
Theory of algorithms (5th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Binary search trees

 Definition

 Tree walks

 Querying a binary search tree

 Insertion and deletion

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Binary search trees

The binary trees can be represented by a linked data structure in which each node is an object.

In addition to a key and satellite data, each node contains attributes left, right, and p that point to the

nodes corresponding to its left child, its right child, and its parent, respectively.

The binary-search-tree property: Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then y.key ≤ x.key. If y is a node in the right subtree of x, then y.key ≥ x.key.

The search tree data structure supports many dynamic-set operations, including SEARCH, MINIMUM,
MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and DELETE. Thus, we can use a search
tree both as a dictionary and as a priority queue.

Binary search trees

2

3

5

5

7

8

5

3 7

52 8

Széchenyi István UniversityTheory of algorithms

4

Binary search trees

INORDER-TREE-WALK(x)

1 if x ≠ NIL

2 INORDER-TREE-WALK(x.left)

3 write x.key

4 INORDER-TREE-WALK(x.right)

Remarks:

 To print all the elements in a binary search tree T, we call INORDER-TREE-WALK(T.root).

 The inorder tree walk prints the key of the root of a subtree between printing the values in its left

subtree and printing those in its right subtree.

 A preorder tree walk prints the key of the root before the values in either subtree, and a postorder

tree walk prints the root after the values in its subtrees.

Theorem: If x is the root of an n-node subtree, then the call INORDER-TREE-WALK(x) takes Θ(n)

time.

Efficiency: It takes Θ(n) time to walk an n-node binary search tree.

Széchenyi István UniversityTheory of algorithms

5

Exercises

 Draw binary search trees of heights 2, 3, 4, 5, and 6 with the below given keys.

 {1, 4, 5, 10, 16, 17, 21}

 What is the order of the printed keys of the below given tree by an algorithm

with preorder tree walk, and what is it with a postorder tree walk?

15

6 18

207

132

3

4

9

17

Széchenyi István UniversityTheory of algorithms

6

Binary search trees

TREE-SEARCH(x, k)

1 if x == NIL or k == x.key

2 return x

3 if k < x.key

4 return TREE-SEARCH(x.left, k)

5 else

6 return TREE-SEARCH(x.right, k)

ITERATIVE-TREE-SEARCH(x, k)

1 while x ≠ NIL and k ≠ x.key

2 if k < x.key

3 x = x.left

4 else

5 x = x.right

6 return x

Efficiency: The running time is O(h) on a binary search tree of height h.

Széchenyi István UniversityTheory of algorithms

7

Exercises

 Suppose that we have whole numbers between 1 and 1000 in a binary search

tree, and we want to search for the number 363. Which of the following

sequences could not be the sequence of nodes examined?

 2, 252, 401, 398, 330, 344, 397, 363

 924, 220, 911, 244, 898, 258, 362, 363

 925, 202, 911, 240, 912, 245, 363

Széchenyi István UniversityTheory of algorithms

8

Binary search trees

TREE-MINIMUM(x)

1 while x.left ≠ NIL

2 x = x.left

3 return x

TREE-MAXIMUM(x)

1 while x.right ≠ NIL

2 x = x.right

3 return x

TREE-SUCCESSOR(x)

1 if x.right ≠ NIL

2 return TREE-MINIMUM(x.right)

3 y = x.p

4 while y ≠ NIL and x == y.right

5 x = y

6 y = y.p

7 return y

Efficiency: The running time of each operation is O(h) on a binary search tree of height h.

Széchenyi István UniversityTheory of algorithms

9

Binary search trees

TREE-INSERT(T, z)

1 y = NIL

2 x = T.root

3 while x ≠ NIL

4 y = x

5 if z.key < x.key

6 x = x.left

7 else

8 x = x.right

9 z.p = y

10 if y == NIL

11 T.root = z // tree T was empty

12 else

13 if z.key < y.key

14 y.left = z

15 else

16 y.right = z

Efficiency: The running time is O(h) on a binary search tree of height h.

Széchenyi István UniversityTheory of algorithms

10

Binary search trees

Inserting an item into a binary search tree.

12

5 18

92 15 19

1713

Széchenyi István UniversityTheory of algorithms

11

Exercises

 Illustrate the operation of TREE-INSERT with to below given keys. We insert

these keys into an initially empty binary search tree.

