
Theory of algorithms (8th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Dynamic programming

 General knowledge

 Developing a dynamic-programming algorithm

 Examples

 Matrix-chain multiplication

 Longest common subsequence

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Dynamic programming

 The divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the

subproblems recursively, and then combine their solutions to solve the original problem.

 Dynamic programming

 Dynamic programming, like the divide-and-conquer method, solves problems by combining

the solutions to subproblems. In contrast, dynamic programming applies when the

subproblems overlap, that is, when subproblems share subsubproblems.

 It solves each subsubproblem just once and then saves its answer in a table, thereby avoiding

the work of recomputing the answer every time it solves each subsubproblem.

 It is typically applied to solve optimization problems. Such problems usually have many

possible solutions and each solution has a value.

 The goal is to find a solution with the optimal (minimum or maximum) value. Such a

solution is called an optimal solution to the problem, as opposed to the optimal solution,

since there may be several solutions that achieve the optimal value.

Széchenyi István UniversityTheory of algorithms

4

Dynamic programming

Developing a dynamic-programming algorithm typically follows a sequence of four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Széchenyi István UniversityTheory of algorithms

5

Matrix-chain multiplication

MATRIX-MULTIPLY(A, B)

1 if A.columns ≠ B.rows

2 error „incompatible dimensions”

3 else

4 let C be a new A.rows×B.columns matrix

5 for i = 1 to A.rows

6 for j = 1 to B.columns

7 ci, j = 0

8 for k = 1 to A.columns

9 ci, j = ci, j + ai, k ∙ bk, j

10 return C

Remarks: Two matrices A and B can be multiplied only if they are compatible: the number of

columns of A must equal the number of rows of B. If A is a p×q matrix and B is a q×r matrix, the

resulting matrix C is a p×r matrix.

Efficiency: The time to compute C is dominated by the number of scalar multiplications in line 9,

which is pqr. The costs will be expressed of the number of scalar multiplications.

Széchenyi István UniversityTheory of algorithms

6

Matrix-chain multiplication

It is given a sequence (chain) A1, A2, … , An of n matrices to be multiplied and their product A1 A2 … An

has to be compute.

Matrix multiplication is associative, and so all parenthesizations yield the same product.

A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully

parenthesized matrix products, surrounded by parentheses.

Example: If the sequence is A1, A2, A3, A4, then A1 A2 A3 A4 product can be fully parenthesized in five

distinct ways:

(A1 (A2 (A3 A4))),

(A1 ((A2 A3) A4)),

((A1 (A2 A3)) A4),

((A1 A2)(A3 A4)),

(((A1 A2) A3) A4).

Example: Let n=3 and the dimensions of the matrices A1, A2, A3 are 10×100, 100×5 and 5×50,

respectively.

((A1 A2) A3) parenthesization: 10·100·5+10·5·50=5000+2500=7500 scalar multiplications.

(A1 (A2 A3)) parenthesization: 100·5·50+10·100·50=25000+50000=75000 scalar multiplications.

Széchenyi István UniversityTheory of algorithms

7

Matrix-chain multiplication

The matrix-chain multiplication problem as follows: Given a chain A1, A2, … , An of n matrices,

where for i=1, 2, …, n, matrix Ai has dimension pi–1×pi, fully parenthesize the product A1A2 … An

in a way that minimizes the number of scalar multiplications.

Remark: The number of solutions is exponential in n.

The steps of the solution by dynamic-programming:

1. Characterize the structure of an optimal solution.

 Let us adopt the notation Ai..j, where i ≤ j, for the matrix that results from evaluating the product of

Ai Ai+1 … Aj. The optimal parenthesizing split Ai Ai+1 … Aj product between Ak and Ak+1 for some

integer k in the range i ≤ k < j.

 The cost of parenthesizing this way is the cost of computing the matrix Ai..k, plus the cost of

computing Ak+1..j, plus the cost of multiplying them together.

