“#" Theory of algorithms (2nd tecture)

Pal Pusztai
pusztai@sze.hu



N Theory of algorithms

Outline

ra

Heap data structure

Maintaining the heap property
Building a heap

Heapsort

Priority queues

Sorting In linear time

Counting sort

Radix sort
Bucket sort

Exercises

Széchenyi Istvan University



= Theory of algorithms

Heap data structure

PARENT(i)
1 return|i/2]

LEFT(i)
1 return 2i

RIGHT(i)
1 return2i+1

Max-heap property:
A[PARENT()] > A[i], i>1

Min-heap property:
A[PARENT(1)] <A[i], i>1

ra
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A max-heap as a binary tree
and as an array
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Exercises

m s the max-heap property satisfied with array A? If not, how many pairs of
elements do violate it?

m A=<2/,17,3,16,13,10,1,5,7,12,4,8,9,0>
m  Give a min-heap data structure that contains the elements of array A!
m A=<2/,17,3,16,13,10,1,5,7,12,4,8,9,0>
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Maintaining the heap property

MAX-HEAPIFY (A, i)

| = LEFT(i)

r = RIGHT(i)

if | < A.heap-size and A[l] > A[i]
largest = |

else
largest = i

if r <A.heap-size and A[r] > A[largest]
largest =r

if largest # i

10 exchange A[i] with A[largest]

11 MAX-HEAPIFY (A, largest)
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Criteria: The binary trees rooted at LEFT(i) and RIGHT (i) are max-heaps, but that A[i] might be
smaller than its children, thus violating the max-heap property.

MAX-HEAPIFY lets the value A[i] ,,float down” in the max-heap so that the subtree rooted at index i
obeys the max-heap property.

Efficiency: The running time is O(h), where h is the height of the tree (h=0(lg n), n=A.heap.size).
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Maintaining the heap property

The operation of MAX-HEAPIFY (A, 2)
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Exercises

m |llustrate the operation of MAX-HEAPIFY (A, 3) call with array A? Give the
contents of the array as a binary tree after each exchange.

m A=<27,17,3,16,13,10,1,5,7,12,4,8,9,0>
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Building a heap

BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 fori=|Alength] /2] downto 1
3 MAX-HEAPIFY (A, i)

Efficiency: The ,,simple estimated” O(n Ig n) upper bound is not asymptotically tight, the O(n) running
time can be proved, thus we can build a max-heap from an unsorted array in linear time.
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Building a heap

ra
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The operation of BUILD-MAX-HEAP
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The operation of BUILD-MAX-HEAP
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Exercises

[llustrate the operation of BUILD-MAX-HEAP with array A. Give the
contents of the array as a binary tree after each step of the iteration.

| A:<8,2,1,5,6,9|41317>
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Heapsort

HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 fori=A.length downto 2

3 exchange A[1] with A[i]
4 A.heap-size = A.heap-size—1
5 MAX-HEAPIFY (A, 1)

Efficiency: Since the call to BUILD-MAX-HEAP takes time O(n) and MAX-HEAPIFY takes O(lg n)
the running time is O(n Ig n).
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The operation of HEAPSORT
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Heapsort
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The operation of HEAPSORT
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Exercises

[llustrate the operation of HEAPSORT with array A. Give the contents of the
array as a binary tree after the exchanges of BUILD-MAX-HEAP and after
each step of the iteration of HEAPSORT.

| A:<8,2,1,5,6,9|41317>
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Priority queues

m A priority queue is a data structure for maintaining a set S of elements, each with an associated
value called a key.

m A max-priority queues supports the following operations:

INSERT (S, x) inserts the element x into the set S.
MAXIMUM(S) returns the element of S with the largest key.
EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x’s key to the new value k, which is
assumed to be at least as large as x’s current key value.

HEAP-MAXIMUM(A)
1 return A[1]

Efficiency: The running time is ®(1).

ra
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Priority queues
HEAP-EXTRACT-MAX(A)

1
2
3
4
5
6
7

iIf A.heap-size <1

error ,.heap underflow”
max = A[1]
A[1] = A[A.heap-size]
A.heap-size = A.heap-size—1
MAX-HEAPIFY (A, 1)
return max

Széchenyi Istvan University

Efficiency: The running time is O(lg n), due to O(lg n) time of MAX-HEAPIFY.

ra
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Priority queues
HEAP-INCREASE-KEY(A, i, key)

1 if key <A[i]

2 error ,,new key is smaller than current key”
3 A[i] = key

4 whilei>1and AIPARENT(i)] < A[i]

5 exchange A[i] with A[PARENT ()]

6 I = PARENT(i)

MAX-HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size+1

2 A[A.heap-size] = —o

3 HEAP-INCREASE-KEY (A, A.heap-size, key)

Efficiency: The running time of both procedures on an n-element heap is O(lg n).
Corollary: A heap can support any priority-queue operation on a set of size n in O(lg n) time.

