SZÉCHENYI ISTVÁN EGYETEM

ALKALMAZOTT MECHANIKA TANSZÉK

Végeselem módszer 8. gyakorlat

Feladat: tengelycsonk szilárdsági vizsgálata

1. ábra: Tengely meridián metszete

A tengely mint forgásszimmetrikus geometriával rendelkező test meridián metszetével adható meg, amely az 1. ábrán látható.

Geometria: a tengely meridián metszetét az első ábrán definiáltuk.

Terhelés: 25 MPa megoszló terhelést alkalmazunk a kisebb átmérőjű hengerpalást felső részén egy 20 fokot átfogó palástrészen.

Elmozdulási peremfeltétel: a henger a nagyobb átmérőjű henger palástján van körbe megfogva.

Anyagjellemzők: acél anyagjellemzői: E = 206800 MPa, v = 0, 29, G = 80155 MPa.

Végeselem háló: 10 csomópontú tetraéder elem.

Meghatározandók:

- elmozdulások,
- redukált feszültségek,
- főfeszültségek.

Szemléltetés:

- elmozdulási állapot,
- feszültségi állapot.

Feladat megoldása:

Indítsuk el az Abaqus CAE programot. Adjuk meg a munkakönyvtárat a **File** ► **Set Work Directory...** paranccsal. A megjelenő ablakban a New work directory alá írjuk/másoljuk be a munkakönyvtárunk helyét, vagy válasszuk ki a A select... ikonnal. Ezután OK-zuk le az ablakot.

A MODULE PART geometria megrajzolása

A program megnyitása után alapértelmezésként a Part Modulban vagyunk. Ez a Modul szolgál a geometria létrehozására. Ehhez az alábbi lépéseket kövessük:

- 1. Az eszköztárból kattintsunk a Create Part ikonra
- 2. Az ennek hatására megjelenő Create Part párbeszédablakban az alábbi beállításokat végezzük el:
 - A Name után beírhatjuk az alkatrészünk nevét.
 - A Modeling Space alatt válasszuk ki, hogy térbeli, azaz **3D** geometriát szeretnénk rajzolni.
 - A Type alatt hagyjuk az alapértelmezett kijelölést a **Deformable** előtt, mivel alakváltozásra képes geometriát szeretnénk.
 - A Base Feature alatt válasszuk a **Solid**-ot.
 - A Type alatt pedig válasszuk a **Revolution** lehetőséget, mivel a meridián metszet körbe forgatásával fogjuk a geometriát elkészíteni.
 - Az Approximate size-ot, tehát a modellünk méretét itt is beállíthatnánk, de erre majd később visszatérünk a segédrács beállításánál, most hagyjuk az alapértelmezett 200on.

A fenti beállítások elvégzése után kattintsunk lent a **Continue** gombra.

Module: Part	Create Part X
	Name: Part-1
	Modeling Space
Create	3D O 2D Planar O Axisymmetric
Part	Type Options
	Deformable
Br. D.	Analytical rigid
🚢 , 🖧 , 👘 , 👘 , 👘 , 👘 , 👘 ,	⊖ Eulerian
<u></u>	
	Base Feature
	Shape Type
	Solid Extrusion
	O Shell Sweep
(XYZ) 🛉	O Wire
+ .	OPoint
台/ 美一	A
	Approximate size: 200
	Continue Cancel
A1	A2

- 3. A Continue gombra kattintás után azt tapasztaljuk, hogy a Part modul eszköztára megváltozott, a rajzolást segítő parancsok jelentek meg. Azt is megfigyelhetjük, hogy a program a rajzoláshoz az XY síkot ajánlja fel, és ebben a síkban automatikusan elhelyez egy rajzolást segítő kék segédrácsot (Grid-et).
- 4. A geometria megrajzolása előtt töröljük a **Delete** paranccsal az alapértelmezett függőleges forgatási tengelyt, ami zöld szaggatott vonallal látszik a grafikus ablakon.

5. Majd ez után hozzunk létre a **Create Construction: Oblique Line Thru 2 Points** paranccsal egy új vízszintes forgatási tengelyt, ez sárga szaggatott vonalként jelenik meg a grafikus ablakon.

