
Theory of algorithms (9th lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Greedy algorithms

 Greedy algorithms versus dynamic programming

 Knapsack problems

 An activity-selection problem

 Designing a binary character code

 Huffman code

 Approximation algorithms

 The set-covering problem

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Greedy algorithms

 Greedy algorithms versus dynamic programming

A dynamic programming algorithm makes a choice at each step and the choice depends on the

solutions to subproblems. It works in a bottom-up manner, progressing from smaller subproblems

to larger subproblems.

A greedy algorithm makes choice that seems best at the moment and then solve the subproblem that

remains. It works in a top-down fashion, making one greedy choice after another, reducing each

given problem instance to a smaller one.

 The choice may depend on choices so far, but it cannot depend on any future choices or on the solutions to

subproblems.

 This heuristic strategy does not always produce an optimal solution, but sometimes it does.

The greedy-choice property: a globally optimal solution can be reached by making locally optimal

(greedy) choices.

The optimal-substructure property: an optimal solution to the problem contains within it optimal

solutions to subproblems.

Széchenyi István UniversityTheory of algorithms

4

Greedy algorithms

 Knapsack problems

The 0-1 knapsack problem: A thief robbing a store finds n items. The ith item is worth vi dollars and

weighs wi pounds, where vi and wi are integers. The thief wants to take as valuable a load as possible,

but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take?

The fractional knapsack problem: the setup is the same, but the thief can take fractions of items, rather

than having to make a binary (0-1) choice for each item.

Both knapsack problems exhibit the optimal-substructure property.

The 0-1 knapsack problem does not exhibit the greedy-choice property, thus it can not be solved with

greedy strategy, but it can be solved with dynamic programming.

The fractional knapsack problem exhibits the greedy-choice property, thus it can be solved with greedy

strategy (with greedy choice of vi / wi).

Széchenyi István UniversityTheory of algorithms

5

Greedy algorithms

A knapsack problem

30

50

20
10

item 1

item 2

item 3

knapsack$60 $100 $120

50

20

=$220

$60
$100

$12030

+
50
20

=$160

$100

+

50

=$180

$12030

+

10 10 $60 $60

50
20

=$240

$100

+

$80

10

20

30

+

Széchenyi István UniversityTheory of algorithms

6

Greedy algorithms

 An activity-selection problem

There is given a set S={a1, a2, …, an} of n proposed activities that wish to use a resource, such as a

lecture hall, which can serve only one activity at a time.

Each activity ai has a start time si and a finish time fi, where 0 ≤ si < fi < ∞.

If selected, activity ai takes place during the half-open time interval [si, fi).

Activities ai and aj are compatible if the intervals [si, fi) and [sj, fj) do not overlap. That is, if si ≥ fj or

sj ≥ fi .

The activity-selection problem: to select a maximum-size subset of mutually compatible activities.

Széchenyi István UniversityTheory of algorithms

7

Greedy algorithms

GREEDY-ACTIVITY-SELECTOR(s, f)

1 n = s.length

2 A = {a1}

3 k = 1

4 for m = 2 to n

5 if s[m] ≥ f[k]

6 A = A ⋃ {am}

7 k = m

8 return A

Criteria: The data of activities are stored in s and f arrays and they are sorted in monotonically
increasing order of finish time: f1 ≤ f2 ... ≤ fn.

Remark: Since the activities are examined in order of monotonically increasing finish time, fk is
always the maximum finish time of any activity in A, that is, fk = max{fi: ai ∈ A}.

Efficiency: A set of n activities is scheduled in Θ(n) time.

Theorem: Consider any nonempty subproblem Sk, and let am be an activity in Sk with the earliest finish
time. Then am is included in some maximum-size subset of mutually compatible activities of Sk.

Corollary: The GREEDY-ACTIVITY-SELECTOR produces an optimal solution of the activity
selection problem.

Széchenyi István UniversityTheory of algorithms

8

Greedy algorithms

The operation of GREEDY-ACTIVITY-SELECTOR

i si fi

1 1 4

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

11

841

841

41

7

41

6

41

5

41

4

1

3

1

2

1

841

8

9

10

841

11

Széchenyi István UniversityTheory of algorithms

9

Exercises

 What is the result of the GREEDY-ACTIVITY-SELECTOR if we have

activities with below given s and f ?

 s=< 8, 3, 5, 12, 3, 6, 10, 6, 17 >

 f=< 12, 6, 8, 14, 7, 9, 15, 7, 20 >

Széchenyi István UniversityTheory of algorithms

10

Greedy algorithms

 Designing a binary character code

How can a file of characters be stored compactly in which each character is represented by a unique

binary string, which we call a codeword?

Prefix codes: a codes in which no codeword is also a prefix of some other codeword. The prefix codes

are desirable because they simplify decoding. A prefix code can always achieve the optimal data

compression among any character code.

Encoding is always simple for any binary character code; we just concatenate the codewords

representing each character of the file.

Decoding needs a convenient representation for the prefix code so that we can easily pick off the initial

codeword. A binary tree whose leaves are the given characters provides one such representation.

The codeword for a character is given by the simple path from the root to that character.

An optimal code for a file is always represented by a full binary tree, in which every nonleaf node

has two children.

If C is the alphabet from which the characters are drawn and all character frequencies are positive, then

the tree for an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and

exactly |C|–1 internal nodes.

