“#" Theory of algorithms (2nd tecture)

Pal Pusztai
pusztai@sze.hu

N Theory of algorithms

Outline

ra

Heap data structure

Maintaining the heap property
Building a heap

Heapsort

Priority queues

Sorting In linear time

Counting sort

Radix sort
Bucket sort

Exercises

Széchenyi Istvan University

= Theory of algorithms

Heap data structure

PARENT(i)
1 return|i/2]

LEFT(i)
1 return 2i

RIGHT(i)
1 return2i+1

Max-heap property:
A[PARENT()] > A[i], i>1

Min-heap property:
A[PARENT(1)] <A[i], i>1

ra

Széchenyi Istvan University

A max-heap as a binary tree
and as an array

O Theory of algorithms Széchenyi Istvan University

Exercises

m s the max-heap property satisfied with array A? If not, how many pairs of
elements do violate it?

m A=<2/,17,3,16,13,10,1,5,7,12,4,8,9,0>
m Give a min-heap data structure that contains the elements of array A!
m A=<2/,17,3,16,13,10,1,5,7,12,4,8,9,0>

ra

o~ Theory of algorithms Széchenyi Istvan University
Maintaining the heap property

MAX-HEAPIFY (A, i)

| = LEFT(i)

r = RIGHT(i)

if | < A.heap-size and A[l] > A[i]
largest = |

else
largest = i

if r <A.heap-size and A[r] > A[largest]
largest =r

if largest # i

10 exchange A[i] with A[largest]

11 MAX-HEAPIFY (A, largest)

© 00 N O O A WO DN -

Criteria: The binary trees rooted at LEFT(i) and RIGHT (i) are max-heaps, but that A[i] might be
smaller than its children, thus violating the max-heap property.

MAX-HEAPIFY lets the value A[i] ,,float down” in the max-heap so that the subtree rooted at index i
obeys the max-heap property.

Efficiency: The running time is O(h), where h is the height of the tree (h=0(lg n), n=A.heap.size).

N 5

= Theory of algorithms Széchenyi Istvan University
Maintaining the heap property

The operation of MAX-HEAPIFY (A, 2)

O Theory of algorithms Széchenyi Istvan University

Exercises

m |llustrate the operation of MAX-HEAPIFY (A, 3) call with array A? Give the
contents of the array as a binary tree after each exchange.

m A=<27,17,3,16,13,10,1,5,7,12,4,8,9,0>

ra

O Theory of algorithms Széchenyi Istvan University

Building a heap

BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 fori=|Alength] /2] downto 1
3 MAX-HEAPIFY (A, i)

Efficiency: The ,,simple estimated” O(n Ig n) upper bound is not asymptotically tight, the O(n) running
time can be proved, thus we can build a max-heap from an unsorted array in linear time.

ra

Theory of algorithms

Building a heap

ra

10

14

The operation of BUILD-MAX-HEAP

Széchenyi Istvan University

Theory of algorithms
Building a heap

Széchenyi Istvan University

The operation of BUILD-MAX-HEAP

10

O Theory of algorithms Széchenyi Istvan University

ra

Exercises

[llustrate the operation of BUILD-MAX-HEAP with array A. Give the
contents of the array as a binary tree after each step of the iteration.

| A:<8,2,1,5,6,9|41317>

11

O Theory of algorithms Széchenyi Istvan University

Heapsort

HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 fori=A.length downto 2

3 exchange A[1] with A[i]
4 A.heap-size = A.heap-size—1
5 MAX-HEAPIFY (A, 1)

Efficiency: Since the call to BUILD-MAX-HEAP takes time O(n) and MAX-HEAPIFY takes O(lg n)
the running time is O(n Ig n).

ra

12

Theory of algorithms
Heapsort

Széchenyi Istvan University

& O O @
©OE

The operation of HEAPSORT

13

Theory of algorithms
Heapsort

The operation of HEAPSORT

Széchenyi Istvan University

O ©® © O
000

14

= Theory of algorithms Széchenyi Istvan University

Heapsort

@/@ @
® @ O

® © ® © ® © ® ©
@ @ ® 000

The operation of HEAPSORT

ra

15

O Theory of algorithms Széchenyi Istvan University

ra

Exercises

[llustrate the operation of HEAPSORT with array A. Give the contents of the
array as a binary tree after the exchanges of BUILD-MAX-HEAP and after
each step of the iteration of HEAPSORT.

| A:<8,2,1,5,6,9|41317>

16

= Theory of algorithms Széchenyi Istvan University

Priority queues

m A priority queue is a data structure for maintaining a set S of elements, each with an associated
value called a key.

m A max-priority queues supports the following operations:

INSERT (S, x) inserts the element x into the set S.
MAXIMUM(S) returns the element of S with the largest key.
EXTRACT-MAX(S) removes and returns the element of S with the largest key.