6. Következő lépésben rajzoljuk meg a tengely meridián metszetét a Create Lines: Connected paranccsal. Lényeges, hogy a rajzolás során zárt görbét hozzunk létre különben a körbe forgatás során nem térfogatot kapunk. Ha szükséges az Add Constraint paranccsal kényszerezhetjük a geometriát, például ha valamelyik vonal nem vízszintes akkor a Horizontal paranccsal vízszintesbe hozhatjuk.

7. Szükséges a megrajzolt geometria beméretezése. Ehhez az Add Dimension parancsot használjuk. Kattintsunk a beméretezni kívánt vonalra, majd jobb kattintással tegyük le a méretvonalat és ezután alul a Beviteli mezőben adjuk meg a pontos méretet és Enter-rel fogadjuk el a beírt értéket. Ugyan ezzel a módszerrel definiáljuk a geometria összes méretét. Az Add Dimension paranccsal két oldal egymással bezárt szögét vagy távolságát is beméretezhetünk. Ehhez kattintsunk először az egyik majd a másik oldalra.

8. Az összes méret definiálása után a következő ábrát kapjuk a grafikus ablakon.

9. A sketch rajzolás utolsó lépése a két lekerekítés (3 mm és 5 mm) létrehozása. Ehhez a Create Fillet: Between 2 Curves parancsot használjuk. A parancsra kattintás után az alsó beviteli mezőben adjuk meg a lekerekítési sugár méretét a Fillet radius sornál. A beírt értéket középső gombbal vagy Enter-rel fogadjuk el, majd kattintsunk a megfelelő két oldalra ahol a lekerekítést létre kell hoznunk. Ezt a lépést ismételjük meg újra a másik lekerekítés létrehozásához.

10. A fenti lépések után a sketch-ünk a következőképpen néz ki. Ez után az alsó beviteli mezőben a **Sketch the section for the revolved solid** sornál kattintsunk a **Done** gombra vagy a középső gombbal valahová a grafikus abrakra.

11. Ha elfogadtuk a sketch-et akkor a felugró Edit Revolution ablakban adjuk meg a körbe forgatás szögét, ami nálunk **360 fok**, majd kattintsunk az **OK** gombra. Ezzel megkaptuk a tengelycsonk 3D-s modelljét.

12. A következő lépés annak a felületnek a létrehozása, amin a terhelés működik. Ehhez a kisebb átmérőjű henger palástját fogjuk felvágni két, egymással 20 fokos szöget bezáró vonal mentén. Kattintsunk a Create Partition parancsra, majd válasszuk ki a Type-nál a Face opciót és a Method-nál a Sketch opciót. Ez után az alsó beviteli mezőben kért felületeket jelöljük ki. Először meg kell adnunk a Select the faces to partition sornál a felvágandó felületet. Tehát jelöljük ki a kisebb átmérőjű henger palástját, majd fogadjuk el a kijelölést a középső gombbal vagy az alsó beviteli mezőben a Done gombra kattintással. Ez után a

Select a sketch plane (planar face of datum plane) sornál jelöljük ki azt a felületet ahová a felvágáshoz használt két vonalat berajzoljuk. Tehát jelöljük ki a kisebb átmérőjű henger végén lévő kör alakú felületet. Majd a How do you want to specify the projection distance? sornál válasszuk a Throught All opciót. Az Arrow show the projection direction alap beállítása jó nekünk ezért kattintsunk az OK-ra. Végül a Select an edge or axis that will appear sornál kattintsunk a körvonalra.

13. Először rajzoljunk be egy vízszintes szerkesztési vonalat, ami a kör középpontján átmegy a Create Construction: Oblique Line Thru 2 Points paranccsal. Majd rajzoljuk be a kör középpontjától sugár irányban két vonalat úgy, hogy lógjanak túl a körvonalon. Ezután az egyik vonalat és a zöld szaggatott vízszintes szerkesztési vonal szögét méretezzük be az Add Dimension paranccsal 10 fokra. Végül pedig az Add Constraint ► Symmetry paranccsal tegyük a két vonalat szimmetrikussá. Végül fogadjuk el a Sketch partition geometry sornál Done-nal a sketch-et. Így megkaptuk azt a felületet amelyre a terhelést (dinamikai peremfeltételt) elő tudjuk írni.

