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Outline

◼ Heap data structure

◼ Maintaining the heap property

◼ Building a heap

◼ Heapsort

◼ Priority queues

◼ Sorting in linear time

◼ Counting sort

◼ Radix sort

◼ Bucket sort

◼ Exercises
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Heap data structure

PARENT(i)

1 return ⌊i/2⌋

LEFT(i)

1 return 2i

RIGHT(i)

1 return 2i + 1

Max-heap  property:

A[PARENT(i)] ≥ A[i],  i > 1

Min-heap property:

A[PARENT(i)] ≤ A[i],  i > 1

A max-heap as a binary tree 

and as an array
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Exercises

◼ Is the max-heap property satisfied with array A? If not, how many pairs of 

elements do violate it? 

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >

◼ Give a min-heap data structure that contains the elements of array A! 

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >
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Maintaining the heap property

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else   

6 largest = i

7 if r ≤ A.heap-size and A[r] > A[largest]

8 largest = r

9 if largest ≠ i

10 exchange A[i] with A[largest]

11 MAX-HEAPIFY(A, largest)

Criteria: The binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but that A[i] might be 

smaller than its children, thus violating the max-heap property.

MAX-HEAPIFY lets the value A[i] „float down” in the max-heap so that the subtree rooted at index i

obeys the max-heap property.

Efficiency: The running time is O(h), where h is the height of the tree (h=O(lg n), n=A.heap.size).
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Maintaining the heap property

The operation of MAX-HEAPIFY(A, 2)
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Exercises

◼ Illustrate the operation of MAX-HEAPIFY(A, 3) call with array A? Give the 

contents of the array as a binary tree after each exchange. 

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >
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Building a heap

BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 for i = ⌊A.length] /2⌋ downto 1 

3 MAX-HEAPIFY(A, i)

Efficiency: The „simple estimated” O(n lg n) upper bound is not asymptotically tight, the O(n) running 

time can be proved, thus we can build a max-heap from an unsorted array in linear time.
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Building a heap

The operation of BUILD-MAX-HEAP
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Building a heap

The operation of BUILD-MAX-HEAP
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Exercises

◼ Illustrate the operation of BUILD-MAX-HEAP with array A. Give the 

contents of the array as a binary tree after each step of the iteration. 

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >
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Heapsort

HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2 

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size−1

5 MAX-HEAPIFY(A, 1)

Efficiency: Since the call to BUILD-MAX-HEAP takes time O(n) and MAX-HEAPIFY takes O(lg n) 

the running time is O(n lg n).
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Heapsort

The operation of HEAPSORT
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Heapsort

The operation of HEAPSORT

i

8

7 3

24 1 9

1410 16

i

7

4 3

21 8 9

1410 16

i

4

2 3

71 8 9

1410 16

i

3

2 1

74 8 9

1410 16



Széchenyi István UniversityTheory of algorithms

15

Heapsort

The operation of HEAPSORT
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Exercises

◼ Illustrate the operation of HEAPSORT with array A. Give the contents of the 

array as a binary tree after the exchanges of BUILD-MAX-HEAP and after 

each step of the iteration of HEAPSORT.

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >
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Priority queues

◼ A priority queue is a data structure for maintaining a set S of elements, each with an associated 

value called a key.

◼ A max-priority queues supports the following operations:

◼ INSERT(S, x) inserts the element x into the set S.

◼ MAXIMUM(S) returns the element of S with the largest key.

◼ EXTRACT-MAX(S) removes and returns the element of S with the largest key.

◼ INCREASE-KEY(S, x, k) increases the value of element x’s key to the new value k, which is 

assumed to be at least as large as x’s current key value.

HEAP-MAXIMUM(A)

1 return A[1]

Efficiency: The running time is Θ(1).
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Priority queues

HEAP-EXTRACT-MAX(A)

1 if A.heap-size < 1

2 error „heap underflow”

3 max = A[1] 

4 A[1] = A[A.heap-size]

5 A.heap-size = A.heap-size−1

6 MAX-HEAPIFY(A, 1)

7 return max

Efficiency: The running time is O(lg n), due to O(lg n) time of MAX-HEAPIFY.
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Priority queues

HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i]

2 error „new key is smaller than current key”

3 A[i] = key

4 while i > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 i = PARENT(i)

MAX-HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size+1

2 A[A.heap-size] = −∞

3 HEAP-INCREASE-KEY(A, A.heap-size, key)

Efficiency: The running time of both procedures on an n-element heap is O(lg n).