INCREASE-KEY (S, x, k) increases the value of element x’s key to the new value k, which is
assumed to be at least as large as x’s current key value.

HEAP-MAXIMUM(A)
1 return A[1]

Efficiency: The running time is ®(1).

ra

17

N Theory of algorithms

Priority queues
HEAP-EXTRACT-MAX(A)

1
2
3
4
5
6
7

iIf A.heap-size <1

error ,.heap underflow”
max = A[1]
A[1] = A[A.heap-size]
A.heap-size = A.heap-size—1
MAX-HEAPIFY (A, 1)
return max

Széchenyi Istvan University

Efficiency: The running time is O(lg n), due to O(lg n) time of MAX-HEAPIFY.

ra

18

O Theory of algorithms Széchenyi Istvan University

Priority queues
HEAP-INCREASE-KEY(A, i, key)

1 if key <A[i]

2 error ,,new key is smaller than current key”
3 A[i] = key

4 whilei>1and AIPARENT(i)] < A[i]

5 exchange A[i] with A[PARENT ()]

6 I = PARENT(i)

MAX-HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size+1

2 A[A.heap-size] = —o

3 HEAP-INCREASE-KEY (A, A.heap-size, key)

Efficiency: The running time of both procedures on an n-element heap is O(lg n).
Corollary: A heap can support any priority-queue operation on a set of size n in O(lg n) time.

ra

19

Theory of algorithms

Priority queues

Széchenyi Istvan University

20

= Theory of algorithms

Priority queues

BUILD-MAX-HEAP’(A)

1 A.heap-size=1

2 fori=2toA.length

3 MAX-HEAP-INSERT(A, A[i])

Efficiency: The running time to build an n-element heap is O(n Ig n).

ra

Széchenyi Istvan University

21

= Theory of algorithms Széchenyi Istvan University

Exercises

m |llustrate the operation of MAX-HEAP-INSERT (A, 20) call with array A. Give
the contents of the array as a binary tree after each exchange.

m A=<16,1510,8,14,9,3,2,4,1, 7>

m |llustrate the operation of BUILD-MAX-HEAP’ with array A. Give the
contents of the actual max-heap as a binary tree after each step of the iteration.

m A=<§8,21,56,943,7>
m Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’ give the
same results with the same input array?

22

ra

= Theory of algorithms Széchenyi Istvan University

Comparison sorts

We can view comparison sorts abstractly in terms of decision trees. A decision tree is a full binary tree

that represents the comparisons between elements that are performed by a particular sorting algorithm
operating on an input of a given size.

Theorem: Any comparison sort algorithm requires Q(n g n) comparisons in the worst case.
Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

1,32 | | 3,12 2,30 | (3,21

The decision tree for insertion sort
operating on three elements

ra

23

= Theory of algorithms Széchenyi Istvan University

Sorting in linear time
COUNTING-SORT(A, B, k)

let C[0..k] be a new array
fori=0tok
C[i]=0

for j = 1 to A.length
CIALIl = C[AL]I+1
/I C[i] now contains the number of elements equal to i
fori=1tok
C[i] = C[i]+C[i—-1]
/I C[i] now contains the number of elements less than or equal to i
10 for j = A.length downto 1
11 BICIALII] = AL
12 CIADLIl = CIADII-1

© 00 N O O A WO DN -

Criteria: Each of the n input elements is an integer in the range 0 to k, for some integer k.
Efficiency: When k = O(n), the sort runs in ®(n) time.

Stability: The counting sort is stable: numbers with the same value appear in the output array in the
same order as they do in the input array.

