
Theory of algorithms (7th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 B-trees

 Definition

 Basic operations

 Exercises

Széchenyi István UniversityTheory of algorithms

3

B-trees

 B-trees are balanced search trees designed to work well on disks or other direct-access secondary

storage devices.

 B-trees are similar to red-black trees, but they are better at minimizing disk I/O operations. Many

database systems use B-trees, or variants of B-trees, to store information.

 B-tree nodes may have many children, from a few to thousands. That is, the “branching factor” of a

B-tree can be quite large, although it usually depends on characteristics of the disk unit used.

 Every n-node B-tree has height O(lg n), so dynamic-set operations that use B-trees run in O(lg n)

time too.

 In a typical B-tree application, the amount of data handled is so large that all the data do not fit into

main memory at once. The B-tree algorithms copy selected pages from disk into main memory as

needed and write back onto disk the pages that have changed.

Széchenyi István UniversityTheory of algorithms

4

B-trees

The typical pattern for working with an object is as follows:

1 x = a pointer to some object

2 DISK-READ (x) // if x is already in main memory it is a “no-op” (no operation).

3 operations that access and/or modify the attributes of x

4 DISK-WRITE(x) // omitted if no attributes of x were changed

5 other operations that access but do not modify attributes of x

Remarks:

 A B-tree node is usually as large as a whole disk page, and this size limits the number of children a

B-tree node can have.

 We shall look separately at the two principal components of the running time:

 the number of disk accesses, and

 the CPU (computing) time.

Széchenyi István UniversityTheory of algorithms

5

B-trees

A B-tree T is a rooted tree (whose root is T.root) having the following properties:

1. Every node x has the following attributes:

 x.n, the number of keys currently stored in node x,

 the x.n keys themselves, x.key1 , x.key2 , … , x.keyx.n , stored in nondecreasing order, so that

x.key1 ≤ x.key2 ≤ … ≤ x.keyx.n ,

 x.leaf, a boolean value that is TRUE if x is a leaf and FALSE if x is an internal node.

2. Each internal node x also contains x.n+1 pointers x.c1 , x.c2 , …, x.cx.n+1 to its children. Leaf nodes

have no children, and so their ci attributes are undefined.

3. The keys x.keyi separate the ranges of keys stored in each subtree: if ki is any key stored in the

subtree with root x.ci , then k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ … ≤ x.keyx.n ≤ kx.n+1.

4. All leaves have the same depth, which is the tree’s height h.

5. Nodes have lower and upper bounds on the number of keys they can contain. These bounds are

expressed with a fixed integer t ≥ 2 called the minimum degree of the B-tree:

 Every node other than the root must have at least t−1 keys. Every internal node other than the

root thus has at least t children. If the tree is nonempty, the root must have at least one key.

 Every node may contain at most 2t−1 keys. Therefore, an internal node may have at most 2t

children. We say that a node is full if it contains exactly 2t−1 keys.

Széchenyi István UniversityTheory of algorithms

6

B-trees

Remarks: The simplest B-tree occurs when t=2. Every internal node has either 2, 3, or 4 children so its

name is 2-3-4 tree. In practice much larger values of t is used because of the smaller height.

Theorem: If n ≥ 1, then for any n-key B-tree T of height h and minimum degree t ≥ 2, h ≤ logt ((n+1)/2).

Corollary: B-trees save a factor of about lg t over red-black trees in the number of nodes examined for

most tree operations. Because we usually have to access the disk to examine an arbitrary node in a

tree, B-trees avoid a substantial number of disk accesses.

Széchenyi István UniversityTheory of algorithms

7

B-trees

A B-tree

M

D H Q T X

T.root

B C F G J K L N P R S V W Y Z

Széchenyi István UniversityTheory of algorithms

8

Exercises

 For what values of t is the tree on the previous slide a legal B-tree?

 Why the minimum degree can not be 1?

 Give all legal B-trees of minimum degree 2 that represent {1, 2, 3, 4, 5} keys.

 What does the B-tree of height 3 look like that contains minimum number of

keys? The height of root node is 0.

Széchenyi István UniversityTheory of algorithms

9

B-trees

A B-tree of height 2 containing over one billion keys

1000

T.root

1001

1000

1001

1000

1001

1000

1001

1000 1000 1000

. . .

. . .

1 node,

1000 keys

1 001 nodes,

1,001,000 keys

1,002,001 nodes,

1 002 001 000 keys

Széchenyi István UniversityTheory of algorithms

10

B-trees

A B-tree of height 3 containing a minimum possible number of keys

1

. . .

T.root

t −1

t

t −1 t −1

1

2

3. . .

t −1

t

t −1 t −1 . . .

t −1

t

t −1 t −1. . .

t −1

t

t −1 t −1

.

t −1

t

t −1

t

0

2

2t

2t2

1

depth number

of nodes

Széchenyi István UniversityTheory of algorithms

11

Basic operations

In the basic operations of B-tree (B-TREE-SEARCH, B-TREE-CREATE, and B-TREE-INSERT) it is

assumed that:

 The root of the B-tree is always in main memory, so that we never need to perform a DISK-READ

on the root, however a DISK-WRITE of the root has to be performed whenever the root node is

changed.

 Any nodes that are passed as parameters must already have had a DISK-READ operation performed

on them.

