“#®" Theory of algorithms (st lecture)

Pal Pusztai
pusztai@sze.hu

N Theory of algorithms

Outline

m Dynamic programming

m General knowledge

= Developing a dynamic-programming algorithm
m Examples

m Matrix-chain multiplication

= Longest common subsequence
m Exercises

ra

Széchenyi Istvan University

= Theory of algorithms Széchenyi Istvan University
Dynamic programming
m The divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the
subproblems recursively, and then combine their solutions to solve the original problem.
m Dynamic programming
= Dynamic programming, like the divide-and-conquer method, solves problems by combining

the solutions to subproblems. In contrast, dynamic programming applies when the
subproblems overlap, that is, when subproblems share subsubproblems.

m |t solves each subsubproblem just once and then saves its answer in a table, thereby avoiding
the work of recomputing the answer every time it solves each subsubproblem.

m Itistypically applied to solve optimization problems. Such problems usually have many
possible solutions and each solution has a value.

m The goal is to find a solution with the optimal (minimum or maximum) value. Such a
solution is called an optimal solution to the problem, as opposed to the optimal solution,
since there may be several solutions that achieve the optimal value.

ra

O Theory of algorithms Széchenyi Istvan University
Dynamic programming

Developing a dynamic-programming algorithm typically follows a sequence of four steps:
1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

ra

= Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication
MATRIX-MULTIPLY(A, B)

1 if A.columns # B.rows

2 error ,,incompatible dimensions”

3 else

4 let C be a new A.rows xB.columns matrix

5 fori=1to A.rows

6 for j = 1 to B.columns

I ¢,;=0

8 for k = 1 to A.columns

9 Cij = Cijta by
10 return C

Remarks: Two matrices A and B can be multiplied only if they are compatible: the number of
columns of A must equal the number of rows of B. If A is a pxg matrix and B is a gxr matrix, the
resulting matrix C is a pxr matrix.

Efficiency: The time to compute C is dominated by the number of scalar multiplications in line 9,
which is pgr. The costs will be expressed of the number of scalar multiplications.

ra

= Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

It is given a sequence (chain) A, A,, ..., A,of n matrices to be multiplied and their product A, A, ... 4,
has to be compute.

Matrix multiplication is associative, and so all parenthesizations yield the same product.

A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully
parenthesized matrix products, surrounded by parentheses.

Example: If the sequence is A;, A,, A, A,, then A} A, A; A, product can be fully parenthesized in five
distinct ways:

(Al (AZ (AB A4)))1
(A1 (A2 Ag) Ag)),
(A1 (A2 Aq)) A),
(A1 A2)(As Ag)),
(A A) A AY).
Example: Let n=3 and the dimensions of the matrices A;, A,, A;are 10x100, 100%5 and 5x50,
respectively.

((AL A,) A;) parenthesization: 10-100-5+10-5-50=5000+2500=7500 scalar multiplications.
(A; (A, Ay)) parenthesization: 100-5-50+10-100-50=25000+50000=75000 scalar multiplications.

N 6

o®" Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

The matrix-chain multiplication problem as follows: Given a chain A;, A,, ... , A, of n matrices,
where for i=1, 2, ..., n, matrix A; has dimension p; ,xp;, fully parenthesize the product A/A, ... A,
in a way that minimizes the number of scalar multiplications.

Remark: The number of solutions is exponential in n.

The steps of the solution by dynamic-programming:

1. Characterize the structure of an optimal solution.

m Letus adopt the notation A, ;, where i <], for the matrix that results from evaluating the product of
AiAis1 .- Aj- The optimal parenthesizing split A; A;,; ... A; product between A, and A, ., for some
integer k in the range i <k <.

m The cost of parenthesizing this way is the cost of computing the matrix A, ,, plus the cost of
computing A, j, plus the cost of multiplying them together.

= Note that A; , and A, ; subproblems must have an optimal parenthesization as well, thus an
optimal solution to the problem can be constructed from optimal solutions to subproblems.

ra

o®" Theory of algorithms Széchenyi Istvan University

2.