 Note that Ai..k and Ak+1..j subproblems must have an optimal parenthesization as well, thus an

optimal solution to the problem can be constructed from optimal solutions to subproblems.

Széchenyi István UniversityTheory of algorithms

8

Matrix-chain multiplication

2. Recursively define the value of an optimal solution:

 The subproblem: determining the minimum cost of parenthesizing Ai Ai+1 … Aj for 1≤ i ≤ j ≤ n.

 Let m[i, j] be the minimum number of scalar multiplications needed to compute the matrix Ai..j, for

the full problem, the lowest cost way to compute A1..n would thus be m[1, n].

 If i=j, the problem is trivial, the chain consists of just one matrix Ai..i=Ai, so that no scalar

multiplications are necessary to compute the product.

 If i<j, let us assume that the optimal parenthesization split the product Ai Ai+1 … Aj between Ak and

Ak+1, where i ≤ k < j. The dimension of each matrix Ai is pi–1×pi, the matrix product az Ai..k Ak+1..j

takes pi–1 pk pj scalar multiplications.

m[i, j]= m[i, k]+ m[k+1, j]+ pi–1 pk pj

 There are only j–i possible values for k, namely k=i, i+1, i+2, …, j−1. Since the optimal

parenthesization must use one of these values for k, we need only check them all to find the best:

m[i, j]= 0, if i=j,

m[i, j]= min i ≤ k < j{m[i, k]+ m[k+1, j]+ pi–1 pk pj}, if i<j.

Remarks: To construct an optimal solution (step 4) we define s[i, j] to be a value of k at which we split

the product Ai Ai+1 … Aj in an optimal parenthesization. That is, s[i, j] equals a value k such that

m[i, j]= m[i, k]+ m[k+1, j]+ pi–1 pk pj is satisfied.

Széchenyi István UniversityTheory of algorithms

9

Matrix-chain multiplication

3. Computing the optimal costs.

MATRIX-CHAIN-ORDER(p)

1 n = p.length−1

2 let m[1..n, 1..n] and s[1..n−1, 2..n] be new tables

3 for i = 1 to n

4 m[i, i] = 0

5 for l = 2 to n // l is the chain length

6 for i = 1 to n−l+1

7 j = i+l−1

8 m[i, j] = ∞

9 for k = i to j−1

10 q = m[i, k]+m[k+1, j]+ pi–1 pk pj

11 if q < m[i, j]

12 m[i, j] = q

13 s[i, j] = k

14 return m and s

Efficiency: The algorithm runs in O(n3) time and it requires Θ(n2) space to store m and s tables.

Széchenyi István UniversityTheory of algorithms

10

Matrix-chain multiplication

The operation of MATRIX-CHAIN-ORDER (n=6)

A1 : 30×35

A2 : 35×15

A3 : 15×5

A4 : 5×10

A5 : 10×20

A6 : 20×25

m[2, 2]+m[3, 5]+p1 p2 p5=0+2500+35·15·20=13000,

m[2, 5]=min{ m[2, 3]+m[4, 5]+p1 p3 p5=2625+1000+35·5·20=7125, =7125.

m[2, 4]+m[5, 5]+p1 p4 p5=4375+0+35·10·20=11375

1

2

3

4

5

6 1

2

3

4

5

6

A2

15,125

11,875 10,500

9,375 7,125 5,375

7,875 4,375

15,750 2,625 750

3,5002,500

1,000 5,000

0 0 0 0 0 0

A1 A3 A4 A5 A6

j i

m

2

3

4

5

6 1

2

3

4

5

3

3 3

3 3 3

1 3

1 2 3

53

4 5

j i

s

Széchenyi István UniversityTheory of algorithms

11

Matrix-chain multiplication

4. Constructing an optimal solution.

PRINT-OPTIMAL-PARENS(s, i, j)

1 if j == i

2 write ”A”i

3 else

4 write ”(”

5 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

6 PRINT-OPTIMAL-PARENS(s, s[i, j]+1, j)

7 write ”)”

Remarks:

 The initial call PRINT-OPTIMAL-PARENS.(s, 1, n).

