
Theory of algorithms (4th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Hash tables

 Direct-address tables

 Hash functions

 Open addressing

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Hash tables

 How can we implement a dynamic set with arrays that supports only the

dictionary operations INSERT, SEARCH, and DELETE?

 Solutions

 With data maintenance

 Unsorted data: INSERT: O(1), SEARCH: O(n), DELETE: O(1)

 Sorted data: INSERT: O(n), SEARCH: O(lg n), DELETE: O(n)

 Direct-address tables

 Criteria: Each element has unique key from the universe U = {0, 1, 2, …, m−1}, where

m is not too large.

 Efficiency: All operations: O(1)

 Hash tables

 Criteria: The number of keys actually stored is small relative to the total number of

possibly keys.

 Solution: An array of size proportional to the number of keys actually stored is used,

and the index is computed with hash function from the keys.

 Efficiency: All operations: O(1) on the average.

Széchenyi István UniversityTheory of algorithms

T
0

2

3

1

4

5

6

7

8

9

/

/

/

/

/

/

2

3

8

5

key satellite dataU

(universe of keys)

9 0

1
7

4

6

K

(actual

keys)

2

3

5
8

4

Direct-address tables

Dynamic set representation with direct-address table T

Criteria: Each element has unique key from the universe U = {0, 1, 2, …, m−1}, where m is not too

large.

Solution: An array, or direct-address table, denoted by T [0.. m−1], in which each position, or slot,

corresponds to a key in the universe U.

Széchenyi István UniversityTheory of algorithms

5

Direct-address tables

DIRECT-ADDRESS-SEARCH(T, k)

1 return T [k]

DIRECT-ADDRESS-INSERT(T, x)

1 T [x.key] = x

DIRECT-ADDRESS-DELETE(T, x)

1 T [x.key] = NIL

Efficiency: Each of these operations takes only O(1) time.

Széchenyi István UniversityTheory of algorithms

T

0

m−1

/

/

/

/

/

/

h(k1)

U

(universe of keys)

K

(actual

keys)

k1

k4

k5

k2
k3

h(k4)

h(k2)=h(k5)

h(k3)

6

Hash tables

Using a hash function h to map keys to hash-table slots

Hash function: h : U → {0, 1, …, m−1}

Solution: An array T [0.. m−1], called hash table, where m is typically much less than |U|. An element

with key k hashes to slot h(k) (in other words h(k) is the hash value of key k).

Problem: More than one key map to the same slot, they collide.

Széchenyi István UniversityTheory of algorithms

7

Hash functions

 Keys and hashing

 Universe of keys

 The universe of keys usually is the set N = {0, 1, 2, …} of natural numbers.

 Simply uniform hashing

 Each key is equally likely to hash to any of the m slots, independently of where any other

key has hashed to.

 A good hash function satisfies (approximately) the assumption of simply uniform hashing.

 Create hash functions

 The division method: h(k)=k mod m

 A prime not too close to an exact power of 2 is often a good choice for m.

 For example: if n=2000, we could choose m=701 because it is a prime near 2000/3 but not

near any power of 2, we examine an average 3 elements in an unsuccessful search.

 The multiplication method: h(k)=⌊m(kA – ⌊kA⌋)⌋

 A is a constant in the range 0 < A < 1.

 The value of m is not critical, usually it is a power of 2.

 Universal hashing

 We choose the hash function randomly from a finite collection of hash functions.

Széchenyi István UniversityTheory of algorithms

8

Hash tables

Collision resolution by chaining

Collision resolution by chaining: Each hash-table slot T[j] contains a linked list of all the keys whose

hash value is j. The linked list can be either singly or doubly linked. The figure below shows doubly

linked lists because deletion is faster that way.

T

/

/

/

/

/

/

U

(universe of keys)

K

(actual

keys)

k1

k4 k5

k2

k3

k6

k7

k8

k1/ k4 /

k5/ k2 k7 /

k3 //

k8/ k6 /

Széchenyi István UniversityTheory of algorithms

9

Hash tables

CHAINED-HASH-SEARCH(T, k)

1 search for an element with key k in list T [h(k)]

CHAINED-HASH-INSERT(T, x)

1 insert x at the head of list T [h(x.key)]

CHAINED-HASH-DELETE(T, x)

1 delete x from the list T [h(x.key)]

Efficiency: Insertion is O(1) time (because it assumes that the element x being inserted is not already

present in the table). Deletion is O(1) time, if the lists are doubly linked. In the worst case of search and

deletion from a single linked list is proportional to the length of the list.