Corollary: A heap can support any priority-queue operation on a set of size n in O(lg n) time.
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Priority queues

The operation of HEAP-INCREASE-KEY(A, 9, 15)



Széchenyi István UniversityTheory of algorithms

21

Priority queues

BUILD-MAX-HEAP’(A)

1 A.heap-size = 1

2 for i = 2 to A.length

3 MAX-HEAP-INSERT(A, A[i])

Efficiency: The running time to build an n-element heap is O(n lg n).
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Exercises

◼ Illustrate the operation of MAX-HEAP-INSERT(A, 20) call with array A. Give 

the contents of the array as a binary tree after each exchange.

◼ A = < 16, 15, 10, 8, 14, 9, 3, 2, 4, 1, 7 >

◼ Illustrate the operation of BUILD-MAX-HEAP’ with array A. Give the 

contents of the actual max-heap as a binary tree after each step of the iteration.

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

◼ Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’ give the 

same results with the same input array?
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Comparison sorts

The decision tree for insertion sort 

operating on three elements
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>>

>

a1:a2

a2:a3 a1:a3

a2:a3(2, 1, 3)

(2, 3, 1) (3, 2, 1)

a1:a3(1, 2, 3)

(1, 3, 2) (3, 1, 2)

We can view comparison sorts abstractly in terms of decision trees. A decision tree is a full binary tree 

that represents the comparisons between elements that are performed by a particular sorting algorithm 

operating on an input of a given size. 

Theorem: Any comparison sort algorithm requires Ω(n lg n) comparisons in the worst case.

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.
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Sorting in linear time

COUNTING-SORT(A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]]+1

6 // C[i] now contains the number of elements equal to i

7 for i = 1 to k

8 C[i] = C[i]+C[i−1]

9 // C[i] now contains the number of elements less than or equal to i

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]]−1

Criteria: Each of the n input elements is an integer in the range 0 to k, for some integer k. 

Efficiency: When k = O(n), the sort runs in Θ(n) time.

Stability: The counting sort is stable: numbers with the same value appear in the output array in the 

same order as they do in the input array.



Széchenyi István UniversityTheory of algorithms

25

2 31 4 5 6 7 8

0 0 2 2 3 3 3 5B

2 31 4 50
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2 5 3 0 2 3 0 3A

2 0 2 3 0C 1

2 31 4 50

2 31 4 5 6 7 8

3B

2 2 4 6 7C 8

2 31 4 5 6 7 8

2 31 4 50

0 3B

1 2 4 6 7C 8

2 31 4 5 6 7 8

2 31 4 50

0 3 3B

1 2 4 5 7C 8

Sorting in linear time

The operation of COUNTING-SORT



Széchenyi István UniversityTheory of algorithms

26

Exercises

◼ Illustrate the operation of COUNTING-SORT on array A. What elements are 

in array C after three elements are put into array B? 

◼ A = < 6, 5, 2, 6, 1, 3, 6, 2, 7, 5 >

◼ What will happen if we rewrite the line 10 of the COUNTING-SORT with the 

line below?

10    for j = 1 to A.length
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Sorting in linear time

RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i

Criteria: Each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and 

digit d is the highest-order digit.

The operation of RADIX-SORT

457

657

839

436

720

355

329

355

436

457

657

329

839

720

329

436

839

355

457

657

720

355

436

457

657

720

839

329



Széchenyi István UniversityTheory of algorithms

28

Exercises

◼ Illustrate the operation of RADIX-SORT on the following list of English 

words. Give the contents of the array after each step of the iteration.

◼ cow, dog, sea, row, box, bar, ear, dig, big, tea, now, fox
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Sorting in linear time

BUCKET-SORT(A)

1 n = A.length

2 let B[0..n−1] be a new array

3 for i = 0 to n−1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[⌊nA[i]⌋]

7 for i = 0 to n−1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], …, B[n−1] together in order

Criteria: The input n elements are uniformly distributed numbers in the interval [0, 1). 

Efficiency: The average-case running time is Θ(n) due to expected running time of line 8 is O(1).
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Sorting in linear time

The operation of BUCKET-SORT for n=10
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Exercises

◼ Illustrate the operation of BUCKET-SORT on the array A. Give the result of 

the procedure. Which element is the last element of the „biggest” bucket?

◼ A = < 0.65, 0.52, 0.23, 0.68, 0.12, 0.38, 0.61, 0.29, 0.72, 0.53 >
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Summary

Efficiency of the sorting algorithms

Algorithm Worst-case Average-case/expected

Insertion sort Θ(n2) Θ(n2)

Merge sort Θ(n lg n) Θ(n lg n)

Heapsort O(n lg n) -

Quicksort Θ(n2) Θ(n lg n)      (expected)

Counting sort Θ(n+k) Θ(n+k)

Radix sort Θ(d(n+k)) Θ(d(n+k))

Bucket sort Θ(n2) Θ(n)      (average-case)
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