 With the matrices in the example the call PRINT-OPTIMAL-PARENS(s, 1, 6) prints the
parenthesization ((A1(A2 A3))((A4 A5) A6)).

Széchenyi István UniversityTheory of algorithms

12

Exercises

 How many scalar multiplications do we need to compute the product matrix,

where the sequence of dimensions is (5, 2, 3, 4). Give the value of the best

case and the value of the worst case.

 Find an optimal parenthesization of a matrix-chain product whose sequence of

dimensions is (5, 2, 3, 4, 2).

 Give m and s tables that MATRIX-CHAIN-ORDER(p) computes with

p=(5, 2, 3, 5, 4, 2).

 Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A, s, i, j) that

actually performs the optimal matrix-chain multiplication, given the sequence

of matrices A1, A2, … An, the s table computed by MATRIX-CHAIN-ORDER,

and the indices i and j. The initial call would be MATRIX-CHAIN-

MULTIPLY(A, s, 1, n).

Széchenyi István UniversityTheory of algorithms

13

Matrix-chain multiplication

RECURSIVE-MATRIX-CHAIN(p, i, j)

1 if i == j

2 return 0

3 m[i, j] = ∞

4 for k = i to j−1

5 q = RECURSIVE-MATRIX-CHAIN(p, i, k) +

RECURSIVE-MATRIX-CHAIN(p, k+1, j)+ pi–1 pk pj

6 if q < m[i, j]

7 m[i, j] = q

8 return m[i, j]

Efficiency: The time to compute m[1, n] by this recursive function is at least exponential in n.

Széchenyi István UniversityTheory of algorithms

14

Matrix-chain multiplication

The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1, 4)

1..4

4..41..1 2..4 1..2

2..2 3..4 2..3 4..4

3..3 4..4 2..2 3..3

1..1 2..2

3..4

3..3 4..4

1..3

1..1 2..3 1..2 3..3

2..2 3..3 1..1 2..2

Széchenyi István UniversityTheory of algorithms

15

Matrix-chain multiplication

MEMOIZED-MATRIX-CHAIN(p)

1 n = p.length−1

2 let m[1..n, 1..n] be a new table

2 for i = 1 to n

3 for j = i to n

4 m[i, j] = ∞

5 return LOOKUP-CHAIN(m, p, 1, n)

LOOKUP-CHAIN(m, p, i, j)

1 if m[i, j] < ∞

2 return m[i, j]

3 if i == j

4 m[i, j] = 0

5 else

6 for k = i to j−1

7 q = LOOKUP-CHAIN(p, i, k) +LOOKUP-CHAIN(p, k+1, j)+ pi–1 pk pj

8 if q < m[i, j]

9 m[i, j] = q

10 return m[i, j]

Efficiency: Like the bottom-up dynamic-programming algorithm MATRIX-CHAIN-ORDER the

procedure MEMOIZED-MATRIX-CHAIN runs in O(n3) time and it requires Θ(n2) memory space.

Széchenyi István UniversityTheory of algorithms

16

Longest common subsequence

A subsequence of a given sequence is just the given sequence with zero or more elements left out.

Formally, given a sequence X=(x1, x2, … , xm), another sequence Z=(z1, z2, … , zk) is a subsequence of

X if there exists a strictly increasing sequence (i1, i2, … , ik) of indices of X such that for all

j=1, 2, …, k we have xij
= zj.

Example: Z=(B, C, D, B) is a subsequence of X=(A, B, C, B, D, A, B) with corresponding index

sequence (2, 3, 5, 7).

Given two sequences X and Y, a sequence Z is a common subsequence of X and Y if Z is a

subsequence of both X and Y.

Example: If X=(A, B, C, B, D, A, B) and Y=(B, D, C, A, B, A), the sequence (B, C, A) is a common

subsequence of both X and Y. The sequence (B, C, A) is not a longest common subsequence of X

and Y, however, since it has length 3 and the sequence (B, C, B, A) which is also common to both

X and Y, has length 4.

