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Powers of an element

 Exponentiation

Problem: Calculate a b as less multiplication as possible where a and b are nonnegative integer.

Solution: A recursive algorithm that decreases the number of multiplication with repeated squaring.

For example: 210 = 25 · 25, 25 = 2 · 24, 24 = 22 · 22, 22 = 2 · 2.

EXPONENTIATION(a, b)

1 if b == 0

2 return 1

3 if b mod 2 == 0

4 c = EXPONENTIATION(a, b / 2)

5 return c · c

6 return a · EXPONENTIATION(a, b−1)

Efficiency: The number of recursive calls thus the number of multiplication is O(lg b).
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Powers of an element modulo n

 Modular exponentiation

The sequence of powers of an 𝑎 ϵ 𝐙𝑛 element a0, a1, a2, a3, … can be calculated modulo n, where         

a0 mod n=1, and the ith. value is a i mod n.

Remark: Note that  a i ≡ a (a i−1 mod n) (mod n).

Euler’s theorem: For any n>1, aΦ(n) ≡ 1 (mod n) for all 𝑎 ϵ 𝐙𝑛
∗ .

Fermat’s theorem: If p is prime, then a p−1 ≡ 1 (mod p) for all 𝑎 ϵ 𝐙𝑛
∗ .

i 0 1 2 3 4 5 6 7

2i mod 5 1 2 4 3 1 2 4 3 …

3i mod 5 1 3 4 2 1 3 4 2 …

The powers of 2 and 3 modulo 5 and modulo 7

i 0 1 2 3 4 5 6 7 8 9 10 11

2i mod 7 1 2 4 1 2 4 1 2 4 1 2 4 …

3i mod 7 1 3 2 6 4 5 1 3 2 6 4 5 …
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Powers of an element modulo n

 Modular exponentiation

Problem: Calculate a b mod n, where a and b are nonnegative integers and n is a positive integer. 

Solution: 

 Let < bk, bk−1,…, b0 > be the binary representation of b (that is, the binary representation is k+1 bits 

long, bk is the most significant bit, and b0 is the least significant bit).

 Using

a2c mod n = (a c )2 mod n

a2c+1 mod n = a (a c)2 mod n

and  

a i ≡ a (a i−1 mod n) (mod n)

equations a c mod n can be calculated with an iteration.
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Powers of an element modulo n

MODULAR-EXPONENTIATION(a, b, n)

1 c = 0

2 d = 1

3 Let < bk, bk−1,…, b0 > be the binary representation of b

4 for i = k downto 0

5 c = 2c

6 d = (d · d) mod n

7 if bi == 1

8 c = c+1

9 d = (d · a) mod n

10 return d

Efficiency: The total number of arithmetic operations is O(lg b).

Remark: The variable c is not really needed by the algorithm it may helps the understanding.
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Powers of an element modulo n

Computing 7560 mod 561

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

d 7 49 157 526 160 241 298 166 67 1

Computing 250 mod 5

i 5 4 3 2 1 0

bi 1 1 0 0 1 0

c 1 3 6 12 25 50

d 2 3 4 1 2 4
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Exercises

 Give the result of the below given modular exponentiation.

 215 mod 5

 735 mod 11

 What values of d are calculated by the MODULAR-EXPONENTIATION 

with below given input data?

 a=2, b=15, n=5 

 a=7, b=35, n=11
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The RSA cryptosystem

 A public-key cryptosystem

It can be used for:

 sending encrypt messages,

 unforged digital signature.

Properties:

Each participant has both a public key and a secret key. For example, in the RSA cryptosystem, each 

key consists of a pair of integers.

The participants Alice and Bob are traditionally used in cryptography examples; we denote their public 

and secret keys as PA, SA for Alice and PB, SB for Bob.

Let D denote the set of permissible messages (for example the set of all finite-length bit sequences), 

and M D an arbitrary message. 

The public and secret keys for any participant are a „matched pair” in that they specify functions that 

are inverses of each other. That is,

M=SA (PA (M)) 

M=PA (SA (M)) 

for any message M D .

Only Alice can be able to compute the function SA in any practical amount of time (and Bob the 

function SB) even though everyone knows PA and can compute PA the inverse function to SA

efficiently.
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The RSA cryptosystem

Encryption in a public key system.

 Bob obtains Alice’s public key PA (for example from a public directory or directly from Alice).

 Bob encrypts the message M using Alice’s public key PA and transmits the resulting ciphertext

C=PA(M) over a communication channel to Alice.  (An eavesdropper who captures the transmitted 

ciphertext gains no information about M.)

 Alice receives C and decrypts it applying her secret key SA to retrieve the original message: 

SA(C)=SA(PA(M))=M.

C

PA SA

encrypt

MM

decrypt

communication channel

C = PA(M)

eavesdropper

Bob Alice



Széchenyi István UniversityTheory of algorithms

11

The RSA cryptosystem

Digital signatures in a public-key system:

 Alice computes her digital signature σ for the message M’ using her secret key SA and the 
equation σ=SA(M’).

 Alice sends the message/signature pair (M’, σ) to Bob.

 Bob receives the (M’, σ) pair and verifies it by using Alice’s public key PA. He checks the equation 
M’=PA(σ). If the equation holds, he accepts (M’, σ) as a message that Alice has signed.