 The auxiliary procedure ALLOCATE-NODE allocates one disk page to be used as a new node in

O(1) time. It requires no DISK-READ, since there is as yet no useful information stored on the disk

for that node.

Széchenyi István UniversityTheory of algorithms

12

Basic operations

B-TREE-SEARCH(x, k)

1 i = 1

2 while i ≤ x.n and k > x.keyi

3 i = i+1

4 if i ≤ x.n and k==x.keyi

5 return (x, i)

6 if x.leaf

7 return NIL

8 else

9 DISK-READ(x.ci)

10 return B-TREE-SEARCH(x.ci, k)

Efficiency: It requires O(h) disk operations and O(th) CPU time, where h=logtn is the height of the B-
tree and n is the number of keys in the B-tree.

Széchenyi István UniversityTheory of algorithms

13

Exercises

 How can the minimum key be searched in a B-tree?

Széchenyi István UniversityTheory of algorithms

14

Basic operations

B-TREE-CREATE(T)

1 x = ALLOCATE-NODE()

2 x.leaf = TRUE

3 x.n = 0

4 DISK-WRITE(x)

5 T.root = x

Efficiency: It requires O(1) disk operations and O(1) CPU time.

Széchenyi István UniversityTheory of algorithms

15

Basic operations

B-TREE-SPLIT-CHILD(x, i)

1 z = ALLOCATE-NODE()

2 y = x.ci

3 z.leaf = y.leaf

4 z.n = t−1

5 for j = 1 to t−1

6 z.keyj = y.keyj+t

7 if not y.leaf

8 for j = 1 to t

9 z.cj = y.cj+t

10 y.n = t−1

11 for j = x.n+1 downto i+1

12 x.cj+1 = x.cj

13 x.ci+1 = z

14 for j = x.n downto i

15 x. keyj+1 = x.keyj

16 x.keyi = y.keyt

17 x.n = x.n+1

18 DISK-WRITE(y)

19 DISK-WRITE (z)

20 DISK-WRITE (x)

Efficiency: It requires O(1) disk operations and Θ(t) CPU time.
Criteria: The internal node x is not full and node y (the ith child of node x) is full.

Széchenyi István UniversityTheory of algorithms

16

Basic operations

Splitting a node (t = 4)

… N S W ...

T U VP Q R

T1 T2 T3 T4 T5 T6 T7 T8

x

y=x.ci

x.keyi−1

x.keyi

z=x.ci+1

x.keyi+1

… N W ...

P Q R S T U V

T1 T2 T3 T4 T5 T6 T7 T8

x

y=x.ci

x.keyi−1

x.keyi

Széchenyi István UniversityTheory of algorithms

17

Basic operations

B-TREE-INSERT(T, k)

1 r = T.root

2 if r.n == 2t −1

3 s = ALLOCATE-NODE()

4 T.root = s

5 s.leaf = FALSE

6 s.n = 0

7 s.c1 = r

8 B-TREE-SPLIT-CHILD(s, 1)

9 B-TREE-INSERT-NONFULL(s, k)

10 else

11 B-TREE-INSERT-NONFULL(r, k)

Efficiency: They are given by the called procedures (B-TREE-SPLIT-CHILD, B-TREE-INSERT-
NONFULL) because they are increased only with O(1) disk operations and O(1) CPU time.

Széchenyi István UniversityTheory of algorithms

18

Basic operations

Splitting the root (t = 4)

A D F H L N P

T1 T2 T3 T4 T5 T6 T7 T8

r

T.root H

L N PA D F

T1 T2 T3 T4 T5 T6 T7 T8

r

s

T.root

Széchenyi István UniversityTheory of algorithms

19

Basic operations

B-TREE-INSERT-NONFULL(x, k)

1 i = x.n

2 if x.leaf

3 while i ≥ 1 and k < x.keyi

4 x.keyi+1 = x.keyi

5 i = i−1

6 x.keyi+1 = k

7 x.n = x.n+1

8 DISK-WRITE(x)

9 else

10 while i ≥ 1 and k < x.keyi

11 i = i−1

12 i = i+1

13 DISK-READ(x.ci)

14 if x.ci.n == 2t−1

15 B-TREE-SPLIT-CHILD(x, i)

16 if k > x.keyi

17 i = i+1

18 B-TREE-INSERT-NONFULL(x.ci, k)

Efficiency: It requires O(h) disk operations and O(th) CPU time.
Criteria: The node x is not full.

Széchenyi István UniversityTheory of algorithms

20

Basic operations

Inserting keys into a B-tree (t = 3)

G M P T XQ inserted

Y ZU VQ R SA B C D E J K N O

G M P Xinitial tree

Y ZR S T U VA C D E J K N O

G M P XB inserted

Y ZR S T U VA B C D E J K N O

Széchenyi István UniversityTheory of algorithms

21

Basic operations

Inserting keys into a B-tree (t = 3)

P

T XC G M

F inserted

Y ZU VQ R SA B D E F J K L N O

G M P T XQ inserted

Y ZU VQ R SA B C D E J K N O

P

T XG M

L inserted

Y ZU VQ R SA B C D E J K L N O

Széchenyi István UniversityTheory of algorithms

22

Exercises

 What B-tree is built with inserting below given keys into an initially empty

tree? The minimum degree t=3.

 F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

 What is the result if the minimum degree t=2?

