
Theory of algorithms (10th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

◼ The string-matching problem

◼ Notation and terminology

◼ A naive string matcher

◼ The Rabin-Karp matcher

◼ String matching with finite automata

◼ Computing the transition function

◼ Matching

◼ The Knuth-Morris-Pratt matcher

◼ Computing the prefix function

◼ Matching

◼ Exercises

Széchenyi István UniversityTheory of algorithms

3

String matching

◼ The string-matching problem

Let us assume that the text is an array T[1..n] of length n and that the pattern is an array P[1..m] of

length m ≤ n. The elements of P and T are characters drawn from a finite alphabet ∑.

Possible alphabets: ∑={0, 1}, ∑={a, b, …, z}. The character arrays P and T are often called strings of

characters.

Pattern P occurs with shift s in text T (or, equivalently, the pattern P occurs beginning at position s+1

in text T) if 0 ≤ s ≤ n−m and T[s+1..s+m]=P[1..m] (that is, if T[s+j]=P[j], for 1 ≤ j ≤ m).

If P occurs with shift s in T, then s is a valid shift, otherwise, s is an invalid shift.

The string-matching problem: to find all valid shifts of a given pattern P in a given text T.

An example of the string-matching problem

a b c a b atext T a b c a b a c

a b a apattern P
s=3

Széchenyi István UniversityTheory of algorithms

4

String matching

◼ Notation and terminology

The ∑* denotes the set of all finite-length strings formed using characters from the alphabet ∑.

The zero-length empty string, denoted ε, also belongs to ∑*.

The length of a string x is denoted | x |.

The concatenation of two strings x and y, denoted xy, has length | x |+| y | and consists of the characters

from x followed by the characters from y.

A string w is a prefix of a string x, denoted w ⊏ x, if x=wy for some string y ∈ ∑*.

A string w is a suffix of a string x, denoted w ⊐ x, if x=yw for some string y ∈ ∑*.

Notes: If w ⊏ x or w ⊐ x then | w | ≤ | x |. The empty string ε is both a suffix and a prefix of every string.

Example: ab ⊏ abcca, cca ⊐ abcca.

Let Pk denote the k-character prefix P[1..k] of the pattern P[1..m]. Thus, P0 = ε and Pm = P[1..m] = P.

Let Tk denote the k-character prefix T[1..k] of the text T[1..n].

The string-matching problem (using this notation): to find all shifts s in the range 0 ≤ s ≤ n−m such

that P ⊐ Ts+m.

Széchenyi István UniversityTheory of algorithms

5

String matching

NAIVE-STRING-MATCHER(T, P)

1 n = T.length

2 m = P.length

3 for s = 0 to n−m

4 if P[1..m] == T[s+1..s+m]

5 write „Pattern occurs with shift ”, s

Efficiency: It takes time O((n−m+1)m). The running time equals the matching time because it requires

no preprocessing.

This brute-force algorithm is inefficient because it entirely ignores information gained about the text

for one value of s when it considers other values of s. For example, if P = aaab and we find that

s = 0 is valid, then none of the shifts 1, 2, or 3 are valid, since P[4] = b.

In our pseudocode, we allow two equal-length strings to be compared for equality as a primitive

operation.

If the strings are compared from left to right and the comparison stops when a mismatch is discovered,

we assume that the time taken by such a test is a linear function of the number of matching

characters discovered.

To be precise, the test x == y is assumed to take time Θ(t+1), where t is the length of the longest string

z such that z ⊏ x and z ⊏ y.

Széchenyi István UniversityTheory of algorithms

6

String matching

The operation of NAIVE-STRING-MATCHER

a c a a b c

a a b
s=3

a c a a b c

aa b
s=0

a c a a b c

a a b
s=1

a c a a b c

a a b
s=2

Széchenyi István UniversityTheory of algorithms

7

Exercises

◼ What valid shift values s are the results of NAIVE-STRING-MATCHER for

the pattern P=0001 in the text T=000010001010001?

◼ Suppose that all characters in the pattern P are different. Show how to

accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-character

text T.

Széchenyi István UniversityTheory of algorithms

8

String matching

Let us assume that ∑={0, 1, 2, …, 9}, so that each character is a decimal digit. We can then view a

string of k consecutive characters as representing a length-k decimal number.

Given a pattern P[1..m], let p denote its corresponding decimal value. In a similar manner, given a text

T[1..n], let ts denote the decimal value of the length-m substring T[s+1..s+m], for s=0, 1, 2, ..., n−m.

