“#®" Theory of algorithms (stn lecture)

Pal Pusztai
pusztai@sze.hu

O Theory of algorithms Széchenyi Istvan University

Outline

m Greedy algorithms

m Greedy algorithms versus dynamic programming
Knapsack problems

= An activity-selection problem

= Designing a binary character code
Huffman code

= Approximation algorithms
The set-covering problem

m EXxercises

lra

o®" Theory of algorithms Széchenyi Istvan University

Greedy algorithms

m Greedy algorithms versus dynamic programming

A dynamic programming algorithm makes a choice at each step and the choice depends on the
solutions to subproblems. It works in a bottom-up manner, progressing from smaller subproblems
to larger subproblems.

A greedy algorithm makes choice that seems best at the moment and then solve the subproblem that
remains. It works in a top-down fashion, making one greedy choice after another, reducing each
given problem instance to a smaller one.

m The choice may depend on choices so far, but it cannot depend on any future choices or on the solutions to
subproblems.

m This heuristic strategy does not always produce an optimal solution, but sometimes it does.
The greedy-choice property: a globally optimal solution can be reached by making locally optimal
(greedy) choices.
The optimal-substructure property: an optimal solution to the problem contains within it optimal
solutions to subproblems.

lra

= Theory of algorithms Széchenyi Istvan University

Greedy algorithms

m Knapsack problems

The 0-1 knapsack problem: A thief robbing a store finds n items. The ith item is worth v; dollars and
weighs w; pounds, where v; and w; are integers. The thief wants to take as valuable a load as possible,
but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take?

The fractional knapsack problem: the setup is the same, but the thief can take fractions of items, rather
than having to make a binary (0-1) choice for each item.

Both knapsack problems exhibit the optimal-substructure property.

The 0-1 knapsack problem does not exhibit the greedy-choice property, thus it can not be solved with
greedy strategy, but it can be solved with dynamic programming.

The fractional knapsack problem exhibits the greedy-choice property, thus it can be solved with greedy
strategy (with greedy choice of v;/w;).

lra
~

O Theory of algorithms Széchenyi Istvan University
Greedy algorithms

4 N 4 N
20
item 3 — =21 $80
em 30 | $120 30
item 2 Y — +
50 . 30 | $120
item 1 - 20 | $100 20| $100
30 +
20 20| s$100 p— 7 - <7
10| $60 10 $60 10| $60
N A A / A / N A
$60 $100 $120 knapsack =$220 =$160 =$180 =$240

A knapsack problem

lra

= Theory of algorithms Széchenyi Istvan University

Greedy algorithms

m An activity-selection problem

There is given a set S={a,, a,, ..., a,} of n proposed activities that wish to use a resource, such as a
lecture hall, which can serve only one activity at a time.

Each activity a; has a start time s; and a finish time f;, where 0 <s; < f; < .

If selected, activity a; takes place during the half-open time interval [s;, f,).

Activities a; and a; are compatible if the intervals [s;, f;) and [s;, f;) do not overlap. That is, if s; > f; or
5;=f;.

The activity-selection problem: to select a maximum-size subset of mutually compatible activities.

lra

o Theory of algorithms Széchenyi Istvan University
Greedy algorithms

GREEDY-ACTIVITY-SELECTORC(S, f)

1 n=s.length

2 A={a}

3 k=1

4 form=2ton

5 if sfm] > f[k]

6 A=AU{a .}
7 k=m

8 return A

Criteria: The data of activities are stored in s and f arrays and they are sorted in monotonically
increasing order of finish time: f, <f,... <f.

Remark: Since the activities are examined in order of monotonically increasing finish time, f, is
always the maximum finish time of any activity in A, that is, f, = max{f;: a, € A}.

Efficiency: A set of n activities is scheduled in ®(n) time.

Theorem: Consider any nonempty subproblem S,, and let a., be an activity in S, with the earliest finish
time. Then a,, is included in some maximum-size subset of mutually compatible activities of S,.

Corollary: The GREEDY-ACTIVITY-SELECTOR produces an optimal solution of the activity
selection problem.

lra

O Theory of algorithms Széchenyi Istvan University

Greedy algorithms

k2

1

3
i Si f; e

1
1 1 4 4

—
2 3 5 s

1 7
3 0 6

o 6
4 5 7 1 4
K 7

5 3 8 1 4
6 5 9 e a

1 4
7 6 10 ~ 9

1 4 8
8 8 11 10

1 4 [s ——
9 8 12

/. 11
0 2 13 [& 2
11 12 14 1 4 8 11
» time
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The operation of GREEDY-ACTIVITY-SELECTOR

lra

O Theory of algorithms Széchenyi Istvan University

Exercises

m \What is the result of the GREEDY-ACTIVITY-SELECTOR if we have
activities with below given s and f?

m s=< §, 3, 5 12, 3, 6,10, 6,17 >
m f=<12, 6, 8,14, 7, 9,15, 7,20>

lra

o®" Theory of algorithms Széchenyi Istvan University
Greedy algorithms

m Designing a binary character code

How can a file of characters be stored compactly in which each character is represented by a unique
binary string, which we call a codeword?

Prefix codes: a codes in which no codeword is also a prefix of some other codeword. The prefix codes
are desirable because they simplify decoding. A prefix code can always achieve the optimal data
compression among any character code.

