Mass diffusion Soils Static, General Static, Riks < Continue Cancel 	Edit Step Name: Step-1 Type: Static, General Basic Incrementation Other Description: Time period: 0 0 of large displacements and affects subsequent steps.) Automatic stabilization: None Include adiabatic heating effects OK Cancel
D1	D2	D3

D MODULE LOAD

peremfeltételek megadása

A Load modulban tudjuk megadni a kinematikai peremfeltételeket (megfogásokat) és dinamikai peremfeltételeket (terheléseket). Jelen feladatban 2 megfogást és 1 terhelést (víz nyomást) kell definiálni.

1. megfogások definiálása: (az alábbi lépéseket kétszer kell végcsinálni)

- Kattintsunk a Load modul Create Boundary Condition ikonjára.
- A megjelenő Create Boundary Condition ablakban nevezzük el a megfogást szimmetrai-nak, illetve fix-nek, a Category-t hagyjuk az alapértelmezett Mechanical-on, a Types for Selected Step alatt pedig válasszuk ki a Symmetry/Antisymmetry/Encastre-t. Ezután kattintsunk a Continue... gombra.
- Jelöljük ki a rajzon a megfogások megfelelő helyeit (kijelöléskor egy piros vonal jelenik meg a kijelölés helyén).
- A lenti beviteli mezőben kattintsunk a **Done**-re
- Az ekkor megjelenő Edit Boundary Condition ablakban a függőleges szimmetria esetén válasszuk a XSYMM (U1=UR2=UR3=0), fix megfogás esetén pedig a ENCASTRE (U1=U2=U3=UR1=UR2=UR3=0). OK-zuk le az ablakot.

függőleges szimmetria tengely	alsó és jobb szélső oldalak fix megfogása
Module: 🖉 Load 🕎	Module: 🖉 Load 💌
Create Boundary Condition	Boundary Condition
E1.1	E1.6

Create Boundary Condition	🜩 Create Boundary Condition 🛛 🗙					
Name: szimmetria	Name: fix					
Stan: Chan 1	Star: Star-1					
Deserving Statis Consul	Step: Step-1					
Category	Category					
Mechanical Summate/Antioumpate/Encarter	Mechanical Sympetry/Antioympetry/Encastre					
© Electrical/Magnetic Displacement/Rotation	Electrical/Magnetic Displacement/Rotation					
O Other Velocity/Angular velocity	Other Velocity/Angular velocity					
Connector displacement	Connector displacement					
Connector velocity	Connector velocity					
Continue Cancel	Continue Cancel					
E1.2	E1.7					
L.						
F1.3	F1.8					
Select regions for the boundary condition (V Create set: Select) Dope	Select regions for the boundary condition (V Create set: Set-2) Urge					
E1.4	E1.9					
🜩 Edit Boundary Condition 🛛 🗙	🜩 Edit Boundary Condition 🛛 🗙					
Name: függőleges szimmetria	Name: fix					
Type: Symmetry/Antisymmetry/Encastre	Type: Symmetry/Antisymmetry/Encastre					
Region: Set-1	Region: Set-2					
CSYS: (Global) 📐 🙏	CSYS: (Global) 🔈 🙏					
• XSYMM (U1 = UR2 = UR3 = 0)	XSYMM (U1 = UR2 = UR3 = 0)					
○ YSYMM (U2 = UR1 = UR3 = 0)	○ YSYMM (U2 = UR1 = UR3 = 0)					
ZSYMM (U3 = UR1 = UR2 = 0)	○ ZSYMM (U3 = UR1 = UR2 = 0)					
○ XASYMM (U2 = U3 = UR1 = 0; Abaqus/Standard only)	○ XASYMM (U2 = U3 = UR1 = 0; Abaqus/Standard only)					
YASYMM (UI = U3 = UK2 = 0; Abaqus/Standard only) 7ASYMM (III = II2 = IIR3 = 0; Abaqus/Standard only)	\bigcirc ZASYMM (U1 = U2 = UR3 = 0: Abaqus/Standard only)					
PINNED (U1 = U2 = U3 = 0)	O PINNED (U1 = U2 = U3 = 0)					
O ENCASTRE (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0)	ENCASTRE (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0)					
OK Cancel	OK Cancel					
E1.5	E1.10					

- 2. terhelés definiálása:
 - Kattintsunk a Load modul **Create Load** ikonjára.
 - A megjelenő Create Load ablakban nevezzük el. A Category-t hagyjuk az alapértelmezett Mechanical-on, a Types for Selected Step alatt pedig válasszuk ki a **Pressure**-t azaz nyomást. Ezután kattintsunk a **Continue...** gombra.

