
Theory of algorithms (2nd lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

◼ Heap data structure

◼ Maintaining the heap property

◼ Building a heap

◼ Heapsort

◼ Priority queues

◼ Sorting in linear time

◼ Counting sort

◼ Radix sort

◼ Bucket sort

◼ Exercises

Széchenyi István UniversityTheory of algorithms

3

Heap data structure

PARENT(i)

1 return ⌊i/2⌋

LEFT(i)

1 return 2i

RIGHT(i)

1 return 2i + 1

Max-heap property:

A[PARENT(i)] ≥ A[i], i > 1

Min-heap property:

A[PARENT(i)] ≤ A[i], i > 1

A max-heap as a binary tree

and as an array

2 3

1

4 5 6 7

108 9

16

14 10

78 9 3

42 1

2 31 4 5 6 7 108 9

16 14 10 8 7 9 3 2 4 1A

Széchenyi István UniversityTheory of algorithms

4

Exercises

◼ Is the max-heap property satisfied with array A? If not, how many pairs of

elements do violate it?

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >

◼ Give a min-heap data structure that contains the elements of array A!

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >

Széchenyi István UniversityTheory of algorithms

5

Maintaining the heap property

MAX-HEAPIFY(A, i)

1 l = LEFT(i)

2 r = RIGHT(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else

6 largest = i

7 if r ≤ A.heap-size and A[r] > A[largest]

8 largest = r

9 if largest ≠ i

10 exchange A[i] with A[largest]

11 MAX-HEAPIFY(A, largest)

Criteria: The binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but that A[i] might be

smaller than its children, thus violating the max-heap property.

MAX-HEAPIFY lets the value A[i] „float down” in the max-heap so that the subtree rooted at index i

obeys the max-heap property.

Efficiency: The running time is O(h), where h is the height of the tree (h=O(lg n), n=A.heap.size).

Széchenyi István UniversityTheory of algorithms

6

i

2 3

1

4 5 6 7

108 9

16

14 10

78 9 3

42 1

i

2 3

1

4 5 6 7

108 9

16

14 10

74 9 3

82 1

Maintaining the heap property

The operation of MAX-HEAPIFY(A, 2)

i

2 3

1

4 5 6 7

108 9

16

4 10

714 9 3

82 1

Széchenyi István UniversityTheory of algorithms

7

Exercises

◼ Illustrate the operation of MAX-HEAPIFY(A, 3) call with array A? Give the

contents of the array as a binary tree after each exchange.

◼ A = < 27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0 >

Széchenyi István UniversityTheory of algorithms

8

Building a heap

BUILD-MAX-HEAP(A)

1 A.heap-size = A.length

2 for i = ⌊A.length] /2⌋ downto 1

3 MAX-HEAPIFY(A, i)

Efficiency: The „simple estimated” O(n lg n) upper bound is not asymptotically tight, the O(n) running

time can be proved, thus we can build a max-heap from an unsorted array in linear time.

Széchenyi István UniversityTheory of algorithms

9

i

2 3

1

4 5 6 7

108 9

4

1 3

162 9 10

814 7

i

2 3

1

4 5 6 7

108 9

4

1 3

162 9 10

814 7

Building a heap

The operation of BUILD-MAX-HEAP

4 1 3 2 16 9 10 14 8 7A

Széchenyi István UniversityTheory of algorithms

10

i

2 3

1

4 5 6 7

108 9

4

1 10

1614 9 3

82 7

i

2 3

1

4 5 6 7

108 9

4

16 10

714 9 3

82 1

i

2 3

1

4 5 6 7

108 9

4

1 3

1614 9 10

82 7

Building a heap

The operation of BUILD-MAX-HEAP

2 3

1

4 5 6 7

108 9

16

14 10

78 9 3

42 1

Széchenyi István UniversityTheory of algorithms

11

Exercises

◼ Illustrate the operation of BUILD-MAX-HEAP with array A. Give the

contents of the array as a binary tree after each step of the iteration.

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

Széchenyi István UniversityTheory of algorithms

12

Heapsort

HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size−1

5 MAX-HEAPIFY(A, 1)

Efficiency: Since the call to BUILD-MAX-HEAP takes time O(n) and MAX-HEAPIFY takes O(lg n)

the running time is O(n lg n).