Encoding is always simple for any binary character code; we just concatenate the codewords
representing each character of the file.

Decoding needs a convenient representation for the prefix code so that we can easily pick off the initial
codeword. A binary tree whose leaves are the given characters provides one such representation.
The codeword for a character is given by the simple path from the root to that character.

An optimal code for a file is always represented by a full binary tree, in which every nonleaf node
has two children.

If C is the alphabet from which the characters are drawn and all character frequencies are positive, then
the tree for an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and
exactly |C|-1 internal nodes.

10

lra

= Theory of algorithms

Greedy algorithms

Frequency (in thousands)

Fixed-length codeword

Variable-length codeword

45 13 12 16 9
000 001 010 011 100

0 101 100 111 1101

a:45

(300,000 bits)

(224,000 bits)

lra

A character-coding problem

d:16

Széchenyi Istvan University

11

= Theory of algorithms Széchenyi Istvan University

Greedy algorithms

HUFFMAN(C)

1 n=|C|

2 Q=C

3 fori=1ton-1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right =y = EXTRACT-MIN(Q)

7 z.freq = x.freq +y. freq

8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q) // return the root of the tree

Remark: Each character ¢ € C is an object with an attribute c.freq giving its frequency.

Efficiency: If the min-priority queue Q is implemented as a binary min-heap, then each heap operation
(EXTRACT-MIN, INSERT) requires time O(lg n). Thus, the total running time of HUFFMAN on
a set of n characters is O(n Ig n).

12

lra

O Theory of algorithms Széchenyi Istvan University

Greedy algorithms

£5 9 12| | b13| | d&16| | a4s 12| | b3 d:16 || a45
0 1

a:45

@ d:16 a:45
0 1 0 1 0 1

f:5 e9 c:12 b:13 c:12 b:13

d:16

a:45
a:45
1
d:16
The operation of HUFFMAN 13

lra

= Theory of algorithms Széchenyi Istvan University

Exercises

m What tree is the result of HUFFMAN with the below given input data? Give
the total number of bits that is necessary to code the entire file with the fixed-
length code and Huffman code.

m a:23,b:15,c¢:12,d:13,e:6,f:10,9: 4, h: 17

m What is an optimal Huffman code for the following set of frequencies, based
on the first Fibonacci numbers:

m oa:l,b:1,c:2,d:3,e:5,1:8 ¢g: 13, h: 21, ...

14

lra

o®" Theory of algorithms Széchenyi Istvan University
Greedy algorithms

m Approximation algorithms
We call an algorithm that returns near-optimal solutions an approximation algorithm.

Suppose that each potential solution of an optimization problem has a positive cost, and we wish to find
a near-optimal solution.

Depending on the problem, an optimal solution as one with maximum possible cost or one with
minimum possible cost; that is, the problem may be either a maximization or a minimization
problem.

We say that an algorithm for a problem has an approximation ratio of p(n) if, for any input of size n,
the cost C of the solution produced by the algorithm is within a factor of p(n) of the cost C”* of an
optimal solution:

max(C/C”, C*/C) < p(n).
If an algorithm achieves an approximation ratio of p(n), we call it a p(n)-approximation algorithm.

Remark: if the p(n) function is independent from n, then approximation ratio is p and the algorithm is
called a p-approximation algorithm.

15

lra

= Theory of algorithms Széchenyi Istvan University

Greedy algorithms

m The set-covering problem
An instance (X, #) of the set-covering problem consists of a finite set X and a family _#’ of subsets of
X, such that every element of X belongs to at least one subset in _#~

X=Us #S.
We say that a subset S €_# covers its elements.
The problem is to find a minimum size subset ¢ < _#whose members cover all of X:
X=Ug_~S.
Example: Suppose that X represents a set of skills that are needed to solve a problem and that we have a

given set of people available to work on the problem. We wish to form a committee, containing as
few people as possible, such that for every requisite skill in X, at least one member of the committee

has that skill.

16

lra

o Theory of algorithms Széchenyi Istvan University
Greedy algorithms

GREEDY-SET-COVER(X,_#)

1 U=X

2 C=0

3 whileU+#0

4 select an S € _# that maximizes |[SN U |
5 U=U-S

6 C = CU{S}

7 return C

Efficiency: Since the iteration runs at most min(|X|, |_#]) times and the loop body can be implement in
time O(|X||_#1), a simple implementation runs in time O(|X||_#| min(|X|, |_#])).

Let us denote the dth harmonic number H(d)=3 -, 4 1/i.
Theorem: GREEDY-SET-COVER is a polynomial-time p(n)-approximation algorithm, where
p(n)=H(max{[3]: S € 7}).
Corollary: Since }’ =y 41/i<Ind +1, GREEDY-SET-COVER is a polynomial-time (In [X|+1)-
approximation algorithm.

17

lra

O Theory of algorithms Széchenyi Istvan University
Greedy algorithms

N N N

.| . 3
oNaons
C B :) :

An instance of the set-covering problem

18

lra

O Theory of algorithms Széchenyi Istvan University

Exercises
m What is the result of GREEDY-SET-COVER with the sets of the previous
slide?

m Consider each of the below given words as a set of letters. Give the result of

GREEDY-SET-COVER if the ties are broken in favor of the word that appears
first in the dictionary.

m {arid, dash, drain, heard, lost, nose, shun, slate, snare, thread}

lra

19