 2, 4, 5, 7, 1, 6, 3

 Give an order of the previous keys that results the tree with minimum height.

 What is the asymptotical ”behavior” of TREE-INSERT with inserting the

same keys into a tree by n times?

Széchenyi István UniversityTheory of algorithms

12

Binary search trees

TRANSPLANT(T, u, v)

1 if u.p == NIL

2 T.root = v

3 else

4 if u == u.p.left

5 u.p.left = v

6 else

7 u.p.right = v

8 if v ≠ NIL

9 v.p = u.p

This auxiliary procedure replaces the subtree rooted at node u with the subtree rooted at node v. Node

u’s parent becomes node v’s parent, and u’s parent ends up having v as its appropriate child.

Efficiency: The running time is O(1).

Széchenyi István UniversityTheory of algorithms

13

Binary search trees

TREE-DELETE(T, z)

1 if z.left == NIL

2 TRANSPLANT(T, z, z.right)

3 else if z.right == NIL

4 TRANSPLANT(T, z, z.left)

5 else

6 y = TREE-MINIMUM(z.right]

7 if y.p ≠ z

8 TRANSPLANT(T, y, y.right)

9 y.right = z.right

10 y.right.p = y

11 TRANSPLANT(T, z, y)

12 y.left = z.left

13 y.left.p = y

Efficiency: The running time is O(h) on a binary search tree of height h.

Széchenyi István UniversityTheory of algorithms

14

Binary search trees

z

q q

r

rNIL

Deleting a node z from a binary search tree (case a)

Széchenyi István UniversityTheory of algorithms

15

Binary search trees

15

5

123

20

10

6

13

7

2318

Deleting a node z from a binary search tree (case a)

z

15

5 16

123 20

10

6

13

7

2318

Széchenyi István UniversityTheory of algorithms

16

Binary search trees

z

q q

l

l NIL

Deleting a node z from a binary search tree (case b)

Széchenyi István UniversityTheory of algorithms

17

Binary search trees

15

5 16

123 20

6 13

7

2318

Deleting a node z from a binary search tree (case b)

z

15

5 16

123 20

10

6

13

7

2318

Széchenyi István UniversityTheory of algorithms

18

Binary search trees

y

x

l

z

NIL

q

xl

y

q

Deleting a node z from a binary search tree (case c)

Széchenyi István UniversityTheory of algorithms

19

Binary search trees

16

5

123

20

10

6

13

7

2318

Deleting a node z from a binary search tree (case c)

z15

5 16

123 20

10

6

13

7

2318

Széchenyi István UniversityTheory of algorithms

20

Binary search trees

l

z

q

l

z

q

y

xNIL

r l

y

q

x

r

y

x

rNIL

Deleting a node z from a binary search tree (case d)

Széchenyi István UniversityTheory of algorithms

21

Binary search trees

15

6 16

123 20

10

7

13 2318

Deleting a node z from a binary search tree (case d)

z

y

15

5 16

12

3 20

10

7

13

2318

6

z

y

15

5 16

123 20

10

6

13

7

2318

Széchenyi István UniversityTheory of algorithms

22

Binary search trees

When both insertion and deletion are used to create a binary search tree little is known about the

average height of it, but create it by insertion alone, the analysis becomes more tractable.

Let us given n distinct keys and we built a binary search tree with inserting the keys in random order

into an initially empty tree.

If each of the n! permutations of the input keys is equally likely then we call the tree randomly built

binary search tree.

Theorem: The expected height of a randomly built binary search tree on n distinct keys is O(lg n).

Széchenyi István UniversityTheory of algorithms

23

Exercises

 What binary search tree is built with inserting keys 4, 10, 7, 9, 15, 2, 5, 8, 6, 1, 3

into an initially empty tree? Give the trees after deleting keys 1, 5, 7, and 4.

 Is it true or not that if a node of a binary search tree has two children then its

successor has no left child and its predecessor has no right child?

 We can sort a given set of n numbers by first building a binary search tree

containing these numbers (using TREE-INSERT repeatedly to insert the

numbers one by one) and then printing the numbers by an inorder tree walk.

What are the worst-case and best-case running times for this sorting algorithm?

 Is the operation of deletion “commutative” in the sense that deleting x and then

y from a binary search tree leaves the same tree as deleting y and then x? Argue

why it is or give a counterexample.

