
Theory of algorithms (6th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Red-black trees

 Properties, rotations, insertion

 Augmenting data structure

 Steps of the process

 Examples

 Dynamic order statistics

 Interval trees

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node, its color, which can be
either RED or BLACK.

By constraining the node colors on any simple path from the root to a leaf, red-black trees ensure that
no such path is more than twice as long as any other.

Red-black trees are approximately balanced and guarantee that basic dynamic-set operations take
O(lg n) time in the worst case.

A red-black tree is a binary search tree that satisfies the following red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant leaves contain the same number of
black nodes.

We call the number of black nodes on any simple path from, but not including, a node x down to a leaf
the black-height of the node.

The black-height of a red-black tree is the black-height of its root.

Theory: A red-black tree with n internal nodes has height at most 2lg(n+1).

Széchenyi István UniversityTheory of algorithms

4

Red-black trees

A red-black tree with the black-heights

3

2

22

1 1 11

3

1

2

111

2

1

1

1 1

1

26

41

30

38

35

NIL NIL

39

NIL NIL

47

NIL NIL

17

14

16

15

NIL NIL

NIL

21

23

NIL NIL

19

NIL

NIL

20

NIL

28

NIL NIL

10

7

NIL

12

NIL NIL

NIL

3

NIL

Széchenyi István UniversityTheory of algorithms

5

Red-black trees

The same red-black tree with sentinel T.nil

26

41

30

38

35 39

47

17

14

16

15

21

2319

20

2810

7 12

3

T.nil

Széchenyi István UniversityTheory of algorithms

6

Red-black trees

The same red-black tree without leaves and the root’s parent

26

41

30

38

35 39

47

17

14

16

15

21

2319

20

2810

7 12

3

Széchenyi István UniversityTheory of algorithms

7

Exercises

 Draw the complete binary search tree of height 3 on the keys {1, …, 15}. Add

the NIL leaves and color the nodes in three different ways such that the black-

heights of the resulting red-black trees are 2, 3, and 4.

 Draw the red-black tree that results after TREE-INSERT is called on the tree

in the previous slide with key 36. If the inserted node is colored red, is the

resulting tree a red-black tree? What if it is colored black?

 Describe a red-black tree on n keys that realizes the largest possible ratio of

red internal nodes to black internal nodes. What is this ratio? What tree has the

smallest possible ratio, and what is the ratio?

Széchenyi István UniversityTheory of algorithms

8

Red-black trees

The rotation operations on a binary search tree

y

x

α β

γ

x

y

β γ

α

RIGHT-ROTATE(T, y)

LEFT-ROTATE(T, x)

Széchenyi István UniversityTheory of algorithms

9

Red-black trees

LEFT-ROTATE(T, x)

1 y = x.right // set y

2 x.right = y.left // turn y’s left subtree into x’s right subtree
3 if y.left ≠ T.nil

4 y.left.p = x

5 y.p = x.p // link x’s parent to y

6 if x.p == T.nil

7 T.root = y

8 else if x = x.p.left

9 x.p.left = y

10 else

11 x.p.right = y

12 y.left = x // put x on y’s left

13 x.p = y

Remarks:

 The pseudocode for LEFT-ROTATE assumes that x.right ≠ T.nil and that the root’s parent is T.nil.

 The code for RIGHT-ROTATE is symmetric.

Efficiency: Both LEFT-ROTATE and RIGHT-ROTATE run in O(1) time.

Széchenyi István UniversityTheory of algorithms

10

Red-black trees

The operation of LEFT-ROTATE(T, x)

7

4 11

63 189

14 19

22

2

20

12 17

x

y

7

4 18

63 11

14

19

222

2012 17

x

y

9

Széchenyi István UniversityTheory of algorithms

11

Exercises

 Give the binary search tree after LEFT-ROTATE is called on the tree in the

bottom of the previous slide with the root element.

 What is the result if RIGHT-ROTATE is called?