Matrix-chain multiplication

Recursively define the value of an optimal solution:
The subproblem: determining the minimum cost of parenthesizing A;A;,; ... A;for 1<i<j<n.

Let m[i, j] be the minimum number of scalar multiplications needed to compute the matrix A
the full problem, the lowest cost way to compute A, , would thus be m[1, n].

If i=], the problem is trivial, the chain consists of just one matrix A; ;=A,, so that no scalar
multiplications are necessary to compute the product.

If i<j, let us assume that the optimal parenthesization split the product A; A;,; ... A; between A, and
Av+1, Where | <k <. The dimension of each matrix A; is p;_;xp;, the matrix product az A; , Ay, ;
takes p; 4 py p; scalar multiplications.

mi, j]= m[i, K]+ m[k+1, j]+ p;_y Py P;
There are only j—i possible values for k, namely k=i, i+1, i+2, ..., j—1. Since the optimal
parenthesization must use one of these values for k, we need only check them all to find the best:

m[i, j]= 0, if i=j,
mi, jJ= min ., . {{m[i, K]+ m[k+1, j]+ pi_y py P} ifi<j.

i jo for

Remarks: To construct an optimal solution (step 4) we define s[i, j] to be a value of k at which we split

ra

the product A; A, ... A; in an optimal parenthesization. That is, s[i, J] equals a value k such that
m[i, j]J= m[i, K]+ m[k+1, j]+ p;_; p, p; is satisfied.

= Theory of algorithms Széchenyi Istvan University
Matrix-chain multiplication

3. Computing the optimal costs.

MATRIX-CHAIN-ORDER(p)

1 n=p.length—1

2 letm[l..n, 1..n] and s[1..n—1, 2..n] be new tables

3 fori=1ton

4 m[i, i]=0

5 forl=2ton /' is the chain length
6 fori=1ton-/+1

7 j=itl-1

8 m[i, j] = o

9 fork=1ito;—-1

10 q = m[i, Kl+m[k+1, jl+ pi_; py P,
11 if g <mli, j]

12 mli, j]=q
13 s[i, j] =k

14 return mands

Efficiency: The algorithm runs in O(n3) time and it requires ®(n?) space to store m and s tables.

N 9

ra

Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

A, : 30x35

A, : 35%15 m[2, 2]+m[3, 5]+p, p, Ps=0+2500+35-15-20=13000,

A, 15x5 m[2, 5]=min{ m[2, 3]+M[4, 5]+p, p; ps=2625+1000+35-5-20=7125, =7125.
A, 5%10 m[2, 4]+m[5, 5]+p, p, ps=4375+0+35-10-20=11375

As 1 10%20

A 20%25

The operation of MATRIX-CHAIN-ORDER (n=6) 10

O Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

4. Constructing an optimal solution,

PRINT-OPTIMAL-PARENS(S, i, j)

1 ifj==i

2 write ”A”;

3 else

4 write ”(”

5 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

6 PRINT-OPTIMAL-PARENS(s, sli, j]+1, j)
7 write ”)”

Remarks:

m The initial call PRINT-OPTIMAL-PARENS.(s, 1, n).

m With the matrices in the example the call PRINT-OPTIMAL-PARENS(s, 1, 6) prints the
parenthesization ((A,(A, A3))((A, As) Ag)).

11

ra

o®" Theory of algorithms Széchenyi Istvan University

Exercises

ra

How many scalar multiplications do we need to compute the product matrix,
where the sequence of dimensions is (5, 2, 3, 4). Give the value of the best
case and the value of the worst case.

Find an optimal parenthesization of a matrix-chain product whose sequence of
dimensions is (5, 2, 3, 4, 2).

Give m and s tables that MATRIX-CHAIN-ORDER(p) computes with

p=(5, 2, 3,5, 4, 2).

