“#" Theory of algorithms (1oth lecture)

Pal Pusztai
pusztai@sze.hu

O Theory of algorithms Széchenyi Istvan University
Outline

m The string-matching problem
= Notation and terminology
= A naive string matcher
= The Rabin-Karp matcher

m String matching with finite automata

Computing the transition function
Matching

m The Knuth-Morris-Pratt matcher

Computing the prefix function
Matching

m EXxercises

lra

= Theory of algorithms Széchenyi Istvan University

String matching

m The string-matching problem

Let us assume that the text is an array T[1..n] of length n and that the pattern is an array P[1..m] of
length m < n. The elements of P and T are characters drawn from a finite alphabet }".

Possible alphabets: > ={0, 1}, > ={a, b, ..., z}. The character arrays P and T are often called strings of
characters.

Pattern P occurs with shift s in text T (or, equivalently, the pattern P occurs beginning at position s+1
intext T) if 0 <s<n—-mand T[s+1..s+m]=P[1..m] (that is, if T[s+]]=P[j], for 1 <j <m).

If P occurs with shift s in T, then s is a valid shift, otherwise, s is an invalid shift.

The string-matching problem: to find all valid shifts of a given pattern P in a given text T.

text T a/bjclal/bjlalal/b|jc|lal|blalc

s=3
pattern P al|/ bl ala

An example of the string-matching problem

lra

= Theory of algorithms Széchenyi Istvan University

String matching

= Notation and terminology

The > denotes the set of all finite-length strings formed using characters from the alphabet .
The zero-length empty string, denoted ¢, also belongsto > ™.

The length of a string x is denoted | X |.

The concatenation of two strings x and y, denoted xy, has length | x |[+| y | and consists of the characters
from x followed by the characters fromy.

A string w is a prefix of a string x, denoted w = X, if x=wy for some stringy € >

A string w is a suffix of a string x, denoted w o x, if x=yw for some stringy € ™.

Notes: If w = x or w 2 x then | w | <| x|. The empty string ¢ is both a suffix and a prefix of every string.
Example: ab = abcca, cca o abcca.

Let P, denote the k-character prefix P[1..k] of the pattern P[1..m]. Thus, P, = ¢ and P, = P[1..m] = P.
Let T, denote the k-character prefix T[1..k] of the text T[1..n].

The string-matching problem (using this notation): to find all shifts s in the range 0 <s <n—m such
thatP = T, .

lra

o®" Theory of algorithms Széchenyi Istvan University

String matching
NAIVE-STRING-MATCHER(T, P)

1 n=T.length

2 m=P.length

3 fors=0ton—m

4 if P[1..m] == T[s+1..5s+m]

5 write ,,Pattern occurs with shift 7, s

Efficiency: It takes time O((rn—m+1)m). The running time equals the matching time because it requires
no preprocessing.

This brute-force algorithm is inefficient because it entirely ignores information gained about the text
for one value of s when it considers other values of s. For example, if P = aaab and we find that
s = 0 is valid, then none of the shifts 1, 2, or 3 are valid, since P[4] = b.

In our pseudocode, we allow two equal-length strings to be compared for equality as a primitive
operation.

If the strings are compared from left to right and the comparison stops when a mismatch is discovered,
we assume that the time taken by such a test is a linear function of the number of matching
characters discovered.

To be precise, the test x ==y is assumed to take time ®(t+1), where t is the length of the longest string
zsuchthatzc xand z = .

lra

[Theory of algorithms Széchenyi Istvan University
String matching

ajlclal al/bl|c alclala|b|c alclalal|b]|c alclalal|b]|ec
s=0 s=1 s=2 s=3
ala|b — alalb — alal|b — > al|alb

The operation of NAIVE-STRING-MATCHER

lra

O Theory of algorithms Széchenyi Istvan University

Exercises

m \What valid shift values s are the results of NAIVE-STRING-MATCHER for
the pattern P=0001 in the text T=000010001010001?

m Suppose that all characters in the pattern P are different. Show how to

accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-character
text T.

lra

o®" Theory of algorithms Széchenyi Istvan University

String matching

Let us assume that >={0, 1, 2, ..., 9}, so that each character is a decimal digit. We can then view a
string of k consecutive characters as representing a length-k decimal number.