Széchenyi István UniversityTheory of algorithms

13

Heapsort

The operation of HEAPSORT

16

14 10

78 9 3

42 1 i

14

8 10

74 9 3

12 16

i

10

8 9

74 1 3

142 16 i

9

8 3

74 1 2

1410 16

Széchenyi István UniversityTheory of algorithms

14

Heapsort

The operation of HEAPSORT

i

8

7 3

24 1 9

1410 16

i

7

4 3

21 8 9

1410 16

i

4

2 3

71 8 9

1410 16

i

3

2 1

74 8 9

1410 16

Széchenyi István UniversityTheory of algorithms

15

Heapsort

The operation of HEAPSORT

i

2

1 3

74 8 9

1410 16

i

1

2 3

74 8 9

1410 16

A 1 2 3 4 7 8 9 10 14 16

Széchenyi István UniversityTheory of algorithms

16

Exercises

◼ Illustrate the operation of HEAPSORT with array A. Give the contents of the

array as a binary tree after the exchanges of BUILD-MAX-HEAP and after

each step of the iteration of HEAPSORT.

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

Széchenyi István UniversityTheory of algorithms

17

Priority queues

◼ A priority queue is a data structure for maintaining a set S of elements, each with an associated

value called a key.

◼ A max-priority queues supports the following operations:

◼ INSERT(S, x) inserts the element x into the set S.

◼ MAXIMUM(S) returns the element of S with the largest key.

◼ EXTRACT-MAX(S) removes and returns the element of S with the largest key.

◼ INCREASE-KEY(S, x, k) increases the value of element x’s key to the new value k, which is

assumed to be at least as large as x’s current key value.

HEAP-MAXIMUM(A)

1 return A[1]

Efficiency: The running time is Θ(1).

Széchenyi István UniversityTheory of algorithms

18

Priority queues

HEAP-EXTRACT-MAX(A)

1 if A.heap-size < 1

2 error „heap underflow”

3 max = A[1]

4 A[1] = A[A.heap-size]

5 A.heap-size = A.heap-size−1

6 MAX-HEAPIFY(A, 1)

7 return max

Efficiency: The running time is O(lg n), due to O(lg n) time of MAX-HEAPIFY.

Széchenyi István UniversityTheory of algorithms

19

Priority queues

HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i]

2 error „new key is smaller than current key”

3 A[i] = key

4 while i > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 i = PARENT(i)

MAX-HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size+1

2 A[A.heap-size] = −∞

3 HEAP-INCREASE-KEY(A, A.heap-size, key)

Efficiency: The running time of both procedures on an n-element heap is O(lg n).

Corollary: A heap can support any priority-queue operation on a set of size n in O(lg n) time.

Széchenyi István UniversityTheory of algorithms

20

i

16

14 10

78 9 3

42 1

i

16

15 10

714 9 3

82 1

i

16

14 10

78 9 3

152 1

i

16

14 10

715 9 3

82 1

Priority queues

The operation of HEAP-INCREASE-KEY(A, 9, 15)

Széchenyi István UniversityTheory of algorithms

21

Priority queues

BUILD-MAX-HEAP’(A)

1 A.heap-size = 1

2 for i = 2 to A.length

3 MAX-HEAP-INSERT(A, A[i])

Efficiency: The running time to build an n-element heap is O(n lg n).

Széchenyi István UniversityTheory of algorithms

22

Exercises

◼ Illustrate the operation of MAX-HEAP-INSERT(A, 20) call with array A. Give

the contents of the array as a binary tree after each exchange.

◼ A = < 16, 15, 10, 8, 14, 9, 3, 2, 4, 1, 7 >

◼ Illustrate the operation of BUILD-MAX-HEAP’ with array A. Give the

contents of the actual max-heap as a binary tree after each step of the iteration.

◼ A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

◼ Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP’ give the

same results with the same input array?

Széchenyi István UniversityTheory of algorithms

23

Comparison sorts

The decision tree for insertion sort

operating on three elements

≤

≤

≤ ≤

≤

>

>

>>

>

a1:a2

a2:a3 a1:a3

a2:a3(2, 1, 3)

(2, 3, 1) (3, 2, 1)

a1:a3(1, 2, 3)

(1, 3, 2) (3, 1, 2)

We can view comparison sorts abstractly in terms of decision trees. A decision tree is a full binary tree

that represents the comparisons between elements that are performed by a particular sorting algorithm

operating on an input of a given size.

Theorem: Any comparison sort algorithm requires Ω(n lg n) comparisons in the worst case.

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Széchenyi István UniversityTheory of algorithms

24

Sorting in linear time

COUNTING-SORT(A, B, k)

1 let C[0..k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A.length

5 C[A[j]] = C[A[j]]+1

6 // C[i] now contains the number of elements equal to i

7 for i = 1 to k

8 C[i] = C[i]+C[i−1]

9 // C[i] now contains the number of elements less than or equal to i

10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]]−1

Criteria: Each of the n input elements is an integer in the range 0 to k, for some integer k.