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY (A, s, i, J) that
actually performs the optimal matrix-chain multiplication, given the sequence
of matrices A, A,, ... A, the s table computed by MATRIX-CHAIN-ORDER,
and the indices i and j. The initial call would be MATRIX-CHAIN-
MULTIPLY (A, s, 1, n).

12

O Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication
RECURSIVE-MATRIX-CHAIN(p, i, j)

1 ifi==]

2 return 0

3 mi,j]=x

4 fork=1i to;—1

5 q = RECURSIVE-MATRIX-CHAIN(p, i, k) +
RECURSIVE-MATRIX-CHAIN(p, k+1, j)+ p;_1 Py P;

6 if g<mli, j]

7 mfi, j]1=q

8 return mli, j]

Efficiency: The time to compute m[1, n] by this recursive function is at least exponential in n.

ra

13

Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1, 4)

N

14

= Theory of algorithms Széchenyi Istvan University

Matrix-chain multiplication

MEMOIZED-MATRIX-CHAIN(p)
1 n=p.length—1

2 letm[l..n, 1..n] be a new table
2 fori=1ton

3 forj=iton
4 mli, j] =«

5 return LOOKUP-CHAIN(m, p, 1, n)

LOOKUP-CHAIN(m, p, i, J)

1 ifmi,j] <

2 return mli, j]

3 ifi==j

4 m[i, j]=0

5 else

6 fork=1ito;—-1

7 q = LOOKUP-CHAIN(p, i, k) +LOOKUP-CHAIN(p, k+1, j)+ p; 3 P P;
8 if g <m[i,j]

9 m[i, J]=q

10 return m[i, j]

Efficiency: Like the bottom-up dynamic-programming algorithm MATRIX-CHAIN-ORDER the
procedure MEMOIZED-MATRIX-CHAIN runs in O(n3) time and it requires ®(n?) memory space.

N 15

o®" Theory of algorithms Széchenyi Istvan University

Longest common subsequence

A subsequence of a given sequence is just the given sequence with zero or more elements left out.

Formally, given a sequence X=(xy, X,, ..., X.,), another sequence Z=(z,, z,, ... , z,) is a subsequence of
X if there exists a strictly increasing sequence (iy, i, ..., I,) of indices of X such that for all
=1, 2, ..., k we have xij =z

Example: Z=(B, C, D, B) is a subsequence of X=(A, B, C, B, D, A, B) with corresponding index
sequence (2, 3,5, 7).

Given two sequences X and Y, a sequence Z is a common subsequence of Xand Y if Zisa
subsequence of both X and Y.

Example: If X=(A, B, C, B, D, A, B) and Y=(B, D, C, A, B, A), the sequence (B, C, A) is a common
subsequence of both X and Y. The sequence (B, C, A) is not a longest common subsequence of X

and Y, however, since it has length 3 and the sequence (B, C, B, A) which is also common to both
X and Y, has length 4.

The longest-common-subsequence problem: For given two sequences X=(Xy, X5, ... , X;,) and
Y=(Y1, Y -..,Y,) it hasto be find a maximum length common subsequence of X and Y.

Remark: For the abbreviation of the longest common subsequence the LCS will be used.

ra

16

= Theory of algorithms Széchenyi Istvan University

Longest common subsequence

For a given sequence X=(Xy, X,, ..., X,) the ith prefix of X is X;=(X, X,, ..., X;), fori=0, 1, ..., m.
Example: If X=(A, B, C, B, D, A, B), then X,=(A, B, C, B) and X, is the empty sequence.

Theorem (Optimal substructure of an LCS): Let X=(Xy, X,, ..., X;,) and Y=(Yq, Yo, ..., Y,) be
sequences, and let Z=(z,, z,, ..., z,) be any LCS of X and Y.

1. If x,=y,,thenz=x.=y,and Z,_,isan LCSof X, _,and Y, _,.
2. If X,#YVY,,thenz #x, implies that Zisan LCS of X, _, and Y.
3. If x,#Y,,thenz #y, implies that Zisan LCS of Xand Y, _,.