Given a pattern P[1..m], let p denote its corresponding decimal value. In a similar manner, given a text
T[1..n], let t, denote the decimal value of the length-m substring T[s+1..s+m], for s=0, 1, 2, ..., n—m.

Certainly, t.=p if and only if T[s+1..s+m] = P[1..m], thus, s is a valid shift if and only if t.=p.

We can compute p in time ®(m) using Horner’s rule:
p=P[m]+10(P[m—1]+10(P[m—2]+...+10(P[2]+10(P[1])...).

Similarly, t, can be computed from T[1..m] in time ®(m).

The remaining values t;, t,, ..., t,_,, can be computed in time @(n—m) , as t,, can be computed from t,
In constant time, since:
t.,,= 10(t,—10M1T[s+1])+T[s+m+1].

Therefore, all occurrences of the pattern P[1..m] in the text T[1..n] can be found with ®(m)
preprocessing time and ®(n—m+1) matching time.

Example: If m=5 and t,=31415, then we wish to remove the high-order digit T[s+1]=3 and bring in the
new low-order digit (suppose it is T[s+5+1]=2) to obtain

t,,,= 10(31415-10000-3)+2 = 14152.

lra

o®" Theory of algorithms Széchenyi Istvan University
String matching

Problem: p and t, may be too large to work with conveniently.

Solution: computing p and the t, values modulo a suitable modulus g.

In general, with a d-ary alphabet {0, 1, ..., d—1}, we choose g so that dq fits within a computer word.
Computing:

t.,;= 10(t,—10m 1T [s+1])+T[s+m+1] (Decimal alphabet)
t..,= (d(t;—7Ts+1]h)+T[s+m+1]) mod q, (d-ary alphabet and modulo q)

where h = d™ 1 (mod q) is the value of the digit ,,1” in the high-order position of an m-digit text
window.

Problem: t,=p (mod q) does not imply that t.= p. On the other hand, if the equation is not satisfied,
then we definitely have that t,# p, so that shift s is invalid.

Solution: Any shift s for which t, = p (mod g) must be tested further to see whether s is really valid or
we just have a spurious hit. This additional test explicitly checks the condition
P[1..m] = T[s+1..s+m].

If g is large enough, then spurious hits expectedly occur infrequently enough that the cost of the extra
checking is low.

lra

= Theory of algorithms Széchenyi Istvan University

String matching
RABIN-KARP-MATCHER(T, P, d, q)

1 n=T.length

2 m=P.length

3 h=d™lmodq

4 p=0

5 t,=0

6 fori=1tom // preprocessing

7 p = (dp+P[i]) mod q

8 t, = (dt,+TIi]) mod g

9 fors=0ton—m // matching

10 ifp==t,

11 if P[1..m] == T[s+1..s+m]

12 write ,,Pattern occurs with shift ”, s
13 if s<n—m

14 t..; = (d(t,—T[s+1]h)+T[s+m+1]) mod q

Efficiency: It takes ®(m) preprocessing time, and its matching time is O((n—m+1)m).

Remarks: If the expected number of valid shifts is small (O(1)) and we choose the prime g to be larger

than the length of the pattern, then we can expect O(n) matching time.

lra

10

N Theory of algorithms
String matching

Széchenyi Istvan University

2135191023 |1]4]1

‘7

mod 13

11 12 13 14 15 16 17 18 19

512167399 2]1

J mod 13

4 1511011, 7|9 11

valid spurious
match hit
old new old new
high-order low-order high-order low-order
digit digit digit shift digit
31114111512 14152 = (31415 — 3 - 10000) - 10 + 2 (mod 13)
=(7-3-3):10+2 (mod 13)
=8 (mod 13)
71 8
N The operation of RABIN-KARP-MATCHER 1
i

O Theory of algorithms Széchenyi Istvan University

Exercises

m Can the indices of t be omitted in RABIN-KARP-MATCHER?
m \What is the worst case of RABIN-KARP-MATCHER?

m Working modulo q=11, how many spurious hits does the RABIN-KARP-
MATCHER encounter in the text T=314159265 when looking for the pattern
P=26?