Certainly, ts=p if and only if T[s+1..s+m] = P[1..m], thus, s is a valid shift if and only if ts=p.

We can compute p in time Θ(m) using Horner’s rule:

p=P[m]+10(P[m−1]+10(P[m−2]+…+10(P[2]+10(P[1])…).

Similarly, t0 can be computed from T[1..m] in time Θ(m).

The remaining values t1, t2, …, tn−m can be computed in time Θ(n−m) , as ts+1 can be computed from ts

in constant time, since:

ts+1= 10(ts−10m−1T[s+1])+T[s+m+1].

Therefore, all occurrences of the pattern P[1..m] in the text T[1..n] can be found with Θ(m)

preprocessing time and Θ(n−m+1) matching time.

Example: If m=5 and ts=31415, then we wish to remove the high-order digit T[s+1]=3 and bring in the

new low-order digit (suppose it is T[s+5+1]=2) to obtain

ts+1= 10(31415−10000·3)+2 = 14152.

Széchenyi István UniversityTheory of algorithms

9

String matching

Problem: p and ts may be too large to work with conveniently.

Solution: computing p and the ts values modulo a suitable modulus q.

In general, with a d-ary alphabet {0, 1, …, d−1}, we choose q so that dq fits within a computer word.

Computing:

ts+1= 10(ts−10m−1T[s+1])+T[s+m+1] (Decimal alphabet)

ts+1= (d(ts−T[s+1]h)+T[s+m+1]) mod q, (d-ary alphabet and modulo q)

where h = d m−1 (mod q) is the value of the digit „1” in the high-order position of an m-digit text

window.

Problem: ts ≡ p (mod q) does not imply that ts= p. On the other hand, if the equation is not satisfied,

then we definitely have that ts ≠ p, so that shift s is invalid.

Solution: Any shift s for which ts ≡ p (mod q) must be tested further to see whether s is really valid or

we just have a spurious hit. This additional test explicitly checks the condition

P[1..m] = T[s+1..s+m].

If q is large enough, then spurious hits expectedly occur infrequently enough that the cost of the extra

checking is low.

Széchenyi István UniversityTheory of algorithms

10

String matching

RABIN-KARP-MATCHER(T, P, d, q)

1 n = T.length

2 m = P.length

3 h = d m−1 mod q

4 p = 0

5 t0 = 0

6 for i = 1 to m // preprocessing

7 p = (dp+P[i]) mod q

8 t0 = (dt0+T[i]) mod q

9 for s = 0 to n−m // matching

10 if p == ts

11 if P[1..m] == T[s+1..s+m]

12 write „Pattern occurs with shift ”, s

13 if s < n−m

14 ts+1 = (d(ts−T[s+1]h)+T[s+m+1]) mod q

Efficiency: It takes Θ(m) preprocessing time, and its matching time is O((n−m+1)m).

Remarks: If the expected number of valid shifts is small (O(1)) and we choose the prime q to be larger
than the length of the pattern, then we can expect O(n) matching time.

Széchenyi István UniversityTheory of algorithms

11

String matching

The operation of RABIN-KARP-MATCHER

3 1 4 1 5 2 6 7

mod 13

2 3 5 9 0 2 3 9 9 2 1

7

3 1 4 1 5 2

7 8

14152 ≡ (31415 − 3 · 10000) · 10 + 2 (mod 13)

 ≡ (7 − 3 · 3) · 10 + 2 (mod 13)

 ≡ 8 (mod 13)

old

high-order

digit

new

low-order

digit

old

high-order

digit

new

low-order

digitshift

3 1 4 1 5 2 6 7

...

2 3 5 9 0 2 3 9 9 2 1

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

8 4 5 10 11 7 9 118 9 3 11 0 1

mod 13......

spurious

hit

valid

match

Széchenyi István UniversityTheory of algorithms

12

Exercises

◼ Can the indices of t be omitted in RABIN-KARP-MATCHER?

◼ What is the worst case of RABIN-KARP-MATCHER?

◼ Working modulo q=11, how many spurious hits does the RABIN-KARP-

MATCHER encounter in the text T=314159265 when looking for the pattern

P=26?

Széchenyi István UniversityTheory of algorithms

13

String matching

A finite automaton M is a 5-tuple (Q, q0, A, Σ, δ), where

◼ Q is a finite set of states,

◼ q0 ∈ Q is the start state,

◼ A Q is a distinguished set of accepting states,

◼ Σ is a finite input alphabet,

◼ δ is a function from Q × Σ into Q, called the transition function of M.

