“#" Theory of algorithms (st lecture)

Pal Pusztai
pusztai@sze.hu

O Theory of algorithms Széchenyi Istvan University

Outline

m Red-black trees
m Properties, rotations, insertion

m Augmenting data structure
m Steps of the process

m Examples
Dynamic order statistics
Interval trees

m EXxercises

ra

o®" Theory of algorithms Széchenyi Istvan University
Red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node, its color, which can be
either RED or BLACK,

By constraining the node colors on any simple path from the root to a leaf, red-black trees ensure that
no such path is more than twice as long as any other.

Red-black trees are approximately balanced and guarantee that basic dynamic-set operations take
O(lg n) time in the worst case.

A red-black tree is a binary search tree that satisfies the following red-black properties:
1. Every node is either red or black.

2. Theroot is black.

3. Every leaf (NIL) is black.

4. If anode is red, then both its children are black.

5

For each node, all simple paths from the node to descendant leaves contain the same number of
black nodes.

We call the number of black nodes on any simple path from, but not including, a node x down to a leaf
the black-height of the node.

The black-height of a red-black tree is the black-height of its root.

Theorem: A red-black tree with n internal nodes has height at most 2lg(n+1).

N 3

N Theory of algorithms

Red-black trees

ra

Széchenyi Istvan University

o 26

23 14 il 38

A red-black tree with the black-heights

41

47

O Theory of algorithms Széchenyi Istvan University
Red-black trees

T.nil

The same red-black tree with sentinel T.nil

ra

O Theory of algorithms Széchenyi Istvan University
Red-black trees

26
17 3|
14 21 30 47

10 16 19 23 28 38

The same red-black tree without leaves and the root’s parent

ra

o®" Theory of algorithms Széchenyi Istvan University

Exercises

m Draw the complete binary search tree of height 3 on the keys {1, ..., 15}. Add
the NIL leaves and color the nodes in three different ways such that the black-
heights of the resulting red-black trees are 2, 3, and 4.

m Draw the red-black tree that results after TREE-INSERT is called on the tree
In the previous slide with key 36. If the inserted node is colored red, is the
resulting tree a red-black tree? What if it is colored black?

m Describe a red-black tree on n keys that realizes the largest possible ratio of
red internal nodes to black internal nodes. What is this ratio? What tree has the
smallest possible ratio, and what is the ratio?

ra

= Theory of algorithms Széchenyi Istvan University
Red-black trees

LEFT-ROTATE(T,)
y | : o
RIGHT-ROTATE(T, y)
a B B Y

The rotation operations on a binary search tree

ra

O Theory of algorithms Széchenyi Istvan University
Red-black trees

LEFT-ROTATE(T, x)

1 y=xright /] sety

2 Xxright =y.left I/ turn y’s left subtree into X’s right subtree
3 ify.left # T.nil

4 y.left.p = x

5 yp=xp //'link X’s parent to y
6 1fx.p==T.nil

7 T.root=vy

8 elseifx=x.p.left

9 x.p.left=y

10 else

11 X.p.right =y

12 y.left = x /[l put x on y’s left
13 xp=y

Remarks:
m The pseudocode for LEFT-ROTATE assumes that x.right # T.nil and that the root’s parent is T.nil.
m The code for RIGHT-ROTATE is symmetric.

Efficiency: Both LEFT-ROTATE and RIGHT-ROTATE run in O(1) time.

N 9

Theory of algorithms
Red-black trees

Széchenyi Istvan University

ra

The operation of LEFT-ROTATE(T, x)

10

O Theory of algorithms Széchenyi Istvan University

Exercises

m Give the binary search tree after LEFT-ROTATE is called on the tree in the
bottom of the previous slide with the root element.

m What is the result if RIGHT-ROTATE is called?