Corollary: The LCS problem has the optimal subproblem property, so it can be efficiently solved with
dynamic programming.

Let c[i, j] be the length of an LCS of the sequences X; and Y;. From the previous theorem:

cli, j]= 0, if i=0 or j=0,
cli, j]= c[i—1, j—1]+1, if1,] >0 and x=;,
c[i, j]= max{c[i, j—1], c[i-1, j1}, if1,] >0and x;#Y;.

N Y

= Theory of algorithms

Longest common subsequence
LCS-LENGTH(X, Y)

1 m= X.length

2 n=Y.length

3 letb[l..m, 1..n] and c[0..m, 0..n] be new tables

4 fori=1tom

5 c[i,0]=0

6 forj=0ton

7 c[0,j]=0

8 fori=1tom

9 forj=1ton

10 if x; ==y,

11 cli,j] =c[i—1,j-1]+1

12 b[i, j] =,

13 else

14 if c[i—1,j] >cli, j—1]

15 cli,j] =c[i—1,j]
16 b[i, j]=,1"

17 else

18 c[i, j] < c[i, j—1]
19 b[i, j] —,.«”

20 returncandb

Efficiency: It requires ®(mn) time and ®(mn) memory space.

N

Széchenyi Istvan University

18

N Theory of algorithms

Longest common subsequence

Széchenyi Istvan University

] 0 1 2 3 4 5 6
i Yi B D C A B A
O .
X 0 0 0 0
1 A 4+ 4+ TR N
0 0 0 0 1] «1 1
0 1| «1 1 « 2
3 C 4+ + K 4+ 4+
0 1 1 21 « 2 2 2
4 B o\ + + K
0 1 1 2 2 3] «3
5 D IR + + 4+ 4+
0 1 2 2 2 3 3
6 A 4+ 4+ TR + K
0 1 2 2 3 3
- B N 4+ + TR 4+
0 1 2 2 3 4 4

The operation of LCS-LENGTH

ra

19

N Theory of algorithms

Longest common subsequence
PRINT-LCS(b, X, i,)

1 ifi==0orj==

2 return

3 ifb[i,j] == ,\”

4 PRINT-LCS(b, X, 1—-1,j-1)
5 write X;

6 elseifb[i,j]==,1"

7 PRINT-LCS(b, X, i—1,))

8 else

9 PRINT-LCS(b, X, i, j—1)

Remark: The initial call is PRINT-LCS (b, X, X.length, Y.length).

Efficiency: The procedure takes time O(m+n).

ra

Széchenyi Istvan University

20

= Theory of algorithms Széchenyi Istvan University

Exercises

m Determinean LCSof (1,0,0,1,0,1,0,1)and (0,1,0,1,1,0, 1,1, 0).
m Give c and b result tables and the result LCS of LCS-LENGTH with below
given X and Y.
= X=(1,0,0,1,0)
= Y=(0,1,0,1)
m Can LCS-LENGTH be written without table b? What is PRINT-LCS in this
case?

m Can the ®(mn) memory space be reduced if we need only the length of the
LCS (without LCS itself)?

21

ra

	1. dia: Theory of algorithms (8th lecture)
	2. dia: Outline
	3. dia: Dynamic programming
	4. dia: Dynamic programming
	5. dia: Matrix-chain multiplication
	6. dia: Matrix-chain multiplication
	7. dia: Matrix-chain multiplication
	8. dia: Matrix-chain multiplication
	9. dia: Matrix-chain multiplication
	10. dia: Matrix-chain multiplication
	11. dia: Matrix-chain multiplication
	12. dia: Exercises
	13. dia: Matrix-chain multiplication
	14. dia: Matrix-chain multiplication
	15. dia: Matrix-chain multiplication
	16. dia: Longest common subsequence
	17. dia: Longest common subsequence
	18. dia: Longest common subsequence
	19. dia: Longest common subsequence
	20. dia: Longest common subsequence
	21. dia: Exercises