Széchenyi István UniversityTheory of algorithms

12

Red-black trees

RB-INSERT(T, z)

1 y = T.nil

2 x = T.root
3 while x ≠ T.nil

4 y = x

5 if z.key < x.key

6 x = x.left

7 else

8 x = x.right

9 z.p = y

10 if y == T.nil

11 T.root = z

12 else

13 if z.key < y.key

14 y.left = z

15 else

16 y.right = z

17 z.left = T.nil

18 z.right = T.nil

19 z.color = RED

20 RB-INSERT-FIXUP(T, z]

Széchenyi István UniversityTheory of algorithms

13

Red-black trees

RB-INSERT-FIXUP(T, z)

1 while z.p.color == RED

2 if z.p == z.p.p.left

3 y = z.p.p.right

4 if y.color == RED

5 z.p.color = BLACK // case 1

6 y.color = BLACK // case 1

7 z.p.p.color = RED // case 1

8 z = z.p.p // case 1

9 else

10 if z == z.p.right

11 z = z.p // case 2

12 LEFT-ROTATE(T, z) // case 2

13 z.p.color = BLACK // case 3

14 z.p.p.color = RED // case 3

15 RIGHT-ROTATE(T, z.p.p) // case 3

16 else // z’s parent is the right child of its parent

17 same as the true case with „left” and „right” exchanged

18 T.root.color = BLACK

Remarks: Note that if z.p.color == RED then node z.p.p exists.

Efficiency: The running time of both procedures in an n-node red-black tree is O(lg n).

Széchenyi István UniversityTheory of algorithms

y

z

C

α β

δ εγ

B D

A

y

z

C

α

β γ

δ ε

A D

B

z

A D

α

β γ

δ ε

C

B

14

Red-black trees

The operation of RB-INSERT-FIXUP case 1

z

B D

α β

δ εγ

C

A

Széchenyi István UniversityTheory of algorithms

15

Red-black trees

zy

z

C

α

β γ

δ

B

α β γ δ

y

C

δ

γz

α β

Case 2 Case 3

A

B

A CB

A

The operation of RB-INSERT-FIXUP case 2, case 3

Széchenyi István UniversityTheory of algorithms

y

z

11

14

1

85

15

2

7

4

y

z

11

14

1 7 15

2

85

4

16

Red-black trees

The operation of RB-INSERT-FIXUP

Case 1

Széchenyi István UniversityTheory of algorithms

17

Red-black trees

y

z

11

14

1

85

15

2

7

4

y

z

11

14

8

51

15

7

2

4

Case 2

The operation of RB-INSERT-FIXUP

Széchenyi István UniversityTheory of algorithms

18

Red-black trees

Case 3

y

z

11

14

8

51

15

7

2

4

z

7

141 5 8

112

154

The operation of RB-INSERT-FIXUP

Széchenyi István UniversityTheory of algorithms

19

Exercises

 In procedure RB-INSERT the inserted node is colored red. If it is colored

black then red-black property 4 is satisfied. Why is it not colored black?

 Draw the red-black tree that results after RB-INSERT is called on the bottom

tree of the previous slide with key 3. Give the colors of the nodes with letter R

or B. Give the black-heights of the nodes too.

 What red-black tree is built with inserting keys 15, 20, 25, 18, 12, 6, 8, 3, 4

into an initially empty tree? What is the black-height of the result tree?

Széchenyi István UniversityTheory of algorithms

20

Red-black trees

Remarks:

 The procedure for deleting a node from a red-black tree (RB-DELETE, see textbook) is based on

the TREE-DELETE procedure.

 If the deleted node is black then the violated red-black properties have to be restored. This

procedure (RB-DELETE-FIXUP, see textbook) runs in O(lg n) time.

Efficiency: The running time of deleting a node from an n-node red-black tree is O(lg n).

Széchenyi István UniversityTheory of algorithms

21

Augmenting data structures

 The process of augmenting a basic data structure to support additional functionality occurs quite

frequently in algorithm design.