11

ra

= Theory of algorithms
Red-black trees

RB-INSERT(T, 2)

1 y=Tnil

2 Xx=T.root

3 while x # T.nil

4 y =X

5 if z.key < x.key

6 X = X.left
7 else

8 X = X.right
9 zp=y

10 ify==T.nil

11 T.root =z

12 else

13 if z.key <y.key

14 y.left =z
15 else

16 y.right =z
17 z.left =T.nil

18 z.right = T.nil

19 z.color =RED
20 RB-INSERT-FIXUP(T, z]

N

Széchenyi Istvan University

12

= Theory of algorithms

Red-black trees

RB-INSERT-FIXUP(T, z)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

while z.p.color == RED
if zp==2zp.p.left
y = z.p.p.right
if y.color == RED
z.p.color = BLACK
y.color = BLACK
z.p.p.color = RED
Z=127.p.p
else
if z==2z.p.right
Z=1.p
LEFT-ROTATE(T, 2)
z.p.color = BLACK
z.p.p.color = RED
RIGHT-ROTATE(T, z.p.p)
else // z’s parent is the right child of its parent
same as the true case with ,left” and ,,right” exchanged
T.root.color = BLACK

Remarks: Note that if z.p.color == RED then node z.p.p exists.

Efficiency: The running time of both procedures in an n-node red-black tree is O(lg n).

N

/l case 1
/l case 1
/l case 1
/l case 1

/[case 2
/[case 2
/ case 3
/ case 3
/l case 3

Széchenyi Istvan University

13

O Theory of algorithms Széchenyi Istvan University
Red-black trees

The operation of RB-INSERT-FIXUP case 1

N 14

= Theory of algorithms Széchenyi Istvan University
Red-black trees

Case 2 Case 3
o Y oy z
a z z Y a s y)
B Y a B

The operation of RB-INSERT-FIXUP case 2, case 3

15

ra

N Theory of algorithms
Red-black trees

Széchenyi Istvan University

The operation of RB-INSERT-FIXUP

ra

16

N Theory of algorithms
Red-black trees

Széchenyi Istvan University

The operation of RB-INSERT-FIXUP

ra

17

N Theory of algorithms
Red-black trees

Széchenyi Istvan University

The operation of RB-INSERT-FIXUP

ra

18

= Theory of algorithms Széchenyi Istvan University

Exercises
m [n procedure RB-INSERT the inserted node is colored red. If it is colored
black then red-black property 4 is satisfied. Why is it not colored black?

m Draw the red-black tree that results after RB-INSERT is called on the bottom
tree of the previous slide with key 3. Give the colors of the nodes with letter R

or B. Give the black-heights of the nodes too.

m What red-black tree is built with inserting keys 15, 20, 25, 18, 12, 6, 8, 3, 4
Into an initially empty tree? What is the black-height of the result tree?

19

ra

O Theory of algorithms Széchenyi Istvan University

Red-black trees

Remarks:

m The procedure for deleting a node from a red-black tree (RB-DELETE, see textbook) is based on
the TREE-DELETE procedure.

m |f the deleted node is black then the violated red-black properties have to be restored. This
procedure (RB-DELETE-FIXUP, see textbook) runs in O(lg n) time.

Efficiency: The running time of deleting a node from an n-node red-black tree is O(lg n).

20

ra

o®" Theory of algorithms Széchenyi Istvan University

Augmenting data structures

m The process of augmenting a basic data structure to support additional functionality occurs quite
frequently in algorithm design.

The steps of the process of augmenting a data structure:
1. Choose an underlying data structure.
2. Determine additional information to maintain in the underlying data structure.

3. Verify that we can maintain the additional information for the basic modifying operations on the
underlying data structure.

4. Develop new operations.

Examples:

m Augmenting red-black trees to support general order statistic operations on a dynamic set.
m Augmenting red-black trees to maintain a dynamic set of time intervals.

Theorem: Let f be an attribute that augments a red-black tree T of n nodes, and suppose that the value
of f for each node x depends on only the information in nodes x, x.left, and x.right, possibly
including x.left.f and x.right. f. Then, we can maintain the values of f in all nodes of T during

insertion and deletion without asymptotically affecting the O (Ig n) performance of these
operations.

1N 21

o®" Theory of algorithms Széchenyi Istvan University

Dynamic order statistics

m The ith order statistic of a set of n elements is the ith (1<i <n) smallest element.

m This element can be found in expected O(n) time from an unordered set (see RANDOMIZED-
SELECT procedure).