- Jelöljük ki a geometrián a gát vízzel érintkező oldalait. (kijelöléskor egy piros vonal jelenik meg a kijelölés helyén).
- A lenti beviteli mezőben kattintsunk a **Done**-re
- Az ekkor megjelenő Edit Load ablakban a Distribution-t állítsuk át Hydrostatic-ra. Adjuk meg az nyomás nagyságát a Magnitude sorban N/mm2-ben azaz 0.1 -et. Ezt a következő számítás alapján kapjuk meg:

 $p = \rho gh = 1000 \frac{kg}{m^3} \cdot 10 \frac{m}{s^2} \cdot 10m = 100000Pa = 0, 1MPa$ Ez után a Zero pressure

high-hoz írjunk be 15000-t és a Reference pressure high-hoz pedig 5000-et.

Τe	erhelés megadása
М	lodule: Load
	Create Load
	E2.1
💠 Create Load	×
Name: Load-1	
Step: Step-1	
Procedure: Static, Gener	ral
Category	Types for Selected Step
 Mechanical Thermal Acoustic Fluid Electrical/Magnetic Mass diffusion Other 	Concentrated force Moment Pressure Shell edge load Surface traction Pipe pressure Body force Line load Gravity Bolt load Generalized plane strain Rotational body force Connector force Connector moment
Continue.	Cancel
	E2.2

	E2.3
	Select points for the load (🖉 Create set: Set-3) Dree
	E2.4
	Name: Load-1
	Type: Pressure Sten: Sten-1 (Static General)
	Region: Surf-1
-	Distribution: Hydrostatic $f(x)$
	Magnitude: 0.1
	Amplitude: (Ramp)
	Reference pressure neight: 5000
	values are not affected by the amplitude.
	OK Cancel
	E2.5

F MODULE MESH

háló elkészítése

A végeselem hálót a Mesh modulban tudjuk elkészíteni. Legelőször fent az Object-et állítsuk át Part-ra, aminek hatására a Part mellett megjelenik a rácsos tartó felirat.

Ezután a hálózást az alábbi lépésekben végezzük el:

1. Elemtípus megadása:

- Kattintsunk a Mesh modul Assign Element Type ikonjára.
- Jelöljük ki a teljes geometriát.
- A lenti beviteli mezőben kattintsunk a **Done** gombra
- A megjelenő Element Type ablakban a Family-t állítsuk **Plane Strain**-re, a Geometric Order-t pedig legyen **Quadratic**, majd **OK**-zuk le az ablakot.

		🜩 Element Type X
Module: Hesh		Element Library Standard O Explicit Geometric Order Linear Quad Tri Hybrid formulation Reduced integration Element Controls Viscosity: Use default O Specify Element deletion: Use default O Specify Secify
		CPE8R: An 8-node biquadratic plane strain quadrilateral, reduced integration. Note: To select an element shape for meshing, select "Mesh->Controls" from the main menu bar. OK Defaults
F1.1	F1.2	F1.3

2. <u>Elemméret megadása</u>:

Ehhez az alábbi lépéseket végezzük el:

- Kattitnsunk a Mesh modul Seed Part ikonjára.
- A megjelenő Global Seeds ablakban az Approximate global size mezőben írjunk be **1000**-et. Ezután **OK**-zuk le az ablakot.

Module: Mesh	 Global Seeds Sizing Controls Approximate global size: 1000 ✓ Curvature control Maximum deviation factor (0.0 < h/L < 1.0): 0.1 (Approximate number of elements per circle: 8) Minimum size control 	
	 By fraction of global size (0.0 < min < 1.0) Dy absolute value (0.0 < min < global size) OK Apply Defaults Cancel 	
F2.1	F2.2	F2.3

 <u>Háromszög alakú háló megadása</u>: Kattintsunk az Assign Mesh Controls ikonra ezután jelöljük ki a teljes geometriát majd kattintsunk a középső gombbal. A felugró Mesh Controls ablakban az Element Shape-nél állítsuk be a Tri-t a Technique-nél pedig a Free menüpontot, majd kattintsunk az OK-ra.