ra
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Priority queues
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Priority queues

BUILD-MAX-HEAP’(A)

1 A.heap-size=1

2 fori=2toA.length

3 MAX-HEAP-INSERT(A, A[i])

Efficiency: The running time to build an n-element heap is O(n Ig n).

ra
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Exercises

m |llustrate the operation of MAX-HEAP-INSERT (A, 20) call with array A. Give
the contents of the array as a binary tree after each exchange.

m A=<16,1510,8,14,9,3,2,4,1, 7>

m |llustrate the operation of BUILD-MAX-HEAP’ with array A. Give the
contents of the actual max-heap as a binary tree after each step of the iteration.

m A=<§8,21,56,943,7>
m Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’ give the
same results with the same input array?

22
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Comparison sorts

We can view comparison sorts abstractly in terms of decision trees. A decision tree is a full binary tree

that represents the comparisons between elements that are performed by a particular sorting algorithm
operating on an input of a given size.

Theorem: Any comparison sort algorithm requires Q(n g n) comparisons in the worst case.
Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

1,32 | | 3,12 2,30 | (3,21

The decision tree for insertion sort
operating on three elements

ra
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Sorting in linear time
COUNTING-SORT(A, B, k)

let C[0..k] be a new array
fori=0tok
C[i]=0

for j = 1 to A.length
CIALIl = C[AL]I+1
/I C[i] now contains the number of elements equal to i
fori=1tok
C[i] = C[i]+C[i—-1]
/I C[i] now contains the number of elements less than or equal to i
10 for j = A.length downto 1
11 BICIALII] = AL
12 CIADLIl = CIADII-1
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Criteria: Each of the n input elements is an integer in the range 0 to k, for some integer k.
Efficiency: When k = O(n), the sort runs in ®(n) time.

Stability: The counting sort is stable: numbers with the same value appear in the output array in the
same order as they do in the input array.

N 24
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Sorting in linear time
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5 0 1 2 3 4 5

1 Cl 2,2 4|7 |7]|S8

6 7 8 1 2 3 4 5 6 7 8
3 B 0 3

5 0 1 2 3 4 5

8 Cl| 12,4 ,6]|7]8

6 7 8 1 2 3 4 5 6 7 8

313 B|lo |0 |2 |2 |3|]3]|3]|5

5

8

The operation of COUNTING-SORT
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Exercises

[llustrate the operation of COUNTING-SORT on array A. What elements are
In array C after three elements are put into array B?

m A=<6,52,6,1,3,6,2,7,5>
What will happen if we rewrite the line 10 of the COUNTING-SORT with the

line below?
10 forj=1to A.length

26
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Sorting in linear time

RADIX-SORT(A, d)
1 fori=1ltod

2 use a stable sort to sort array A on digit i

Széchenyi Istvan University

Criteria: Each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and

digit d is the highest-order digit.

329
457
657

839

436
720
355

720
355
436
457
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

The operation of RADIX-SORT

ra
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Exercises

[llustrate the operation of RADIX-SORT on the following list of English
words. Give the contents of the array after each step of the iteration.

m cow, dog, sea, row, box, bar, ear, dig, big, tea, now, fox
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Sorting in linear time
BUCKET-SORT(A)

1 n=A.length

2 let B[0..n—1] be a new array

3 fori=0ton—1

4 make B[i] an empty list

5 fori=1ton

6 insert A[1] into list B[[nA[i]]]

7 fori=0ton—1

8 sort list B[i] with insertion sort

9 concatenate the lists B[O], B[1], ..., B[n—1] together in order

Criteria: The input n elements are uniformly distributed numbers in the interval [0, 1).
Efficiency: The average-case running time is ®(n) due to expected running time of line 8 is O(1).

29
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Sorting in linear time
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10

78

17

.39
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26

12

94

21

12

23

.68

The operation of BUCKET-SORT for n=10

12 17

21 23 .26
.39

.68

72 78

94
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Exercises

[llustrate the operation of BUCKET-SORT on the array A. Give the result of
the procedure. Which element is the last element of the ,,biggest” bucket?

m A=<0.65,0.52,0.23, 0.68, 0.12, 0.38, 0.61, 0.29, 0.72, 0.53 >
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Summary
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Algorithm Worst-case Average-case/expected
Insertion sort O(n?) O(n?)

Merge sort O(n Ig n) O(n Ig n)

Heapsort O(n Ig n) -

Quicksort O(n?) O(nlgn) (expected)
Counting sort O(n+k) O(n+k)

Radix sort O(d(n+k)) O(d(n+k))

Bucket sort O(n?) ®(n)  (average-case)

Efficiency of the sorting algorithms

ra
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