
Theory of algorithms (3rd lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Medians and order statistics

 Selection in expected linear time

 Dynamic sets

 Operations on dynamic sets

 Stacks and queues with arrays

 Linked lists

 Implementing pointers and objects with arrays

 Representing rooted trees

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Medians and order statistics

The ith order statistic of a set of n elements is the ith smallest element.

For example the minimum of a set of elements is the first order statistic (i = 1), and the maximum is

the nth order statistic (i = n).

A median, informally, is the „halfway point” of the set. When n is odd, the median is unique, occurring

at i = (n+1)/2. When n is even, there are two medians at i = n/2 (lower median) and i = n/2+1

(upper median) positions.

MINIMUM(A)

1 min = A[1]

2 for i = 2 to A.length

3 if A[i] < min

4 min = A[i]

5 return min

Remark: In the function we assume that the set resides in array A, where A.length = n.

Széchenyi István UniversityTheory of algorithms

4

Selection in expected linear time

 The selection problem
Input: A set A of n (distinct) numbers and an integer i, with 1≤ i ≤ n.

Output: The element x  A that is larger than exactly i−1 other elements of A.

RANDOMIZED-SELECT(A, p, r, i)

1 if p == r

2 return A[p]

3 q = RANDOMIZED-PARTITION(A, p, r)

4 k = q−p+1

5 if i == k

6 return A[q] // The pivot value is the answer

7 else if i < k

8 return RANDOMIZED-SELECT(A, p, q−1, i)

9 else

10 return RANDOMIZED-SELECT(A, q+1, r, i−k)

Efficiency: Worst-case running time is Θ(n2), but the expected running time is Θ(n).

Remark: There is an algorithm with O(n) running time (it is also recursive and working with medians
it does „good” partitioning.)

Széchenyi István UniversityTheory of algorithms

5

Exercises

 Give another version of RANDOMIZED-SELECT function with pseudocode

that uses iteration instead of recursion?

 What values of i have to be generated in RANDOMIZED-PARTITION to get

the worst-case running time to calculate the minimum value of array A?

 A = < 2, 7, 5, 6, 1, 4, 3 >

Széchenyi István UniversityTheory of algorithms

6

Dynamic sets

 Dynamic sets

 Finite sets in computer science that are manipulated by algorithms.

 The objects of dynamic sets have (often unique) key and satellite data.

 Operations

 SEARCH(S, k) A query that, given a set S and a key value k, returns a pointer x to an

element in S such that x.key=k, or NIL if no such element belongs to S.

 INSERT(S, x) A modifying operation that augments the set S with the element pointed to

by x. We usually assume that any attributes in element x needed by the set

implementation have already been initialized.

 DELETE(S, x) A modifying operation that, given a pointer x to an element in the set S,

removes x from S.

Remark: We call a dynamic set that supports these operations a dictionary.

Széchenyi István UniversityTheory of algorithms

7

Dynamic sets

 Operations (continue)

 MINIMUM(S) A query that returns a pointer to the element of S with the smallest

key.

 MAXIMUM(S) A query that returns a pointer to the element of S with the largest key.

 SUCCESSOR(S, x) A query that, given an element x whose key is in the set S, returns a

pointer to the next larger element in S, or NIL if x is the maximum

element.

 PREDECESSOR(S, x) A query that, given an element x whose key is in the set S, returns a

pointer to the next smaller element in S, or NIL if x is the minimum

element.

Remark: These operations assume that the keys are from a totally ordered set. In this kind of set the

trichotomy is satisfied, that is, exactly one of the following three properties holds with elements a and

b: a<b, a=b, a>b.

Széchenyi István UniversityTheory of algorithms

8

Stacks

STACK-EMPTY(S)

1 if S.top == 0

2 return TRUE

3 else

4 return FALSE

PUSH(S, x)

1 S.top = S.top+1

2 S[S.top] = x

POP(S)

1 if STACK-EMPTY(S)

2 error ”underflow”

3 else

4 S.top = S.top−1

5 return S[S.top+1]

Remark: The stack implements a last-in, first-out, or LIFO, policy.

Efficiency: Each of the three stack operations takes O(1) time.

Széchenyi István UniversityTheory of algorithms

9

Stacks

An array implementation of a stack

S

2 31 4 5 6 7

15 6 2 9 17 3

S.top=5

S

2 31 4 5 6 7

15 6 2 9

S.top=4

S

2 31 4 5 6 7

15 6 2 9 17 3

S.top=6

Széchenyi István UniversityTheory of algorithms

10

Exercises

 Illustrate the result of each operation in the sequence PUSH(S, 4), PUSH(S, 1),

PUSH(S, 3), POP(S), PUSH(S, 8), and POP(S) on an initially empty stack S

stored in array S[1.. 6]. What is the value of S.top?

Széchenyi István UniversityTheory of algorithms

11

Queues

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.length

3 Q.tail = 1

4 else

5 Q-tail = Q.tail+1

DEQUEUE(Q)

1 x = Q[Q.head]

2 if Q.head == Q.length

3 Q.head = 1

4 else

5 Q.head = Q.head+1

6 return x

Remark: When Q.head=Q.tail, the queue is empty. Initially they are 1. If we attempt to dequeue an

element from an empty queue, the queue underflows. When Q.head=Q.tail+1, the queue is full, and if

we attempt to enqueue an element, then the queue overflows. The error checking is omitted here.

Efficiency: Both queue operations take O(1) time.

