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Greedy algorithms

 Greedy algorithms versus dynamic programming

A dynamic programming algorithm makes a choice at each step and the choice depends on the 

solutions to subproblems. It works in a bottom-up manner, progressing from smaller subproblems

to larger subproblems. 

A greedy algorithm makes choice that seems best at the moment and then solve the subproblem that 

remains. It works in a top-down fashion, making one greedy choice after another, reducing each 

given problem instance to a smaller one.

 The choice may depend on choices so far, but it cannot depend on any future choices or on the solutions to 

subproblems.

 This heuristic strategy does not always produce an optimal solution, but sometimes it does.

The greedy-choice property: a globally optimal solution can be reached by making locally optimal 

(greedy) choices.

The optimal-substructure property: an optimal solution to the problem contains within it optimal 

solutions to subproblems.
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Greedy algorithms

 Knapsack problems

The 0-1 knapsack problem: A thief robbing a store finds n items. The ith item is worth vi dollars and 

weighs wi pounds, where vi and wi are integers. The thief wants to take as valuable a load as possible, 

but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take?

The fractional knapsack problem: the setup is the same, but the thief can take fractions of items, rather 

than having to make a binary (0-1) choice for each item.

Both knapsack problems exhibit the optimal-substructure property.

The 0-1 knapsack problem does not exhibit the greedy-choice property, thus it can not be solved with 

greedy strategy, but it can be solved with dynamic programming.

The fractional knapsack problem exhibits the greedy-choice property, thus it can be solved with greedy 

strategy (with greedy choice of vi / wi).
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Greedy algorithms

A knapsack problem
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Greedy algorithms

 An activity-selection problem

There is given a set S={a1, a2, …, an} of n proposed activities that wish to use a resource, such as a 

lecture hall, which can serve only one activity at a time. 

Each activity ai has a start time si and a finish time fi, where 0 ≤ si < fi < ∞.

If selected, activity ai takes place during the half-open time interval [si, fi). 

Activities ai and aj are compatible if the intervals [si, fi) and [sj, fj) do not overlap. That is, if si ≥ fj or  

sj ≥ fi . 

The activity-selection problem: to select a maximum-size subset of mutually compatible activities.
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Greedy algorithms

GREEDY-ACTIVITY-SELECTOR(s, f)

1 n = s.length

2 A = {a1}

3 k = 1

4 for m = 2 to n

5 if s[m] ≥ f[k]

6 A = A ⋃ {am}

7 k = m

8 return A

Criteria: The data of activities are stored in s and f arrays and they are sorted in monotonically 
increasing order of finish time: f1 ≤ f2 ... ≤ fn. 

Remark: Since the activities are examined in order of monotonically increasing finish time, fk is 
always the maximum finish time of any activity in A, that is, fk = max{fi: ai ∈ A}.

Efficiency: A set of n activities is scheduled in Θ(n) time.

Theorem: Consider any nonempty subproblem Sk, and let am be an activity in Sk with the earliest finish 
time. Then am is included in some maximum-size subset of mutually compatible activities of Sk.

Corollary: The GREEDY-ACTIVITY-SELECTOR produces an optimal solution of the activity 
selection problem.
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Greedy algorithms

The operation of GREEDY-ACTIVITY-SELECTOR
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Exercises

 What is the result of the GREEDY-ACTIVITY-SELECTOR if we have 

activities with below given s and  f ?  

 s=<  8,  3,  5,  12,  3,  6, 10,  6, 17 >

 f=< 12,  6,  8, 14,  7,  9, 15,  7, 20 > 
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Greedy algorithms

 Designing a binary character code

How can a file of characters be stored compactly in which each character is represented by a unique 

binary string, which we call a codeword?

Prefix codes: a codes in which no codeword is also a prefix of some other codeword. The prefix codes 

are desirable because they simplify decoding. A prefix code can always achieve the optimal data 

compression among any character code.

Encoding is always simple for any binary character code; we just concatenate the codewords

representing each character of the file.