N 24

N Theory of algorithms

Sorting in linear time

ra

6 7 8

Széchenyi Istvan University

31013

5 0 1 2 3 4 5

1 Cl 2,2 4|7 |7]|S8

6 7 8 1 2 3 4 5 6 7 8
3 B 0 3

5 0 1 2 3 4 5

8 Cl| 12,4 ,6]|7]8

6 7 8 1 2 3 4 5 6 7 8

313 B|lo |0 |2 |2 |3|]3]|3]|5

5

8

The operation of COUNTING-SORT

25

O Theory of algorithms Széchenyi Istvan University

ra

Exercises

[llustrate the operation of COUNTING-SORT on array A. What elements are
In array C after three elements are put into array B?

m A=<6,52,6,1,3,6,2,7,5>
What will happen if we rewrite the line 10 of the COUNTING-SORT with the

line below?
10 forj=1to A.length

26

N Theory of algorithms

Sorting in linear time

RADIX-SORT(A, d)
1 fori=1ltod

2 use a stable sort to sort array A on digit i

Széchenyi Istvan University

Criteria: Each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and

digit d is the highest-order digit.

329
457
657

839

436
720
355

720
355
436
457
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

The operation of RADIX-SORT

ra

27

O Theory of algorithms Széchenyi Istvan University

ra

Exercises

[llustrate the operation of RADIX-SORT on the following list of English
words. Give the contents of the array after each step of the iteration.

m cow, dog, sea, row, box, bar, ear, dig, big, tea, now, fox

28

O Theory of algorithms Széchenyi Istvan University

Sorting in linear time
BUCKET-SORT(A)

1 n=A.length

2 let B[0..n—1] be a new array

3 fori=0ton—1

4 make B[i] an empty list

5 fori=1ton

6 insert A[1] into list B[[nA[i]]]

7 fori=0ton—1

8 sort list B[i] with insertion sort

9 concatenate the lists B[O], B[1], ..., B[n—1] together in order

Criteria: The input n elements are uniformly distributed numbers in the interval [0, 1).
Efficiency: The average-case running time is ®(n) due to expected running time of line 8 is O(1).

29

ra

N Theory of algorithms

Sorting in linear time

ra

10

78

17

.39

Széchenyi Istvan University

26

12

94

21

12

23

.68

The operation of BUCKET-SORT for n=10

12 17

21 23 .26
.39

.68

72 78

94

30

O Theory of algorithms Széchenyi Istvan University

ra

Exercises

[llustrate the operation of BUCKET-SORT on the array A. Give the result of
the procedure. Which element is the last element of the ,,biggest” bucket?

m A=<0.65,0.52,0.23, 0.68, 0.12, 0.38, 0.61, 0.29, 0.72, 0.53 >

31

N Theory of algorithms

Summary

Széchenyi Istvan University

Algorithm Worst-case Average-case/expected
Insertion sort O(n?) O(n?)

Merge sort O(n Ig n) O(n Ig n)

Heapsort O(n Ig n) -

Quicksort O(n?) O(nlgn) (expected)
Counting sort O(n+k) O(n+k)

Radix sort O(d(n+k)) O(d(n+k))

Bucket sort O(n?) ®(n) (average-case)

Efficiency of the sorting algorithms

ra

32

	1. dia: Theory of algorithms (2nd lecture)
	2. dia: Outline
	3. dia: Heap data structure
	4. dia: Exercises
	5. dia: Maintaining the heap property
	6. dia: Maintaining the heap property
	7. dia: Exercises
	8. dia: Building a heap
	9. dia: Building a heap
	10. dia: Building a heap
	11. dia: Exercises
	12. dia: Heapsort
	13. dia: Heapsort
	14. dia: Heapsort
	15. dia: Heapsort
	16. dia: Exercises
	17. dia: Priority queues
	18. dia: Priority queues
	19. dia: Priority queues
	20. dia: Priority queues
	21. dia: Priority queues
	22. dia: Exercises
	23. dia: Comparison sorts
	24. dia: Sorting in linear time
	25. dia: Sorting in linear time
	26. dia: Exercises
	27. dia: Sorting in linear time
	28. dia: Exercises
	29. dia: Sorting in linear time
	30. dia: Sorting in linear time
	31. dia: Exercises
	32. dia: Summary