The steps of the process of augmenting a data structure:

1. Choose an underlying data structure.

2. Determine additional information to maintain in the underlying data structure.

3. Verify that we can maintain the additional information for the basic modifying operations on the
underlying data structure.

4. Develop new operations.

Examples:

 Augmenting red-black trees to support general order statistic operations on a dynamic set.

 Augmenting red-black trees to maintain a dynamic set of time intervals.

Theorem: Let f be an attribute that augments a red-black tree T of n nodes, and suppose that the value
of f for each node x depends on only the information in nodes x, x.left, and x.right, possibly
including x.left.f and x.right. f . Then, we can maintain the values of f in all nodes of T during
insertion and deletion without asymptotically affecting the O (lg n) performance of these
operations.

Széchenyi István UniversityTheory of algorithms

22

Dynamic order statistics

 The ith order statistic of a set of n elements is the ith (1≤ i ≤ n) smallest element.

 This element can be found in expected O(n) time from an unordered set (see RANDOMIZED-

SELECT procedure).

 With augmenting red-black trees it can be found in O(lg n) time. The rank of a given element in

the total ordering of the set also can be calculated in O(lg n) time.

An order-statistic tree T is simply a red-black tree with additional information stored in each node.
Besides the usual red-black tree attributes in a node x (x.key, x.color, x.p, x.left, and x.right), we
have another attribute, x.size.

This attribute contains the number of (internal) nodes in the subtree rooted at x (including x itself), that
is, the size of the subtree.

If we define the sentinel’s size to be 0 (that is, we set T.nil.size to be 0) then we have the identity
x.size = x.left.size + x.right.size +1.

Remarks: Same keys are possible, so the rank of a node give the position of the inorder tree walk. For
example (on the next slide’s tree) the rank of the black node with 14 key is 5, and it is 6 for the red
color one.

Széchenyi István UniversityTheory of algorithms

23

Dynamic order statistics

An order-statistic tree

key

14

7

26

20

16

2

7

2

21

4

19

2

12

1

21

1

41

7

47

1

28

1

38

3

size

10

4

20

1

17

12

14

1

3

1

39

1

35

1

30

5

Széchenyi István UniversityTheory of algorithms

24

Dynamic order statistics

OS-SELECT(x, i)
1 r = x.left.size+1
2 if i == r
3 return x
4 else
5 if i < r
6 return OS-SELECT(x.left, i)
7 else
8 return OS-SELECT(x.right, i−r)

Remarks: To find the node with the ith smallest key in an order-statistic tree T, we call
OS-SELECT(T.root, i).

Efficiency: The running time is O(lg n) for an n-node order-statistic tree.

Széchenyi István UniversityTheory of algorithms

25

Exercises

 What is the result of OS-SELECT(T.root, 7) call for the order-statistic tree T

located in the previous example?

 What nodes are examined by OS-SELECT(T.root, 16) call for the same tree?

Széchenyi István UniversityTheory of algorithms

26

Dynamic order statistics

OS-RANK(T, x)

1 r = x.left.size+1

2 y = x

3 while y ≠ T.root

4 if y == y.p.right

5 r = r+ y.p.left.size+1

6 y = y.p

7 return r

Given a pointer to a node x in an order-statistic tree T, the procedure OS-RANK returns the position of

x in the linear order determined by an inorder tree walk of T.

Efficiency: The running time is O(lg n) for an n-node order-statistic tree.

Széchenyi István UniversityTheory of algorithms

27

Exercises

 What is the result of OS-RANK function with the order-statistic tree T located

in the previous example and the node contains key 19?

 What nodes are examined by OS-RANK function for the same tree and the

node contains key 35?

Széchenyi István UniversityTheory of algorithms

28

Dynamic order statistics

Updating subtree sizes during rotations

To maintain subtree sizes in procedure LEFT-ROTATE the following lines have to be add :

14 y.size = x.size

15 x.size = x.left.size+ x.right.size+1

The change to RIGHT-ROTATE is symmetric.