The operation of a finite automaton:

◼ The finite automaton begins in state q0.

◼ It reads the characters of its input string one at a time.

◼ If the automaton is in state q and reads input character a, it moves (“makes a transition”) from state

q to state δ(q, a).

◼ Whenever its current state q is a member of A, the machine M has accepted the string read so far.

An input that is not accepted is rejected.

Széchenyi István UniversityTheory of algorithms

14

String matching

A simple two-state finite automaton

A finite automaton M induces a function ø, called the final-state function:

ø : Σ* → Q , ø(w) is the state M ends up in after scanning the string w.

M accepts a string w if and only if ø(w) ∈ A.

The recursive definition of ø with the transition function δ:

ø(ε) = q0,

ø(wa) = δ(ø(w), a) (w ∈ Σ*, a ∈ Σ).

b

a1

a

input

0

0 0

b

10

a

b

state

0

1

The transition function δ The state-transition diagram

Széchenyi István UniversityTheory of algorithms

15

String matching

For a given pattern P, a string-matching automaton is constructed in a preprocessing step before using

it to search the text string:

◼ An auxiliary function σ, called the suffix function is defined corresponding to pattern P[1..m] .

◼ σ : Σ* → {0, 1, …, m}, such that σ(x) is the length of the longest prefix of P that is also a

suffix of x: σ(x) = max{k: Pk ⊐ x}.

◼ Example: If P=ab, then σ(ε)=0, σ(ccaca)=1, σ(ccab)=2.

◼ Properties of σ:

◼ For a pattern P of length m, we have σ(x)=m if and only if P ⊐ x.

◼ If x ⊐ y, then σ(x) ≤ σ(y).

◼ The state set Q is {0, 1, …, m}. The start state q0 is state 0, and state m is the only accepting state.

◼ The transition function δ is defined by the following equation, for any state q and character a:

δ(q, a) = σ(Pq a)

Remark: It comes from that the automaton maintains the following invariant: ø(Ti) = σ(Ti).

Széchenyi István UniversityTheory of algorithms

16

String matching

COMPUTE-TRANSITION-FUNCTION(P, ∑)

1 m = P.length

2 for q = 0 to m

3 for each character a ∈ ∑

4 k = min(m+1, q+2)

5 repeat

6 k = k−1

7 until Pk⊐ Pq a

8 δ(q, a) = k

9 return δ

Efficiency: The running time is O(m3|∑|), because the outer loops contribute a factor of m|∑|, the inner

repeat loop can run at most m+1 times, and the test Pk⊐ Pq a on line 7 can require comparing up

to m characters.

Remark: δ can be computed in O(m|∑|) time (by utilizing some cleverly computed information about

the pattern P).

Széchenyi István UniversityTheory of algorithms

17

Exercises

◼ Give the transition function δ and the state-transition diagram of the string-

matching automaton for the pattern P=aabab over the alphabet ∑={a, b}.

Széchenyi István UniversityTheory of algorithms

18

String matching

FINITE-AUTOMATON-MATCHER(T, δ, m)

1 n = T.length

2 q = 0

3 for i = 1 to n

4 q = δ(q, T[i])

5 if q == m

6 write „Pattern occurs with shift ”, i−m

Efficiency: The running time on a text string of length n is Θ(n).

Summarizing: With the improved procedure for computing δ, all occurrences of a length-m pattern in

a length-n text over an alphabet ∑ can be found with O(m|∑|) preprocessing time and Θ(n)

matching time.

Széchenyi István UniversityTheory of algorithms

19

String matching

A string-matching automaton

a a

b

a

76
a

b

5
c

4
a

3
b

2
a

1
b

0
a

a

0 1 2 3 4 5 6 7

T[i] a b a b a c a b aa b

45 2 3

1 2 3 4 7 8 965 10 11i

state ø(Ti)

1

a

input

0

1 2

bstate

0

1

c

0

0

3 0

1 4

2

3

0

0

5 0

1 4

4

5

0

6

7 0

1 2

6

7

0

0

P

a

b

a

b

a

c

a

Széchenyi István UniversityTheory of algorithms

20

String matching

◼ How can we accelerate the naive string matching?

◼ Instead of shifting the pattern in the text by one, if possible „step over” the invalid shifts.

◼ When we check a shift, we do not examine again the matched characters that we have already

examined before.