12

lra

= Theory of algorithms Széchenyi Istvan University

String matching

A finite automaton M is a 5-tuple (Q, q,, A, Z, J), where

m Qs a finite set of states,

Qo € Q is the start state,

A < Q is a distinguished set of accepting states,

¥ is a finite input alphabet,

o0 Is a function from Q x X into Q, called the transition function of M.

The operation of a finite automaton:
m The finite automaton begins in state q,.
m It reads the characters of its input string one at a time.

m |If the automaton is in state q and reads input character a, it moves (“makes a transition”) from state

q to state 6(q, a).

m \Whenever its current state q is a member of A, the machine M has accepted the string read so far.
An input that is not accepted is rejected.

lra

13

[Theory of algorithms Széchenyi Istvan University
String matching

A finite automaton M induces a function g, called the final-state function:
o:X" — Q, o(w) is the state M ends up in after scanning the string w.
M accepts a string w if and only if a(w) € A.
The recursive definition of g with the transition function ¢:
o(€) = qo,
o(wa) = d(s(w), a) (wWeX" a€el).

The transition function The state-transition diagram
input
p b a
state a b
O
0 110
1 0] 0
b

A simple two-state finite automaton

14

lra

o Theory of algorithms Széchenyi Istvan University
String matching

For a given pattern P, a string-matching automaton is constructed in a preprocessing step before using
it to search the text string:

m An auxiliary function o, called the suffix function is defined corresponding to pattern P[1..m] .

m o:X — {0,1,...,m}, such that o(X) is the length of the longest prefix of P that is also a
suffix of x: o(x) = max{k: P, = x}.

= Example: If P=ab, then o(¢)=0, o(ccaca)=1, o(ccab)=2.
= Properties of o:
For a pattern P of length m, we have o(x)=m if and only if P o x.
If x 3y, then o(X) < a(y).
m Thestate set Qis {0, 1, ..., m}. The start state q, is state 0, and state m is the only accepting state.
m The transition function ¢ is defined by the following equation, for any state q and character a:
6(q, a) = (P, a)
Remark: It comes from that the automaton maintains the following invariant: o(T;) = o(T,).

lra

15

[Theory of algorithms Széchenyi Istvan University
String matching

COMPUTE-TRANSITION-FUNCTION(P,)
1 m=P.length
2 forq=0tom

3 for each charactera €)

4 k = min(m+1, g+2)
5 repeat

6 k=k-1
7 until P, P, a

8 0(q,a) =k

9 returno

Efficiency: The running time is O(m3>|), because the outer loops contribute a factor of m[]|, the inner
repeat loop can run at most m+1 times, and the test P, = P, a on line 7 can require comparing up
to m characters,

Remark: ¢ can be computed in O(m[Y]]) time (by utilizing some cleverly computed information about
the pattern P).

16

lra

O Theory of algorithms Széchenyi Istvan University

Exercises

m Give the transition function ¢ and the state-transition diagram of the string-
matching automaton for the pattern P=aabab over the alphabet > ={a, b}.

17

lra

O Theory of algorithms Széchenyi Istvan University

String matching
FINITE-AUTOMATON-MATCHER(T, 6, m)

1 n=T.length

2 =0

3 fori=1ton

4 q=4(q, T[i])

5 if q==

6 write ,,Pattern occurs with shift ”, i—m

Efficiency: The running time on a text string of length n is ®(n).

Summarizing: With the improved procedure for computing J, all occurrences of a length-m pattern in
a length-n text over an alphabet >’ can be found with O(m[Y]|) preprocessing time and ®(n)
matching time.

lra

18

[Theory of algorithms Széchenyi Istvan University
String matching

0
input b
state a b ¢ P
O | 1,00 a
1 | 1]2]0] b
2 | 3]0]0] a
3 1114]l0! b [1 2 3 4 5 6 7 8 9 10 11
4 |s5lolol a T[] a b a b a b a c¢c a b a
5 11 416 C state o(T;) 01234545623
6 | 710 a
7 11210