Efficiency: The updates are local, requiring only the size information stored in x, y, and the roots of the

subtrees shown as triangles, thus both insertion and deletion take O(lg n) time for an n-node order-

statistic tree.

7

y

x y

x

RIGHT-ROTATE(T, y)

LEFT-ROTATE(T, x)
93

19

42

11

42

19

93

12
6

4 746

Széchenyi István UniversityTheory of algorithms

29

Interval trees

 This example augments red-black trees to support operations on dynamic sets of intervals.

A closed interval is an ordered pair of real numbers [t1, t2], with t1 ≤ t2. The interval [t1, t2] represents
the set {t  R: t1 ≤ t ≤ t2 }.

Open and half-open intervals omit both or one of the endpoints from the set, respectively.

An interval [t1, t2] can be represented as an object i, with attributes i.low=t1 (the low endpoint) and
i.high=t2 (the high endpoint).

The intervals i and i’ overlap if i ⋂ i’ ≠ Ø, that is, i.low ≤ i’.high and i’.low ≤ i.high.

Széchenyi István UniversityTheory of algorithms

i ii

i’ i’i’ i’

i

30

Interval trees

Interval trichotomy

i i’ i’ i

Any two intervals i and i’ satisfy the interval trichotomy, that is, exactly one of the following three

properties holds:

 i and i’ overlap,

 i is to the left of i’ (i.e. i.high < i’.low),

 i is to the right of i’ (i.e. i’.high < i.low).

Széchenyi István UniversityTheory of algorithms

31

Interval trees

An interval tree is a red-black tree that maintains a dynamic set of elements, with each element x

containing an interval x.int.

Interval trees support the following operations:

 INTERVAL-INSERT(T, x) adds the element x, whose int attribute is assumed to contain an

interval, to the interval tree T.

 INTERVAL-DELETE(T, x) removes the element x from the interval tree T.

 INTERVAL-SEARCH(T, i) returns a pointer to an element x in the interval tree T such that

x.int overlaps interval i, or a pointer to the sentinel T.nil if no such element is in the set.

Széchenyi István UniversityTheory of algorithms

32

Interval trees

The steps of the process of augmenting a data structure:

1. Underlying data structure: it is a red-black tree in which each node x contains an interval x.int

and the key of x is the low endpoint (x.int.low) of the interval. Thus, an inorder tree walk of the

data structure lists the intervals in sorted order by low endpoint.

2. Additional information: each node x contains a value x.max, which is the maximum value of any

interval endpoint stored in the subtree rooted at x.

3. Maintaining the information: x.max can be determined given interval x.int and the max values of

node x’s children as x.max=max(x.int.high, x.left.max, x.right.max). The max attributes can be

update after a rotation in O(1) time, thus insertion and deletion run in O(lg n) time.

4. Developing new operations: the only new operation is INTERVAL-SEARCH(T, i).

Széchenyi István UniversityTheory of algorithms

33

Interval trees

An interval tree

3

0 5 10 15 20 25 30

0

5 8

6 10

15 23

2116

17 19

20

2626

3025

19

98

[5,8]

10

[16,21]

30

[15,23]

23

[26,26]

26

[17,19]

20

int

max[8,9]

23

[0,3]

3

[6,10]

10

[25,30]

30

[19,20]

20

Széchenyi István UniversityTheory of algorithms

34

Interval trees

INTERVAL-SEARCH(T, i)

1 x = T.root

2 while x ≠ T.nil and i does not overlap x.int

3 if x.left ≠ T.nil and x.left.max ≥ i.low

4 x = x.left

5 else

6 x = x.right

7 return x

Efficiency: The running time is O(lg n) for an n element dynamic set.

Remarks: It is enough to examine only one path from the root.

Széchenyi István UniversityTheory of algorithms

35

Exercises

 What is the result of INTERVAL-SEARCH function with the interval tree T

located in the previous example and the interval i=[4, 7]?

 What nodes are examined by INTERVAL-SEARCH function for the same tree

and the interval i=[11, 14]?

