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Number-theoretic algorithms

Number theory was once viewed as a beautiful but largely useless subject in pure mathematics.

Today number-theoretic algorithms are used widely, due in large part to the invention of cryptographic 

schemes based on large prime numbers.

These schemes are feasible because we can find large primes easily, and they are secure because we 

do not know how to factor the product of large primes.

The RSA public-key cryptosystem: Rivest-Shamir-Adleman (1978)
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Mathematical background

 Divisibility and divisors

Let Z = {…, −2 , −1, 0, 1, 2, …} be the set of integers. 

The notation d | a means (a, d ∈ Z, d ≠ 0) that a=kd for some integer k.

If d | a and d > 0, we say that d is a divisor of a, and a is a multiple of d.

Remarks: Note that d | a if and only if −d | a, so that no generality is lost by defining the divisors to be 

positive, with the understanding that the negative of any divisor of a also divides a. A divisor of a 

nonzero integer a is at least 1 but not greater than | a |.

For example, the divisors of 12 are 1, 2, 3, 4, 6, and 12.

Every positive integer a is divisible by the trivial divisors 1 and a. The nontrivial divisors of a are the 

factors of a. 

For example, the factors of 12 are 2, 3, 4, and 6.
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Mathematical background

 Prime and composite numbers

An integer a > 1 whose only divisors are the trivial divisors 1 and a is a prime number or, more 

simply, a prime. Primes have many special properties and play a critical role in number theory. 

For example: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …

An integer a > 1 that is not prime is a composite number or, more simply, a composite.

For example: 15 is composite, because 3 | 15.

We call the integer 1 a unit, and it is neither prime nor composite.

Remark: The integer 0 and all negative integers are neither prime nor composite.



Széchenyi István UniversityTheory of algorithms

6

Mathematical background

 Remainders and modular equivalence

The division theorem : For any integer a and any positive integer n, there exist unique integers q and r

such that 0 ≤ r < n and a=qn+r. 

The value q=⌊a / n⌋ is the quotient of the division, and the value r=a mod n is the remainder (or 

residue) of the division. We have that n | a if and only if a mod n=0.

If a mod n = b mod n, then a is equivalent (or congruent) to b modulo n. 

Notation: a ≡ b (mod n).

For example: 61 ≡ 6 (mod 11), −13 ≡ 22 (mod 5).

Properties: If a ≡ a’ (mod n) and b ≡ b’ (mod n), then a+b ≡ a’+b’ (mod n) and ab ≡ a’b’ (mod n). 

Corollary: ab ≡ a(b mod n) (mod n), since b ≡ b mod n (mod n).
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Mathematical background

 Equivalence classes

We can partition the integers into n equivalence classes according to their remainders modulo n. 

The equivalence class modulo n containing an integer a is

[a]n = {a + kn: k ∈ Z}.

For example: [3]7={…, −11, −4, 3, 10, 17, …}, we can also denote this set by [−4] 7 or [10] 7,. 

Writing a  [b]n is the same as writing a ≡ b (mod n).

The set of all such equivalence classes is

Zn = {[a]n : 0 ≤ a ≤ n−1}.

Remarks: The definition Zn = {0, 1, …, n−1} is also used where 0 represents [0]n, 1 represents [1]n, 

and so on; each class is represented by its smallest nonnegative element. You should keep the 

underlying equivalence classes in mind, however. For example, −1 is referring to [n−1]n, since −1 

≡ n−1 (mod n).
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Mathematical background

 Common divisors and greatest common divisors 

If d is a divisor of a and d is also a divisor of b, then d is a common divisor of a and b.

For example, the common divisors of 24 and 30 are 1, 2, 3, and 6. 

Properties of common divisors is that:

If d | a and d | b, then d | (a+b) and d | (a−b), more generally d | (ax+by) for any x, y integers.

If a | b, then either | a | ≤ | b | or b=0, which implies that if a | b and b | a, then              .

The greatest common divisor of two integers a and b, not both zero, is the largest of the common 

divisors of a and b; we denote it by gcd(a, b).

For example: gcd(24, 30)=6, gcd(14, 15)=1, gcd(5, 7)=1, gcd(0, 9)=9.

If a and b are both nonzero, then 1 ≤ gcd(a, b) ≤ min(| a |, | b |).