A string-matching automaton
19

lra

= Theory of algorithms

String matching

lra

How can we accelerate the naive string matching?
m Instead of shifting the pattern in the text by one, if possible ,,step over” the invalid shifts.
= When we check a shift, we do not examine again the matched characters that we have already
examined before.
In general, it is useful to know the answer to the following question:
= Given that pattern characters P[1..q] match text characters T[s+1..s+q], what is the least shift
s’>s such that for some k < q,
P[1.k]=T[s’+1..s’+k], where s’+k=s+q?
In other words, knowing that P, 3 T, ,, we want the longest proper prefix P, of P that is also a
suffix of T,
m S’=s+qg—k is the first shift after s that is not necessarily invalid.
m In the best case, k = 0, so that s’=s+q, and we immediately rule out shifts s+1, s+2, ...,
s+q—1.
= Inany case, at the new shift s” we don’t need to compare the first k characters of P with the
corresponding characters of T, since they match.
We can precompute the prefix function = for a pattern P that encapsulates knowledge about how
the pattern matches against shifts of itself.

= With function 7 we can avoid testing useless shifts in the naive pattern-matching algorithm
and precomputing the full transition function ¢ like for a string-matching automaton.

Széchenyi Istvan University

20

[Theory of algorithms Széchenyi Istvan University
String matching

The prefix function for a pattern P[1..m] is the function z : {1, 2, ..., m} — {0, 1, ..., m—1} such that
n[q] = max{k: k<gand P, 3 P}.
That is, z[q] is the length of the longest prefix of P that is a proper suffix of P,

COMPUTE-PREFIX-FUNCTION(P)

1 m=P.length

2 let #[1..m] be a new array
3 x[1]=0

4 k=0

5 forqg=2tom

6 while k > 0 and P[k+1] # P[q]
7 k = z[K]
8 if P[k+1] == P[q]
9 k=k+1
10 z[q] =k

11 returnrz

Efficiency: It takes time ®(m), as the inner loop requires O(1) time (see amortized analysis in the
textbook).

N 21

N Theory of algorithms
String matching

lra

Széchenyi Istvan University

P[i]

il

b|la|c

b

s'=s+2

s'=s+(¢—x[q])

The prefix function 7 and its using

22

O Theory of algorithms Széchenyi Istvan University

Exercises

m Give the prefix function z for the pattern P=ababbabbababbababbabb over
alphabet > ={a, b}.

23

lra

o Theory of algorithms Széchenyi Istvan University
String matching

KMP-MATCHER(T, P)

1 n=T.length

2 m=P.length

3 7n=COMPUTE-PREFIX-FUNCTION(P)

4 =0 // number of characters matched
5 fori=1ton // scan the text from left to right
6 while g > 0 and P[q+1] # T[i]

7 q = z[q] I/ next character does not match
8 if P[g+1] ==TJi]

9 q=qg+1 // next character matches

10 if g == /I is all of P matched?

11 write ,,Pattern occurs with shift ”, i—m

12 q = 7[q] I/ look for the next match

Efficiency: Preprocessing (computing x) takes time ®(m), the matching time is ®(n) (as the inner loop
requires O(1) time, similarly as in the previous algorithm).

Remark: The abbreviation KMP is given by the initials of the names Knuth-Morris-Pratt.

24

lra

O Theory of algorithms Széchenyi Istvan University

Exercises

m What values are assigned to variable g in running of KMP-MATCHER, if
T=bbababababba, P=ababa and > ={a, b}?

25

lra

O Theory of algorithms Széchenyi Istvan University

lra

String matching

Algorithm Preprocessing time Matching time
Naive 0 O((n—m+1)m)
Rabin-Karp ®(m) O((n—m+1)m)
Finite automaton om[>)) O(n)
Knuth-Morris-Pratt O(m) O(n)

Efficiency of the string-matching algorithms

26

	1. dia: Theory of algorithms (10th lecture)
	2. dia: Outline
	3. dia: String matching
	4. dia: String matching
	5. dia: String matching
	6. dia: String matching
	7. dia: Exercises
	8. dia: String matching
	9. dia: String matching
	10. dia: String matching
	11. dia: String matching
	12. dia: Exercises
	13. dia: String matching
	14. dia: String matching
	15. dia: String matching
	16. dia: String matching
	17. dia: Exercises
	18. dia: String matching
	19. dia: String matching
	20. dia: String matching
	21. dia: String matching
	22. dia: String matching
	23. dia: Exercises
	24. dia: String matching
	25. dia: Exercises
	26. dia: String matching