Széchenyi István UniversityTheory of algorithms

11

Greedy algorithms

A character-coding problem

0

1

1

1

1

10

0

0

0

100

55

25 30

a:45

c:12 b:13 d:1614

f:5 e:9

0

1

1

0

0

100

14

14

e:9 f:5

10

0
86

58

a:45 b:13

10

1

28

c:12 d:16

a

45 13 12 16 9 5

b c d e f

000 001 010 011 100 101

Frequency (in thousands)

Fixed-length codeword

0 101 100 111 1101 1100Variable-length codeword

(300,000 bits)

(224,000 bits)

Széchenyi István UniversityTheory of algorithms

12

Greedy algorithms

HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n–1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = x.freq + y. freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree

Remark: Each character c ∈ C is an object with an attribute c.freq giving its frequency.

Efficiency: If the min-priority queue Q is implemented as a binary min-heap, then each heap operation

(EXTRACT-MIN, INSERT) requires time O(lg n). Thus, the total running time of HUFFMAN on

a set of n characters is O(n lg n).

Széchenyi István UniversityTheory of algorithms

13

Greedy algorithms

The operation of HUFFMAN

1

1

1

10

0

0

0

55

25 30

a:45

c:12 b:13 d:1614

f:5 e:9

10

a:45c:12 b:13 d:1614

f:5 e:9

110 0

25 a:45

c:12 b:13

d:1614

f:5 e:9

1 1

10

0 0

25 30 a:45

c:12 b:13 d:1614

f:5 e:9

0

1

1

1

1

10

0

0

0

100

55

25 30

a:45

c:12 b:13 d:1614

f:5 e:9

a:45c:12 b:13 d:16f:5 e:9

Széchenyi István UniversityTheory of algorithms

14

Exercises

 What tree is the result of HUFFMAN with the below given input data? Give

the total number of bits that is necessary to code the entire file with the fixed-

length code and Huffman code.

 a: 23, b: 15, c: 12, d: 13, e: 6, f: 10, g: 4, h: 17

 What is an optimal Huffman code for the following set of frequencies, based

on the first Fibonacci numbers:

 a: 1, b: 1, c: 2, d: 3, e: 5, f: 8, g: 13, h: 21, …

Széchenyi István UniversityTheory of algorithms

15

Greedy algorithms

 Approximation algorithms

We call an algorithm that returns near-optimal solutions an approximation algorithm.

Suppose that each potential solution of an optimization problem has a positive cost, and we wish to find

a near-optimal solution.

Depending on the problem, an optimal solution as one with maximum possible cost or one with

minimum possible cost; that is, the problem may be either a maximization or a minimization

problem.

We say that an algorithm for a problem has an approximation ratio of ρ(n) if, for any input of size n,

the cost C of the solution produced by the algorithm is within a factor of ρ(n) of the cost C* of an

optimal solution:

max(C/C*, C*/C) ≤ ρ(n).

If an algorithm achieves an approximation ratio of ρ(n), we call it a ρ(n)-approximation algorithm.

Remark: if the ρ(n) function is independent from n, then approximation ratio is ρ and the algorithm is

called a ρ-approximation algorithm.

Széchenyi István UniversityTheory of algorithms

16

Greedy algorithms

 The set-covering problem

An instance (X, F) of the set-covering problem consists of a finite set X and a family F of subsets of

X, such that every element of X belongs to at least one subset in F :

X= ⋃S F S.

We say that a subset S F covers its elements.

The problem is to find a minimum size subset C F whose members cover all of X:

X= ⋃S C S.

Example: Suppose that X represents a set of skills that are needed to solve a problem and that we have a

given set of people available to work on the problem. We wish to form a committee, containing as

few people as possible, such that for every requisite skill in X, at least one member of the committee

has that skill.

Széchenyi István UniversityTheory of algorithms

17

Greedy algorithms

GREEDY-SET-COVER(X,F)

1 U = X

2 C = Ø

3 while U ≠ Ø

4 select an S ∈ F that maximizes | S ⋂ U |

5 U = U – S

6 C = C ⋃ {S}

7 return C

Efficiency: Since the iteration runs at most min(|X|, |F |) times and the loop body can be implement in

time O(|X||F |), a simple implementation runs in time O(|X||F | min(|X|, |F |)).

Let us denote the dth harmonic number H(d)=∑ i=1,..,d 1/i.

Theorem: GREEDY-SET-COVER is a polynomial-time ρ(n)-approximation algorithm, where

ρ(n)= H(max{|S|: S ∈ F }).

Corollary: Since ∑ i=1,..,d 1/i ≤ ln d +1, GREEDY-SET-COVER is a polynomial-time (ln |X|+1)-

approximation algorithm.

Széchenyi István UniversityTheory of algorithms

18

Greedy algorithms

An instance of the set-covering problem

S5S3

S6

S2

S1

S4

Széchenyi István UniversityTheory of algorithms

19

Exercises

 What is the result of GREEDY-SET-COVER with the sets of the previous

slide?

 Consider each of the below given words as a set of letters. Give the result of

GREEDY-SET-COVER if the ties are broken in favor of the word that appears

first in the dictionary.

 {arid, dash, drain, heard, lost, nose, shun, slate, snare, thread}