= With augmenting red-black trees it can be found in O(lg n) time. The rank of a given element in
the total ordering of the set also can be calculated in O(lg n) time.

An order-statistic tree T is simply a red-black tree with additional information stored in each node.
Besides the usual red-black tree attributes in a node x (x.key, x.color, x.p, x.left, and x.right), we
have another attribute, x.size.

This attribute contains the number of (internal) nodes in the subtree rooted at x (including x itself), that
IS, the size of the subtree.

If we define the sentinel’s size to be 0 (that is, we set T.nil.size to be 0) then we have the identity
X.size = x.left.size + x.right.size +1.

Remarks: Same keys are possible, so the rank of a node give the position of the inorder tree walk. For
example (on the next slide’s tree) the rank of the black node with 14 key is 5, and it is 6 for the red
color one.

22

ra

O Theory of algorithms Széchenyi Istvan University

Dynamic order statistics

26
20
4
7
21 30 47
4 : 1
19 21 28 38
2 1 1 3
20 35 [N 39
1 key 1 1
\)
Slze

An order-statistic tree

23

ra

O Theory of algorithms Széchenyi Istvan University

Dynamic order statistics
OS-SELECT(x, i)

1 r=xleft.size+1

2 ifi==r

3 return x

4 else

5 ifi<r

6 return OS-SELECT (x.left, 1)

7 else

8 return OS-SELECT(x.right, i—r)

Remarks: To find the node with the ith smallest key in an order-statistic tree T, we call
OS-SELECT(T.root, 1).

Efficiency: The running time is O(lg n) for an n-node order-statistic tree.

24

ra

O Theory of algorithms Széchenyi Istvan University

Exercises

m What is the result of OS-SELECT(T.root, 7) call for the order-statistic tree T
located in the previous example?

m What nodes are examined by OS-SELECT(T.root, 16) call for the same tree?

25

ra

O Theory of algorithms Széchenyi Istvan University

Dynamic order statistics
OS-RANK(T, X)

1 r=xleftsize+1

2 Yy=X

3 whiley # T.root

4 if y ==y.p.right

5 r = r+y.p.left.size+1
6 y=yp

7 returnr

Given a pointer to a node x in an order-statistic tree T, the procedure OS-RANK returns the position of
X in the linear order determined by an inorder tree walk of T.

Efficiency: The running time is O(lg n) for an n-node order-statistic tree.

ra

26

O Theory of algorithms Széchenyi Istvan University

Exercises

m \What is the result of OS-RANK function with the order-statistic tree T located
In the previous example and the node contains key 19?

m What nodes are examined by OS-RANK function for the same tree and the
node contains key 357

27

ra

O Theory of algorithms Széchenyi Istvan University

Dynamic order statistics

To maintain subtree sizes in procedure LEFT-ROTATE the following lines have to be add :
14 y.size = x.size
15 x.size = x.left.size+ x.right.size+1

The change to RIGHT-ROTATE is symmetric.

Efficiency: The updates are local, requiring only the size information stored in x, y, and the roots of the

subtrees shown as triangles, thus both insertion and deletion take O(lg n) time for an n-node order-
statistic tree.

LEFT-ROTATE(T, X)

RIGHT-ROTATE(T, y)

Updating subtree sizes during rotations

ra

28

O Theory of algorithms Széchenyi Istvan University

Interval trees

m This example augments red-black trees to support operations on dynamic sets of intervals.

A closed interval is an ordered pair of real numbers [t,, t,], with t; <t,. The interval [t,, t,] represents
theset{te R:t; <t<t, }.

Open and half-open intervals omit both or one of the endpoints from the set, respectively.

An interval [t;, t,] can be represented as an object i, with attributes i.low=t, (the low endpoint) and
I.high=t, (the high endpoint).

The intervals i and i’ overlap if i N 1’ # @, that is, i.low <1’ high and i".low < i.high.