4. Végeselem háló elkészítése:

A végeselem háló elkészítéséhez kattintsunk a Mesh modul eszköztárában a **Mesh Part** ikonra, majd a lenti beviteli mezőben az OK to mesh the part? mellett a **Yes** gombra.

5. <u>Hálótulajdonságok lekérdezése</u> (opcionális)

A csomópontok és végeselemek számának ellenőrzéséhez a **Tools** ► **Query...** Parancsot használhatjuk. A felugró Query ablakban a General Queries mezőben kattintsunk a Mesh-re, majd a lenti beviteli mezőt a Query entire part-on hagyva a **Done** gombra. Ekkor a lenti párbeszédablakban megjelenik a csomópont szám (Total number of nodes) és az elemszám (Total number of elements).

G MODULE JOB fela

feladat megoldása

A feladatot a Job modulba átlépve tudjuk lefuttatni. Az ehhez szükséges lépések:

1. Feladat definiálása:

- A Job modul eszköztárából kattintsunk a Create Job ikonra
- A megjelenő Create Job ablakban kattintsunk a Continue... gombra
- A megjelenő Edit Job ablakban hagyjunk mindent alapértelmezésen és OK-zuk le

		🜩 Edit Job
Module: Job	Create Job Name: Job-1 Source: Model Model-1 Continue Cancel	Vant Job Name: Job-1 Model: Model-1 Analysis product: Abaqus/Standard Description: Submission General Memory Parallelization Precision Ib Type Full analysis Recover (Explicit) Restart Run Mode Background Queue: Host name: Submit Time Immediately Wait: hrs. min. At: Image: Cancel
G1.1	G1.2	G1.3

- 2. Feladat lefuttatása:
 - A Job modul eszköztárából kattintsunk a Job Manager ikonra
 - A megjelenő Job manager ablakban alapból ki van választva az előbb definiált 1 db feladat (Job-1). Kattintsunk a **Submit** gombra.
 - Ha a Status alatt megjelenik a Completed felirat, akkor a feladat sikeresen lefutott. Az eredmények megjelenítéséhez kattintsunk a **Results** gombra.

Module: Job	🐥 Job Manag	er			×	🖨 Job M	anager			×
	Name	Model	Туре	Status	Write Input	Name	Model	Туре	Status	Write Inpu
📮 📻	Job-1	Model-1	Full Analysis	None	Data Check	Job-1	Model-1	Full Analysis	Completed	Data Checl
					Sukmit					Submit
					Continue					Continue
Manager					Monitor					Monitor
					Results					Results
					Kill					Kill
	Create	Edit Copy	Rename	Delete	Dismiss	Creat	Edit Copy	Rename	Delete	Dismiss
G2.1		G2.	2				G2	2.3		

H MODULE VISUALIZATION eredmények megjelenítése

A **Results** gombra kattintva automatikusan a **Visualisation** modulba kerülünk. Fent válasszuk ki az U-t vagy az S-t annak megfelelően, hogy az elmozdulást, vagy a feszültséget szeretnénk megjeleníteni. Először válasszuk az U-t.

A Plot Contours on Deformed Shape ikonra kattintva a deformált alakot láthatjuk.

A **Common Plot Options**-ban a **Basic** fülön beállíthatjuk a deformáció felnagyításának mértékét, a **Labels** fülön bekapcsolhatjuk a csomópontok és elemek sorszámának megjelenítését.

	- Com	non Plot Ontion	c		
-	Basic	Color & Style	Labels	Normals	Other
ult <u>P</u> lot <u>A</u> nimate R	Rend	er Style reframe 🔘 Hide ed 💿 Shae	den ded	Visibl All Ext	e Edges edges erior edges
Module: Visualizatio	Defoi Au Un	mation Scale Factor to-compute (16 iform Nonu	ctor 50.603) niform	© Fre ◎ Fre	e edges edges
Common Options	Value	200 I	ly	Defaults	Cancel

A Contour Options-ban a Limits fülön bekapcsolhatjuk a max/min helyek megjelenítését.

Az elmozdulások kiértékelése után nézzük meg a redukált feszültség eloszlást.

Egy-egy pontbeli érték ki íratása a Probe values paranccsal.