Using simple uniform hashing and the number of slots m is proportional to the number of keys

actually stored, the average running time of searching is O(1).

Széchenyi István UniversityTheory of algorithms

10

Exercises

 Illustrate the operation of CHAINED-HASH-INSERT with below given keys.

Give the hash table T after insertion of all keys in order. T is empty at the

beginning, m = 9, h(k) = k mod m.

 < 5, 28, 19, 15, 20, 33, 12, 17, 10 >

Széchenyi István UniversityTheory of algorithms

11

Open addressing

 Open addressing

 It is another way to handle collisions.

 All elements occupy the hash table itself, thus the hash table can “fill up”.

 We systematically examined, or probe, the slots of the hash table.

 The sequence of positions probed depends upon the key being inserted and the

probe number.

 The hash function: h : U× {0, 1, …, m−1} → {0, 1, …, m−1}

 Criteria: For every k key, the probe sequence <h(k, 0), h(k, 1),…, h(k, m−1)> be a

permutation of <0, 1,…, m−1>, so that every hash-table position is eventually

considered as a slot.

 Uniform hashing: The probe sequence <h(k, 0), h(k, 1),…, h(k, m−1)> of each key k is

equally likely to be any of the m! permutation of <0, 1,…, m−1>.

 Remark

 If we have to delete elements then we use chaining instead of open addressing.

Széchenyi István UniversityTheory of algorithms

12

Open addressing

HASH-INSERT(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T [j] == NIL

5 T [j] = k

6 return j

7 else

8 i = i+1

9 until i == m

10 error „hash table overflow”

Remark: It is assumed that the elements in the hash table T are keys with no satellite information. The

key k is identical to the element containing key k.

Széchenyi István UniversityTheory of algorithms

13

Open addressing

HASH-SEARCH(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T [j] == k

5 return j

6 i = i+1

7 until T [j] == NIL or i == m

8 return NIL

Efficiency: Given an open-address hash table with load factor α=n/m<1, assuming uniform hashing,

the expected number of probes in an unsuccessful search is at most 1/(1−α), and in a successful

search is at most (1/ α) ln (1/(1−α)). For example: α=1/2, 2 and 1.38; α=9/10, 10 and 2.55.

Széchenyi István UniversityTheory of algorithms

14

Open addressing

 Open addressing

 Assumption

 Let h’: U → {0, 1, …, m−1} be an ordinary hash function and i = 0, 1, …, m−1.

 Linear probing

 h(k, i) = (h’(k)+ i) mod m

 There are only m distinct probe sequences. Long runs of occupied slots build up,

increasing the average search time.

 Quadratic probing

 h(k, i) = (h’(k)+ c1i+ c2i
2) mod m

 There are two positive auxiliary constants c1 and c2. To make full use of the hash table,

the values of c1, c2, and m are constrained. As in linear probing, the initial probe

determines the entire sequence, only m distinct probe sequences are used.

 Double hashing

 h(k, i) = (h1(k)+ ih2(k)) mod m

 There are two auxiliary hash functions h1 and h2. The value h2(k) must be relatively prime

to the hash-table size m for the entire hash table to be searched. In double hashing m2

different probe sequences are used (but the ”ideal” scheme of uniform hashing uses m!).

Széchenyi István UniversityTheory of algorithms

15

Open addressing

Insertion by double hashing

2

3

1

4

5

6

7

8

79

69

98

72

9

10

14

0

11

12

50

h(k, i) = (h1(k)+ ih2(k)) mod m

m = 13

h1(k) = k mod 13

h2(k) = 1+(k mod 11)

Széchenyi István UniversityTheory of algorithms

16

Exercises

 Why does deleting from an open-address hash table cause problem?

 Illustrate the result of inserting below given keys (in order) into an empty hash

table using with the open addressing methods.

 < 10, 22, 31, 4, 15, 28, 17, 88, 59 >

 Linear probing (m=11)

 h(k, i) = (h’(k)+ i) mod m

 h’(k) = k mod m

 Quadratic probing (m=9, c1=1, c2=3)

 h(k, i) = (h’(k)+ c1i+ c2i
2) mod m

 h’(k) = k mod m

 Double hashing (m=11)

 h(k, i) = (h1(k)+ ih2(k)) mod m

 h1(k) = k mod m

 h2(k) = 1+(k mod (m−1))