29

ra

N Theory of algorithms

Interval trees

Any two intervals 1 and i’ satisfy the interval trichotomy, that is, exactly one of the following three

properties holds:
= iandi’ overlap,
m iistothe leftof i’ (i.e. i.high <i’.low),
m iistotheright of i’ (i.e. i’ high <i.low).

Széchenyi Istvan University

1 1 1 %
—— N o -
} | % } 1 % i’ i

Interval trichotomy

ra

v

30

O Theory of algorithms Széchenyi Istvan University

Interval trees

An interval tree is a red-black tree that maintains a dynamic set of elements, with each element x
containing an interval x.int.

Interval trees support the following operations:

= INTERVAL-INSERT(T, x) adds the element x, whose int attribute is assumed to contain an
interval, to the interval tree T.

= INTERVAL-DELETE(T, x) removes the element x from the interval tree T.

= INTERVAL-SEARCH(T, i) returns a pointer to an element x in the interval tree T such that
x.int overlaps interval i, or a pointer to the sentinel T.nil if no such element is in the set.

31

ra

= Theory of algorithms Széchenyi Istvan University

Interval trees

The steps of the process of augmenting a data structure:

1.

ra

Underlying data structure: it is a red-black tree in which each node x contains an interval x.int
and the key of x is the low endpoint (x.int.low) of the interval. Thus, an inorder tree walk of the
data structure lists the intervals in sorted order by low endpoint.

Additional information: each node x contains a value x.max, which is the maximum value of any
interval endpoint stored in the subtree rooted at x.

Maintaining the information: x.max can be determined given interval x.int and the max values of
node Xx’s children as x.max=max(x.int.high, x.left. max, x.right.max). The max attributes can be
update after a rotation in O(1) time, thus insertion and deletion run in O(lg n) time.

Developing new operations: the only new operation is INTERVAL-SEARCH(T, i).

32

O Theory of algorithms Széchenyi Istvan University

Interval trees

26 H 26
25 F—— 30
19 H 20
17 — 19
16 — 21
5 23

8 H 9
6 10
5 —— 8
0 1 3
\ \ 4
0 5 10 15 20 25 30

[16,21]

[25,30]
30

[17,19] [26,26]

[19,20]
20

An interval tree

ra

33

N Theory of algorithms

Interval trees

INTERVAL-SEARCH(T, 1)

1 x=T.root
2 while x # T.nil and i does not overlap x.int

3 if x.left # T.nil and x.left.max > i.low
4 X = X.left

5 else

6 X = X.right

7 return x

Efficiency: The running time is O(lg n) for an n element dynamic set.
Remarks: It is enough to examine only one path from the root.

ra

Széchenyi Istvan University

34

O Theory of algorithms Széchenyi Istvan University

Exercises

m What is the result of INTERVAL-SEARCH function with the interval tree T
located in the previous example and the interval i1=[4, 7]?

m What nodes are examined by INTERVAL-SEARCH function for the same tree
and the interval i1=[11, 14]?

35

ra

	1. dia: Theory of algorithms (6th lecture)
	2. dia: Outline
	3. dia: Red-black trees
	4. dia: Red-black trees
	5. dia: Red-black trees
	6. dia: Red-black trees
	7. dia: Exercises
	8. dia: Red-black trees
	9. dia: Red-black trees
	10. dia: Red-black trees
	11. dia: Exercises
	12. dia: Red-black trees
	13. dia: Red-black trees
	14. dia: Red-black trees
	15. dia: Red-black trees
	16. dia: Red-black trees
	17. dia: Red-black trees
	18. dia: Red-black trees
	19. dia: Exercises
	20. dia: Red-black trees
	21. dia: Augmenting data structures
	22. dia: Dynamic order statistics
	23. dia: Dynamic order statistics
	24. dia: Dynamic order statistics
	25. dia: Exercises
	26. dia: Dynamic order statistics
	27. dia: Exercises
	28. dia: Dynamic order statistics
	29. dia: Interval trees
	30. dia: Interval trees
	31. dia: Interval trees
	32. dia: Interval trees
	33. dia: Interval trees
	34. dia: Interval trees
	35. dia: Exercises