B MODULE PROPERTY tulajdonságok megadása

A geometria megrajzolása után lépjünk át a Property modulra. Ebben a modulban definiáljuk az anyagmodellt, a section-t és ezt hozzárendeljük a geometriához.

Module: Property

Ζε 🛄

j. 🗖

1L 🔳

-

▶ ⁿ²n1

۵ 🖶

/ 🗔

2

🔶 📰

Part

Step

Mesh

Sketch

Property Assembly

Interaction Load

Optimization

Visualization

 Először a Create Material paranccsal hozzuk létre a lineárisan rugalmas izotróp anyagmodellünket. Adjuk meg az anyag nevét a Name sornál, ami legyen acel. Majd válasszuk a Mechanical
 ► Elasticity ► Elastic parancsot és adjuk meg a rugalmassági moduluszt és Poisson tényező értékeket: E = 206800 MPa, v = 0,29

Végül a megadás után kattintsunk az OK gombra.

ame: acel		
escription:		
Material Behaviors		
Elastic		
General Mechar	nical <u>Ihermal</u> <u>Electrical/Magnetic</u>	ther
Elastic		
Type: Isotropic		▼ Suboptions
Use temperatur	e-dependent data	
Number of field va	riables: 0 🌩	
Moduli time scale ((for viscoelasticity): Long-term	
No compression	n	
No tension		
Data		
Young's	Poisson's	
Modulus	Ratio	
200000	0,29	

 A Create Section paranccsal hozzunk létre egy Section-t, amellyel a tulajdonságokat tudjuk a modellhez hozzárendelni. A Category-nál válasszuk a Solid opciót a Type-nál pedig a Homogeneous opciót, majd kattintsunk a Continue gombra és végül adjuk meg az acel anyagot, amit korábban létrehoztunk és kattintsunk az OK gombra.

Category	Туре	💠 Edit Section >
Solid	Homogeneous	Name: Section-1
○ Shell ○ Beam ○ Other	Generalized plane strain Eulerian Composite	Type: Solid, Homogeneous

3. Az Assign Section paranccsal hozzárendeljük az előbb létrehozott Sectiont a geometriához.

C MODULE | ASSEMBLY

összeállítás

1. A Create Instance paranccsal létrehozunk egy összeállítást.

D MODULE STEP

1. Lépjünk át a Step modulra és a **Create Step** paranccsal hozzunk létre egy **Static,General** Step-et az ábrán látható módon.

- cuit step		×
Name: Step-1		
Type: Static, General		
Basic Incrementation	Other	
Description:		
Time period: 1		
On of I	arge displacements and affects subsequent	steps.)
Include adiabatic he	ating effects	
Include adiabatic he	ating effects	
Include adiabatic he	ating effects	
Include adiabatic he	ating effects	
☐ Include adiabatic he	ating effects	
☐ Include adiabatic he	ating effects	
☐ Include adiabatic he	ating effects	
☐ Include adiabatic he	ating effects	
☐ Include adiabatic he	ating effects	

E MODULE LOAD peremfeltételek megadása

 Lépjünk át a Load modulra és a Create Load paranccsal hozzunk létre a terhelést, ami a tengelycsonkra hat. A Category-nál válasszuk a Mechanical-t a Types for Selected Step-nél pedig a Pressure opciót majd kattintsunk a Continue gombra. Ezt követően jelöljük ki a már korábban létrehozott felületet ami a terhelés működik majd fogadjuk el a kijelölést a középső gombbal vagy alul a beviteli mezőben a Done gombbal. Ez után a felugró ablakban adjuk meg a nyomás értékét (25 MPa) a Magnitude mezőben, majd kattintsunk az OK gombra.