Decoding needs a convenient representation for the prefix code so that we can easily pick off the initial 

codeword. A binary tree whose leaves are the given characters provides one such representation. 

The codeword for a character is given by the simple path from the root to that character.

An optimal code for a file is always represented by a full binary tree, in which every nonleaf node 

has two children.

If C is the alphabet from which the characters are drawn and all character frequencies are positive, then 

the tree for an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and 

exactly |C|–1 internal nodes.
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Greedy algorithms

A character-coding problem
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Greedy algorithms

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n–1 

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y. freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree

Remark: Each character c ∈ C is an object with an attribute c.freq giving its frequency.

Efficiency: If the min-priority queue Q is implemented as a binary min-heap, then each heap operation

(EXTRACT-MIN, INSERT) requires time O(lg n). Thus, the total running time of HUFFMAN on 

a set of n characters is O(n lg n).
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Greedy algorithms

The operation of HUFFMAN
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Exercises

 What tree is the result of HUFFMAN with the below given input data? Give 

the total number of bits that is necessary to code the entire file with the fixed-

length code and Huffman code.

 a: 23, b: 15, c: 12, d: 13, e: 6, f: 10, g: 4, h: 17 

 What is an optimal Huffman code for the following set of frequencies, based 

on the first Fibonacci numbers:

 a: 1, b: 1, c: 2, d: 3, e: 5, f: 8, g: 13, h: 21, … 
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Greedy algorithms

 Approximation algorithms

We call an algorithm that returns near-optimal solutions an approximation algorithm.

Suppose that each potential solution of an optimization problem has a positive cost, and we wish to find 

a near-optimal solution.

Depending on the problem, an optimal solution as one with maximum possible cost or one with 

minimum possible cost; that is, the problem may be either a maximization or a minimization 

problem. 

We say that an algorithm for a problem has an approximation ratio of ρ(n) if, for any input of size n, 

the cost C of the solution produced by the algorithm is within a factor of ρ(n) of the cost C* of an 

optimal solution:

max(C/C*, C*/C) ≤ ρ(n).

If an algorithm achieves an approximation ratio of ρ(n), we call it a ρ(n)-approximation algorithm.

Remark: if the ρ(n) function is independent from n, then approximation ratio is ρ and the algorithm is 

called a ρ-approximation algorithm.
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Greedy algorithms

 The set-covering problem

An instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subsets of 

X, such that every element of X belongs to at least one subset in F :

X= ⋃S F S.

We say that a subset S F covers its elements. 

The problem is to find a minimum size subset C  F whose members cover all of X:

X= ⋃S C S.

Example: Suppose that X represents a set of skills that are needed to solve a problem and that we have a 

given set of people available to work on the problem. We wish to form a committee, containing as 

few people as possible, such that for every requisite skill in X, at least one member of the committee 

has that skill.
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Greedy algorithms

GREEDY-SET-COVER(X,F )

1 U = X

2 C = Ø

3 while U ≠ Ø

4 select an S ∈ F that maximizes | S ⋂ U |

5 U = U – S

6 C = C ⋃ {S}

7 return C

Efficiency: Since the iteration runs at most min(|X|, |F |) times and the loop body can be implement in 

time O(|X||F |), a simple implementation runs in time O(|X||F | min(|X|, |F |)).

Let us denote the dth harmonic number H(d)=∑ i=1,..,d 1/i.

Theorem: GREEDY-SET-COVER is a polynomial-time ρ(n)-approximation algorithm, where 

ρ(n)= H(max{|S|: S ∈ F }).

Corollary: Since ∑ i=1,..,d 1/i ≤ ln d +1, GREEDY-SET-COVER is a polynomial-time  (ln |X|+1)-

approximation algorithm.
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Greedy algorithms

An instance of the set-covering problem
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Exercises

 What is the result of GREEDY-SET-COVER with the sets of the previous 

slide?

 Consider each of the below given words as a set of letters. Give the result of 

GREEDY-SET-COVER if the ties are broken in favor of the word that appears 

first in the dictionary.

 {arid, dash, drain, heard, lost, nose, shun, slate, snare, thread}