The longest-common-subsequence problem: For given two sequences X=(x1, x2, … , xm) and

Y=(y1, y2, … , yn) it has to be find a maximum length common subsequence of X and Y.

Remark: For the abbreviation of the longest common subsequence the LCS will be used.

Széchenyi István UniversityTheory of algorithms

17

Longest common subsequence

For a given sequence X=(x1, x2, … , xm) the ith prefix of X is Xi=(x1, x2, … , xi), for i=0, 1, …, m.

Example: If X=(A, B, C, B, D, A, B), then X4=(A, B, C, B) and X0 is the empty sequence.

Theorem (Optimal substructure of an LCS): Let X=(x1, x2, … , xm) and Y=(y1, y2, … , yn) be

sequences, and let Z=(z1, z2, … , zk) be any LCS of X and Y.

1. If xm= yn , then zk= xm= yn and Zk−1 is an LCS of Xm −1 and Yn −1.

2. If xm ≠ yn , then zk ≠ xm implies that Z is an LCS of Xm −1 and Y.

3. If xm ≠ yn , then zk ≠ yn implies that Z is an LCS of X and Yn −1.

Corollary: The LCS problem has the optimal subproblem property, so it can be efficiently solved with

dynamic programming.

Let c[i, j] be the length of an LCS of the sequences Xi and Yj. From the previous theorem:

c[i, j]= 0, if i=0 or j=0,

c[i, j]= c[i−1, j−1]+1, if i, j >0 and xi= yj ,

c[i, j]= max{c[i, j−1], c[i−1, j]}, if i, j >0 and xi ≠ yj .

Széchenyi István UniversityTheory of algorithms

18

Longest common subsequence

LCS-LENGTH(X, Y)

1 m = X.length

2 n = Y.length

3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables

4 for i = 1 to m

5 c[i, 0] = 0

6 for j = 0 to n

7 c[0, j] = 0

8 for i = 1 to m

9 for j = 1 to n

10 if xi == yj

11 c[i, j] = c[i−1, j−1]+1

12 b[i, j] = „”

13 else

14 if c[i−1, j] ≥ c[i, j−1]

15 c[i, j] = c[i−1, j]

16 b[i, j] = „”

17 else

18 c[i, j] ← c[i, j−1]

19 b[i, j] ← „”

20 return c and b

Efficiency: It requires Θ(mn) time and Θ(mn) memory space.

Széchenyi István UniversityTheory of algorithms

19

Longest common subsequence

The operation of LCS-LENGTH

0

yj

1 2 3 4 5 6

0000000
xi0

1

2

3

4

5

6

ABACDB

A

B

C

B

D

A

7 B

1110000

2211110

2222110

3322110

3322210

4332210

4432210

j

i

Széchenyi István UniversityTheory of algorithms

20

Longest common subsequence

PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == „”

4 PRINT-LCS(b, X, i−1, j−1)

5 wtite xi

6 else if b[i, j] == „”

7 PRINT-LCS(b, X, i−1, j)

8 else

9 PRINT-LCS(b, X, i, j−1)

Remark: The initial call is PRINT-LCS (b, X, X.length, Y.length).

Efficiency: The procedure takes time O(m+n).

Széchenyi István UniversityTheory of algorithms

21

Exercises

 Determine an LCS of (1, 0, 0, 1, 0, 1, 0, 1) and (0, 1, 0, 1, 1, 0, 1, 1, 0).

 Give c and b result tables and the result LCS of LCS-LENGTH with below

given X and Y.

 X=(1, 0, 0, 1, 0)

 Y=(0, 1, 0, 1)

 Can LCS-LENGTH be written without table b? What is PRINT-LCS in this

case?

 Can the Θ(mn) memory space be reduced if we need only the length of the

LCS (without LCS itself)?