We define gcd(0, 0) to be 0.

ba 
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Mathematical background

 Common divisors and greatest common divisors

The elementary properties of the gcd function:

gcd(a, b) = gcd (b, a),

gcd (a, b) = gcd (−a, b),

gcd (a, b) = gcd (| a |, | b |),

gcd (a, 0) = | a |,

gcd (a, ka) = | a | for any k ∈ Z.

Theorem: If a and b are any integers, not both zero, then gcd(a, b) is the smallest positive element of 

the set {ax+by: x, y ∈ Z} of linear combinations of a and b.

Corollaries:

 For any integers a and b, if d | a and d | b, then d | gcd(a, b).

 For all integers a and b and any nonnegative integer n, gcd(an, bn) = n gcd(a, b).

 For all positive integers n, a, and b, if n | ab and gcd(a, n)=1, then n | b.

Remark: Since gcd(a, b) = gcd(| a |, | b |) in the following we assume that a and b are nonnegative 

integers. 
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Mathematical background

 Relatively prime integers

Two integers a and b are relatively prime if their only common divisor is 1, that is, if gcd(a, b)=1. 

For example: 8 and 15 are relatively prime, since the divisors of 8 are 1, 2, 4, and 8, and the divisors of 

15 are 1, 3, 5, and 15.

Theorem: For any integers a, b, and p, if both gcd(a, p)=1 and gcd(b, p)=1, then gcd(ab, p)=1.

Theorem: For all primes p and all integers a and b, if p | ab, then p | a or p | b (or both).

 The Euler’s Φ function

Let 𝐙𝑛
∗ = 𝑎 𝑛 ∈ 𝐙𝑛: gcd 𝑎, 𝑛 = 1 be the set of the elements of 𝐙𝑛 that are relatively prime to n. 

For example: 𝐙15
∗ = 1, 2, 4, 7, 8, 11, 13, 14 .

Let Φ(n) be the number of elements of 𝐙𝑛
∗ . This is the Euler’s Φ function. For example: Φ(15) = 8.

Property: 𝛷 𝑛 = 𝑛ς𝑝 ∶ 𝑝 is prime and 𝑝|𝑛 1 −
1

𝑝
. For example: 𝛷 15 = 15 1 −

1

3
1 −

1

5
=

15
2

3

4

5
= 8.

If p is prime, then 𝐙𝑝
∗ = 1, 2, 3, … , 𝑝 − 1 , and Φ(p) = p−1. 
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Exercises

 Calculate the value of Φ(n) with below given n.

 9, 30, 42, 100
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Mathematical background

 Unique factorization

Theorem: There is exactly one way to write any composite integer a as a product of the form

𝑎 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑟
𝑒𝑟, where the pi are prime, 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟, and the 𝑒𝑖 are positive integers.

For example: 60 = 22 · 3 · 5.

 Computing greatest common divisors

The gcd(a, b) can be computed for positive integers a and b from the prime factorizations of a and b.

If 𝑎 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑟
𝑒𝑟 and 𝑏 = 𝑝1

𝑓1𝑝2
𝑓2 … 𝑝𝑟

𝑓𝑟, with zero exponents being used to make the set of primes 

p1, p2, … , pr the same for both a and b, then gcd(𝑎, 𝑏) = 𝑝1
min(𝑒1,𝑓1)𝑝2

min(𝑒2,𝑓2)… 𝑝𝑟
min(𝑒𝑟,𝑓𝑟).

Remark: As factoring do not run in polynomial time, this approach does not give an efficient 

algorithm.

Theorem: For any nonnegative integer a and any positive integer b, gcd(a, b) = gcd (b, a mod b). 

Remark: Based on it an efficient algorithm can be given to calculate the greatest common divisor.
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Euclid’s algorithm

 An efficient algorithm to calculate the greatest common divisor

EUCLID(a, b)

1 if b == 0

2 return a

3 else

4 return EUCLID(b, a mod b)

For example, to compute gcd(30, 21) the below given recursive calls will produce the result:

EUCLID(30, 21) = EUCLID(21, 9) = EUCLID(9, 3) = EUCLID(3, 0) = 3

Theorem (Lamé): For any integer k ≥ 1, if a > b ≥ 1 and b < Fk+1, then the call EUCLID(a, b) makes 

fewer than k recursive calls. (Fk+1 is the k+1th Fibonacci number.)