◼ In general, it is useful to know the answer to the following question:

◼ Given that pattern characters P[1..q] match text characters T[s+1..s+q], what is the least shift

s’>s such that for some k < q,

P[1..k]=T[s’+1..s’+k], where s’+k=s+q?

◼ In other words, knowing that Pq⊐ Ts+q, we want the longest proper prefix Pk of Pq that is also a

suffix of Ts+q.

◼ s’=s+q−k is the first shift after s that is not necessarily invalid.

◼ In the best case, k = 0, so that s’=s+q, and we immediately rule out shifts s+1, s+2, …,

s+q−1.

◼ In any case, at the new shift s’ we don’t need to compare the first k characters of P with the

corresponding characters of T, since they match.

◼ We can precompute the prefix function π for a pattern P that encapsulates knowledge about how

the pattern matches against shifts of itself.

◼ With function π we can avoid testing useless shifts in the naive pattern-matching algorithm

and precomputing the full transition function δ like for a string-matching automaton.

Széchenyi István UniversityTheory of algorithms

21

String matching

The prefix function for a pattern P[1..m] is the function π : {1, 2, …, m} → {0, 1, …, m−1} such that

π[q] = max{k: k < q and Pk⊐ Pq}.

That is, π[q] is the length of the longest prefix of P that is a proper suffix of Pq.

COMPUTE-PREFIX-FUNCTION(P)

1 m = P.length

2 let π[1..m] be a new array

3 π[1] = 0

4 k = 0

5 for q = 2 to m

6 while k > 0 and P[k+1] ≠ P[q]

7 k = π[k]

8 if P[k+1] == P[q]

9 k = k+1

10 π[q] = k

11 return π

Efficiency: It takes time Θ(m), as the inner loop requires O(1) time (see amortized analysis in the

textbook).

Széchenyi István UniversityTheory of algorithms

22

b a b a b a

c a
s’=s+2

P

a b c b a bb a c

b aa b a

T

k

s’=s+(q−π[q])

String matching

The prefix function π and its using

b a b a b a

c a
s

P

a b c b a bb a c

a b a b a

T

q

a b a b a

Pka b a

Pq

0 0 1 2 1

P[i] a b a b a c a

03

1 2 3 4 765i

π[i]

Széchenyi István UniversityTheory of algorithms

23

Exercises

◼ Give the prefix function π for the pattern P=ababbabbababbababbabb over

alphabet ∑={a, b}.

Széchenyi István UniversityTheory of algorithms

24

String matching

KMP-MATCHER(T, P)

1 n = T.length

2 m = P.length

3 π = COMPUTE-PREFIX-FUNCTION(P)

4 q = 0 // number of characters matched

5 for i = 1 to n // scan the text from left to right

6 while q > 0 and P[q+1] ≠ T[i]

7 q = π[q] // next character does not match

8 if P[q+1] == T[i]

9 q = q+1 // next character matches

10 if q == m // is all of P matched?

11 write „Pattern occurs with shift ”, i−m

12 q = π[q] // look for the next match

Efficiency: Preprocessing (computing π) takes time Θ(m), the matching time is Θ(n) (as the inner loop

requires O(1) time, similarly as in the previous algorithm).

Remark: The abbreviation KMP is given by the initials of the names Knuth-Morris-Pratt.

Széchenyi István UniversityTheory of algorithms

25

Exercises

◼ What values are assigned to variable q in running of KMP-MATCHER, if

T=bbababababba, P=ababa and ∑={a, b}?

Széchenyi István UniversityTheory of algorithms

26

String matching

Efficiency of the string-matching algorithms

Algorithm Preprocessing time Matching time

Naive 0 O((n−m+1)m)

Rabin-Karp Θ(m) O((n−m+1)m)

Finite automaton O(m|∑|) Θ(n)

Knuth-Morris-Pratt Θ(m) Θ(n)

	1. dia: Theory of algorithms (10th lecture)
	2. dia: Outline
	3. dia: String matching
	4. dia: String matching
	5. dia: String matching
	6. dia: String matching
	7. dia: Exercises
	8. dia: String matching
	9. dia: String matching
	10. dia: String matching
	11. dia: String matching
	12. dia: Exercises
	13. dia: String matching
	14. dia: String matching
	15. dia: String matching
	16. dia: String matching
	17. dia: Exercises
	18. dia: String matching
	19. dia: String matching
	20. dia: String matching
	21. dia: String matching
	22. dia: String matching
	23. dia: Exercises
	24. dia: String matching
	25. dia: Exercises
	26. dia: String matching