13

2. A következő lépésben adjuk meg a kinematikai peremfeltételt, vagyis a fix megfogást. Kattintsunk a Create Boundary Condition gombra és a felugró ablakban válasszuk a Mechanical és Displacement/Rotation opciókat. Ezután jelöljük ki a nagyobb átmérőjű henger palástfelületét és fogadjuk el a kijelölést a középső gombbal. A felugró ablakban pipáljuk be az összes U1, U2, U3, UR1, UR2, UR3 mezőket és adjunk meg 0 értéket mindegyikhez, majd kattintsunk az OK gombra.

14

F MODULE MESH háló elkészítése

 Lépjünk át a Mesh modulra és állítsuk be hogy 10 csomópontú elemeket használjon a program a hálózáshoz. Ehhez az Assign Element Type parancson belül a Geometric Order ➤ Quadratic opciót kell kiválasztanunk. Ez után a Assign Mesh Controls parancson belül válasszuk az Element Shape-nél a Tet opciót és vegyük ki a pipát a Use mapped tri meshing on bounding faces where appropriate beállítás elöl.

2. Következő lépésben állítsuk be az átlagos elemméretet (4 mm). Kattintsunk a **Seed Part Instance** parancsra és az Approximate global size sorhoz írjunk be **4**-et majd **OK**.

En La	💠 Global Seeds 🛛 🗙
Seed Part	Sizing Controls
Instance	Approximate global size: 4
S4R ■	Curvature control
	Maximum deviation factor (0.0 < h/L < 1.0): 0.1
B	(Approximate number of elements per circle: 8) Minimum size control
li, k.	By fraction of global size (0.0 < min < 1.0)
2	O By absolute value (0.0 < min < global size) 0.49
	OK Apply Defaults Cancel
🌆 🧏	

3. Következő lépésben sűrítsük be az elemeket a két lekerekítés környezetében. Kattintsunk a Seed Edges parancsra majd jelöljük ki a modellen a lekerekítésnél lévő 4 élt az ábrán látható módon ezután a középső gombbal fogadjuk el a kijelölést. A felugró ablakban az Approximate element size sorba írjunk be 2-t majd OK.

Module: Mesh Model: Model	1-1 V Object: Assembly O Part
Seed Edges	2 ⁰⁰⁰ 222
(XY2) 1	
AL Y	
to have	
⊈	
<i>k</i>	
Y	
×	
z	
X Select the regions to be assigned local set	eeds by edge angle 🗸 2000 Done 🗌 Use single-bias picking Sets / Surfaces 🕉 STALLI 19
	💠 Local Seeds 🛛 🕹
	Basic Constraints
	Method Bias
	● By size ● None ○ Single ○ Double
	O By number
	Sizing Controls
	Approximate element size: \vec{z}
	Curvature control
	(Approximate number of elements per circle: 8)
	Viinimum size factor (as a fraction of element size):
	Use default (0.1) ● Specify (0.0 < min < 1.0) 0.1
	Set Creation
	Create set with name: Edge Seeds-1
	OK Apply Defaults Cancel
	Curcer

4. Végül a **Mesh Part Instance** paranccsal készítsük el a hálót. Így 67317 db csomópontot és 46458 db tetraéder elemet kaptunk.

G MODULE JOB a feladat megoldása

 Lépjünk át a Job modulra és hozzunk létre egy új job-ot a Create Job paranccsal. A felugró ablakban kattintsunk a Continue majd az OK gombokra. Végül a létrehozott job-ra jobb kattintás után a Submit paranccsal tudjuk a modellt elküldeni megoldani.

18

🜩 Edit Job			×
Name: Job-1 Model: Model-1			
Analysis product: Abaqus/Stanc	ard		
Submission General Memo	ory Parallelization	Precision	
Recover (Explicit) Restart Run Mode Restart	Hos	t name:	
buckground Cacad Submit Time Immediately Wait: hrs. min.	Тур	e	
OK		Cancel	

	Job	Switch Context Ctrl+Sp	oace
Kan Ad Bana Co Bana Op		Edit Copy Rename Delete Write Input Data Check	Del
		Submit	
		Continue	
<		Monitor	
2°	1629 1496 The	Kall	
	The _	Export	

H RESULTS

eredmények kiértékelése

1. Elmozdulás állapot:

2. Feszültség állapot:

20