Efficiency: The neighbor Fibonacci numbers cause the worst case. Since Fk is approximately 𝜑𝑘/ 5, 

where 𝜑 = (1 + 5)/2 = 1.61803... is the golden ratio, the number of recursive calls in EUCLID 

(thus, the running time) is O(lg b). 

Remark: Euclid describes „this” algorithm circa 300 B.C.
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Exercises

 What recursive calls are produced by EUCLID with below given input data?

 50, 35

 0, 8

 34, 21
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The extended form of Euclid’s algorithm

 The extension of Euclid’s algorithm

We extend the algorithm to compute the integer coefficients x and y such that:

d = gcd(a, b) = ax+by.

The new algorithm takes as input a pair of nonnegative integers and returns a triple of the form (d, x, y)

that satisfies the equation.

EXTENDED-EUCLID(a, b)

1 if b == 0

2 return (a, 1, 0)

3 (d’, x’, y’) = EXTENDED-EUCLID(b, a mod b)

4 (d, x, y) = (d’, y’, x’ − ⌊a / b⌋ y’) 

5 return (d, x, y)

Remark: Note that x and y may be zero or negative.

Efficiency: Since the number of recursive calls made in EUCLID is equal to the number of recursive 

calls made in EXTENDED-EUCLID, the running times are the same, to within a constant factor. 

That is, for a > b > 0, the number of recursive calls is O(lg b).
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The extended form of Euclid’s algorithm

The call EXTENDED-EUCLID(99, 78) returns (3, −11, 14), so that 

gcd(99, 78) = 3 = 99 · (−11) + 78 · 14.

a b ⌊a / b⌋ d x y

99 78 1 3 −11 14

78 21 3 3 3 −11

21 15 1 3 −2 3

15 6 2 3 1 −2

6 3 2 3 0 1

3 0 − 3 1 0

The operation of EXTENDED-EUCLID
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Exercises

 Compute the values (d, x, y) that the EXTENDED-EUCLID returns with 

below given input data.

 30, 75

 899, 493



Széchenyi István UniversityTheory of algorithms

18

Modular linear equations

 Solving modular linear equations

Problem: Find solutions to the equation ax ≡ b (mod n), where b integer, a > 0 and n > 0 integers.

Remark: The equation may have 0, 1, or more than 1 such solution.

Properties: 

 The equation ax ≡ b (mod n) is solvable for the unknown x if and only if d | b, where d = gcd(a, n).

 The equation ax ≡ b (mod n) either has d distinct solutions modulo n, where d = gcd(a, n), or it has 

no solutions.

 Let d = gcd(a, n) and suppose that d = ax’+ny’ for some integers x’, y’. If d | b, then the equation   

ax ≡ b (mod n) has as one of its solutions the value x0, where x0 = x’ (b / d) mod n.

 Suppose that the equation ax ≡ b (mod n) is solvable (that is, d | b, where d = gcd(a, n)) and that x0

is any solution to this equation. Then, this equation has exactly d distinct solutions, modulo n, given 

by xi = x0 + i (n / d) mod n, for i = 0, 1, 2,…, d−1.

 For any n > 1, if gcd(a, n) = 1, then the equation ax ≡ b (mod n) has a unique solution, modulo n.

Remark: If b=1, the x we are looking for is a multiplicative inverse of a, modulo n. If gcd(a, n) = 1, 

then the unique solution to the equation ax ≡ 1 (mod n) is the integer x returned by EXTENDED-

EUCLID, since the equation gcd(a, n) = 1 = ax+ny implies ax ≡ 1 (mod n).
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Modular linear equations

MODULAR-LINEAR-EQUATION-SOLVER(a, b, n)

1 (d, x’, y’) = EXTENDED-EUCLID(a, n)

2 if d | b

3 x0 = x’(b / d) mod n

4 for i = 0 to d−1

5 write (x0 + i (n / d)) mod n

6 else

7 write „No solutions”

Efficiency: The running time is O(lg n + gcd(a, n)).
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Exercises

 Find all solutions to the below given equations.

 14x ≡ 30 (mod 100)

 35x ≡ 10 (mod 50)