Remarks: A digital signature must be verifiable by anyone who has access to the signer’s public key. 
A signed message is not necessarily encrypted; the message can be “in the clear” and not protected 
from disclosure. (Presumably, M’ contains Alice’s name, so Bob knows whose public key to use.)

SA PA

sign

M’
M’

verify

communication channel

( M’, σ )

Alice Bob

σ = SA ( M’ ) σ

= ? accept
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The RSA cryptosystem

 Creating the public keys and the secret keys  

In the RSA public-key cryptosystem, a participant creates his or her public and secret keys with the 

following procedure:

1. Select at random two large prime numbers p and q such that p ≠ q. The primes p and q might be, 

say, 1024 bits each.

2. Compute n=pq.

3. Select a small odd integer e that is relatively prime to Φ(n), where Φ(n) = (p−1)(q−1).

4. Compute d as the multiplicative inverse of e, modulo Φ(n). 

5. Publish the pair P = (e, n) as the participant’s RSA public key.

6. Keep secret the pair S = (d, n) as the participant’s RSA secret key.

Remarks: 

 Factoring large integers is easy  breaking the RSA cryptosystem is easy. 

 Factoring large integers is hard ?  ? breaking the RSA cryptosystem is hard.
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The RSA cryptosystem

 Using the public and the secret keys

In the RSA public-key cryptosystem the domain D = Zn = {[a]n : 0 ≤ a ≤ n−1}.

To transform a message M associated with a public key P(e, n), compute

P(M) = M e (mod n).

To transform a ciphertext C associated with a secret key S(d, n), compute

S(C) = C d (mod n).

Remark: These equations apply to both encryption and signatures.
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A simple example of RSA

 Creating the public keys and the secret keys  

1. Let p = 2 and q = 5.

2. n=pq = 10.

3. Let e = 3, as Φ(n) = (p−1)(q−1) = 4, and gcd(Φ(n), e) = gcd(4, 3) = 1.

4. Solving equation ed ≡ 1 (mod Φ(n)) we get d = 3, as the multiplicative inverse of e, modulo Φ(n).

5. The public key is P = (e, n) = (3, 10) pair.

6. The secret key is S = (d, n) = (3, 10) pair.

Remark: The EXTENDED-EUCLID results gcd(a, b) = gcd(e, Φ(n)) = gcd(3, 4) = 1, x=−1, y=1 for 

the input data a=e and b=Φ(n). As gcd(e, Φ(n)) = ex+Φ(n)y,  1=3·(−1)+4·1, thus ex ≡ 1 (mod 

Φ(n)). Since x=−1 a negative number, thus we shift it with Φ(n) to be positive, we get d=3, as the 

multiplicative inverse of e.
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A simple example of RSA

 A possible way to implement encrypting

Let the message be as follow:

As n = 10, and 23 < 10 < 24, thus encrypting is a conversion from 3 to 4 bits, and decrypting is a 

conversion from 4 to 3 bits. 

Text ’a’ ’p’ ’p’ ’l’ ’e’

Binary 01100001 01110000 01110000 01101100 01100101

Decimal 97 112 112 108 101

A message to be encrypted separated groups of 3 bits

Binary 011 000 010 111 000 001 110 000 011 011 000 110 010 1

Decimal 3 0 2 7 0 1 6 0 3 3 0 6 2 1

A message to be encrypted
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A simple example of RSA

 A possible way to implement encrypting

Encrypting with equation P(M) = M e (mod n), where e = 3, n = 10. 

With MODULAR-EXPONENTIATION the values of P(M) can be computed for all possible message   

0 ≤ M ≤ n−1 (thought the values 0 ≤ M ≤ 7 will be used, since the 3 bits separation).

Remark: The last „3 bits” may be not 3 bits long, thus the message can be appended with the length of 

the last „3 bits” (in this example it is 1), so the correct length of the original message can be set 

after decrypting.

The encrypted message (in 4 bits groups) with length completion

Message 3 0 2 7 0 6 2 1 1

Encrypted 7 0 8 3 0 … 6 8 1 1

Binary 0111 0000 1000 0011 0000 … 0110 1000 0001 0001

Encrypting

M 0 1 2 3 4 5 6 7

P(M) 0 1 8 7 4 5 6 3
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A simple example of RSA

 A possible way to implement decrypting

Decrypting with equation S(C) = C d (mod n), where d = 3, n = 10.

Remark: If p and q primes have 100 decimal digits, then n=pq has 200 decimal digits, that is 200 lg 10 

≈ 665 binary digits, thus the message can be separated into such long (for example 512 bits = 64 

bytes) groups. 

After decrypting considering the length completion

Encrypted 7 0 8 3 0 1 6 0 7 7 0 6 8 1 1

Decrypted 3 0 2 7 0 1 6 0 3 3 0 6 2 1 1

Binary 011 000 010 111 000 001 110 000 011 011 000 110 010 1

Decrypting

C 0 1 2 3 4 5 6 7 8 9

S(C) 0 1 8 7 4 5 6 3 2 9
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Exercises

 Suppose that we broke the public RSA key (3, 319), so we know that p=11 

and q=29. 

 What is the encryption of the message M=100?

 What is the secret RSA key?