Széchenyi István UniversityTheory of algorithms

12

Queues

A queue implemented using an array Q[1..12]

Q

2 31 4 5 6 7

3 5 15

Q.head=8

9 108 11 12

6 9 8 4 17

Q.tail=3

Q

2 31 4 5 6 7

15

Q.head=7

9 108 11 12

6 9 8 4

Q.tail=12

Q

2 31 4 5 6 7

3 5 15

Q.head=7

9 108 11 12

6 9 8 4 17

Q.tail=3

Széchenyi István UniversityTheory of algorithms

13

Exercises

 Give the result of operations in the sequence ENQUEUE(Q, 4),

ENQUEUE(Q, 1), ENQUEUE(Q, 3), DEQUEUE(Q), ENQUEUE(Q, 8), and

DEQUEUE(Q) on an initially empty queue Q stored in array Q[1..6]. What is

the value of Q.head and Q.tail if the initial values are Q.head=Q.tail=5?

 We implement a queue with Q[1..n]. Why does it contain at most n−1 element

instead of n?

Széchenyi István UniversityTheory of algorithms

14

Linked lists

LIST-SEARCH(L, k)

1 x = L.head

2 while x ≠ NIL and x.key ≠ k

3 x = x.next

4 return x

LIST-INSERT(L, x)

1 x.next = L.head

2 if L.head ≠ NIL

3 L.head.prev = x

4 L.head = x

5 x.prev = NIL

Efficiency: To search a list of n objects, the LIST-SEARCH function takes Θ(n) time in the worst case,

since it may have to search the entire list. The running time for LIST-INSERT is O(1).

Széchenyi István UniversityTheory of algorithms

15

Linked lists

LIST-DELETE(L, x)

1 if x.prev ≠ NIL

2 x.prev.next = x.next

3 else

4 L.head = x.next

5 if x.next ≠ NIL

6 x.next.prev = x.prev

Efficiency: LIST-DELETE runs in O(1) time, but if we wish to delete an element with a given key,

Θ(n) time is required in the worst case because we must first call LIST-SEARCH to find the element.

Széchenyi István UniversityTheory of algorithms

16

Linked lists

A doubly linked list L representing a dynamic set

9 16L.head 1 // 25

/ 9 16L.head 4 1 /

prev key next

9 16L.head 4 1 // 25

Széchenyi István UniversityTheory of algorithms

17

Exercises

 For each of the four types of lists in the following table, what is the asymptotic

worst-case running time for each dynamic-set operation listed?

unsorted,

singly

linked

sorted,

singly

linked

unsorted,

doubly

linked

sorted,

doubly

linked

SEARCH(L, k)

INSERT(L, x)

DELETE(L, x)

SUCCESSOR(L, x)

PREDECESSOR(L, x)

MINIMUM(L)

MAXIMUM(L)

Széchenyi István UniversityTheory of algorithms

18

Implementing pointers and objects

A multiply-array and a single-array

representation of a doubly linked list

A

2 31 4 5 6 7

4 7 13 1

8

/

L 19

10 119 12 13 14 15 16

4 16 4 19 9 13 /

18 1917 20 21 22 23 24

key

next

prev

2 31 4 5 6 7

3 / 2 5

prev

key

next

8

L 7

4 1 16 9

5 2 7 /

Széchenyi István UniversityTheory of algorithms

19

Exercises

 Give the multiply-array representation of a doubly linked list that contains the

keys given in arrays A. Let the size of the arrays be 10, and let the elements be

in the odd positions of the arrays.

 A = < 5, 4, 8, 2, 1 >

 Give the single-array representation of a doubly linked list that contains the

keys given in arrays A. Let the size of the array be 15, and let the elements be

in the array continuously from the 1st position.

 A = < 6, 2, 5, 3 >

Széchenyi István UniversityTheory of algorithms

20

Implementing pointers and objects

ALLOCATE-OBJECT()

1 if free == NIL

2 error ”out of space”

3 else

4 x = free

5 free = x.next

6 return x

FREE-OBJECT(x)

1 x.next = free

2 free = x

Remark: The free list initially contains all n unallocated objects. Once the free list has been exhausted,

running the ALLOCATE-OBJECT signals an error.

Efficiency: Both subroutines run in O(1) time.

Széchenyi István UniversityTheory of algorithms

21

Implementing pointers and objects

Allocating and freeing objects

The result of calling ALLOCATE-OBJECT()

(that returns index 4), setting key[4] to 25, and

calling LIST-INSERT(L, 4).

The new free-list head is object 8,

which had been next[4] on the free list.

After executing LIST-DELETE(L, 5),

we call FREE-OBJECT(5) .

Object 5 becomes the new free-list head, with

object 8 following it on the free list.

2 31 4 5 6 7

/ 3 / 7 8 1 2

prev

key

next

8

6

free 5

4 1 25 9

7 2 / 4

L 4

2 31 4 5 6 7

/ 3 / 8 2 1 5

prev

key

next

8

6

free 4

4 1 16 9

5 2 7 /

L 7

2 31 4 5 6 7

/ 3 / 7 2 1 5

prev

key

next

8

6

free 8

4 1 25 16 9

5 2 / 7 4

L 4

Széchenyi István UniversityTheory of algorithms

22

Exercises

 Insert elements with key 12 and 8 into the previous list and delete the element

index 3. Give the result after the operations.

Széchenyi István UniversityTheory of algorithms

/

/

/

T.root

/ /

/

/ / / //

/ /

23

Representing rooted trees

The representation of a binary tree T

Széchenyi István UniversityTheory of algorithms

/

/

/

/

/ / // /

//

//

/

T.root

/ /

24

Representing rooted trees

The left-child, right-sibling representation of a tree T

Széchenyi István UniversityTheory of algorithms

25

Exercises

 Draw the binary tree rooted at index 6 that is represented by the following

attributes.

index key left right

1 12 7 3

2 15 NIL NIL

3 4 10 NIL

4 10 5 9

5 2 NIL NIL

6 18 1 4

7 7 NIL NIL

8 14 6 2

9 21 NIL NIL

10 5 NIL NIL