Efficiency: When k = O(n), the sort runs in Θ(n) time.

Stability: The counting sort is stable: numbers with the same value appear in the output array in the

same order as they do in the input array.

Széchenyi István UniversityTheory of algorithms

25

2 31 4 5 6 7 8

0 0 2 2 3 3 3 5B

2 31 4 50

2 2 4 7 7C 8

2 31 4 5 6 7 8

2 31 4 50

2 5 3 0 2 3 0 3A

2 0 2 3 0C 1

2 31 4 50

2 31 4 5 6 7 8

3B

2 2 4 6 7C 8

2 31 4 5 6 7 8

2 31 4 50

0 3B

1 2 4 6 7C 8

2 31 4 5 6 7 8

2 31 4 50

0 3 3B

1 2 4 5 7C 8

Sorting in linear time

The operation of COUNTING-SORT

Széchenyi István UniversityTheory of algorithms

26

Exercises

◼ Illustrate the operation of COUNTING-SORT on array A. What elements are

in array C after three elements are put into array B?

◼ A = < 6, 5, 2, 6, 1, 3, 6, 2, 7, 5 >

◼ What will happen if we rewrite the line 10 of the COUNTING-SORT with the

line below?

10 for j = 1 to A.length

Széchenyi István UniversityTheory of algorithms

27

Sorting in linear time

RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i

Criteria: Each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and

digit d is the highest-order digit.

The operation of RADIX-SORT

457

657

839

436

720

355

329

355

436

457

657

329

839

720

329

436

839

355

457

657

720

355

436

457

657

720

839

329

Széchenyi István UniversityTheory of algorithms

28

Exercises

◼ Illustrate the operation of RADIX-SORT on the following list of English

words. Give the contents of the array after each step of the iteration.

◼ cow, dog, sea, row, box, bar, ear, dig, big, tea, now, fox

Széchenyi István UniversityTheory of algorithms

29

Sorting in linear time

BUCKET-SORT(A)

1 n = A.length

2 let B[0..n−1] be a new array

3 for i = 0 to n−1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[⌊nA[i]⌋]

7 for i = 0 to n−1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], …, B[n−1] together in order

Criteria: The input n elements are uniformly distributed numbers in the interval [0, 1).

Efficiency: The average-case running time is Θ(n) due to expected running time of line 8 is O(1).

Széchenyi István UniversityTheory of algorithms

30

Sorting in linear time

The operation of BUCKET-SORT for n=10

0

2

3

1

4

5

6

7

8

/

/

/

B

9

/

.12

.21

.17 /

.23 .26 /

.39 /

.68 /

.72 .78 /

.94 /

2

3

1

4

5

6

7

8

.78

.17

.39

.26

.72

.94

.21

.12

A

9

10

.23

.68

Széchenyi István UniversityTheory of algorithms

31

Exercises

◼ Illustrate the operation of BUCKET-SORT on the array A. Give the result of

the procedure. Which element is the last element of the „biggest” bucket?

◼ A = < 0.65, 0.52, 0.23, 0.68, 0.12, 0.38, 0.61, 0.29, 0.72, 0.53 >

Széchenyi István UniversityTheory of algorithms

32

Summary

Efficiency of the sorting algorithms

Algorithm Worst-case Average-case/expected

Insertion sort Θ(n2) Θ(n2)

Merge sort Θ(n lg n) Θ(n lg n)

Heapsort O(n lg n) -

Quicksort Θ(n2) Θ(n lg n) (expected)

Counting sort Θ(n+k) Θ(n+k)

Radix sort Θ(d(n+k)) Θ(d(n+k))

Bucket sort Θ(n2) Θ(n) (average-case)

	1. dia: Theory of algorithms (2nd lecture)
	2. dia: Outline
	3. dia: Heap data structure
	4. dia: Exercises
	5. dia: Maintaining the heap property
	6. dia: Maintaining the heap property
	7. dia: Exercises
	8. dia: Building a heap
	9. dia: Building a heap
	10. dia: Building a heap
	11. dia: Exercises
	12. dia: Heapsort
	13. dia: Heapsort
	14. dia: Heapsort
	15. dia: Heapsort
	16. dia: Exercises
	17. dia: Priority queues
	18. dia: Priority queues
	19. dia: Priority queues
	20. dia: Priority queues
	21. dia: Priority queues
	22. dia: Exercises
	23. dia: Comparison sorts
	24. dia: Sorting in linear time
	25. dia: Sorting in linear time
	26. dia: Exercises
	27. dia: Sorting in linear time
	28. dia: Exercises
	29. dia: Sorting in linear time
	30. dia: Sorting in linear time
	31. dia: Exercises
	32. dia: Summary

