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Medians and order statistics

The ith order statistic of a set of n elements is the ith smallest element.

For example the minimum of a set of elements is the first order statistic (i = 1), and the maximum is 

the nth order statistic (i = n). 

A median, informally, is the „halfway point” of the set. When n is odd, the median is unique, occurring 

at i = (n+1)/2. When n is even, there are two medians at i = n/2 (lower median) and  i = n/2+1 

(upper median) positions.

MINIMUM(A)

1 min = A[1]

2 for i = 2 to A.length

3 if A[i] < min

4 min = A[i] 

5 return min

Remark: In the function we assume that the set resides in array A, where A.length = n.
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Selection in expected linear time

 The selection problem
Input: A set A of n (distinct) numbers and an integer i, with 1≤ i ≤ n.

Output: The element x  A that is larger than exactly i−1 other elements of A.

RANDOMIZED-SELECT(A, p, r, i)

1 if p == r

2 return A[p]

3 q = RANDOMIZED-PARTITION(A, p, r)

4 k = q−p+1

5 if i == k

6 return A[q] // The pivot value is the answer

7 else if i < k

8 return RANDOMIZED-SELECT(A, p, q−1, i)

9 else

10 return RANDOMIZED-SELECT(A, q+1, r, i−k)

Efficiency: Worst-case running time is Θ(n2), but the expected running time is Θ(n).

Remark: There is an algorithm with O(n) running time (it is also recursive and working with medians 
it does „good” partitioning.)
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Exercises

 Give another version of RANDOMIZED-SELECT function with pseudocode 

that uses iteration instead of recursion?

 What values of i have to be generated in RANDOMIZED-PARTITION to get 

the worst-case running time to calculate the minimum value of array A?

 A = < 2, 7, 5, 6, 1, 4, 3 >
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Dynamic sets

 Dynamic sets

 Finite sets in computer science that are manipulated by algorithms.

 The objects of dynamic sets have (often unique) key and satellite data.

 Operations

 SEARCH(S, k) A query that, given a set S and a key value k, returns a pointer x to an 

element in S such that x.key=k, or NIL if no such element belongs to S.

 INSERT(S, x) A modifying operation that augments the set S with the element pointed to 

by x. We usually assume that any attributes in element x needed by the set 

implementation have already been initialized.

 DELETE(S, x) A modifying operation that, given a pointer x to an element in the set S, 

removes x from S.

Remark: We call a dynamic set that supports these operations a dictionary.
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Dynamic sets

 Operations (continue)

 MINIMUM(S) A query that returns a pointer to the element of S with the smallest 

key.

 MAXIMUM(S) A query that returns a pointer to the element of S with the largest key.

 SUCCESSOR(S, x) A query that, given an element x whose key is in the set S, returns a 

pointer to the next larger element in S, or NIL if x is the maximum 

element.

 PREDECESSOR(S, x) A query that, given an element x whose key is in the set S, returns a 

pointer to the next smaller element in S, or NIL if x is the minimum 

element.

Remark: These operations assume that the keys are from a totally ordered set. In this kind of set the 

trichotomy is satisfied, that is, exactly one of the following three properties holds with elements a and  

b: a<b, a=b, a>b.
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Stacks

STACK-EMPTY(S)

1 if S.top == 0

2 return TRUE

3 else

4 return FALSE

PUSH(S, x)

1 S.top = S.top+1

2 S[S.top] = x

POP(S)

1 if STACK-EMPTY(S)

2 error ”underflow”

3 else

4 S.top = S.top−1

5 return S[S.top+1]

Remark: The stack implements a last-in, first-out, or LIFO, policy.

Efficiency: Each of the three stack operations takes O(1) time.
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Stacks

An array implementation of a stack

S

2 31 4 5 6 7

15 6 2 9 17 3

S.top=5

S

2 31 4 5 6 7

15 6 2 9

S.top=4

S

2 31 4 5 6 7

15 6 2 9 17 3

S.top=6
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Exercises

 Illustrate the result of each operation in the sequence PUSH(S, 4), PUSH(S, 1), 

PUSH(S, 3), POP(S), PUSH(S, 8), and POP(S) on an initially empty stack S

stored in array S[1.. 6]. What is the value of S.top?
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Queues

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.length

3 Q.tail = 1

4 else

5 Q-tail = Q.tail+1

DEQUEUE(Q)

1 x = Q[Q.head]

2 if Q.head == Q.length

3 Q.head = 1

4 else

5 Q.head = Q.head+1

6 return x

Remark: When Q.head=Q.tail, the queue is empty. Initially they are 1. If we attempt to dequeue an 

element from an empty queue, the queue underflows. When Q.head=Q.tail+1, the queue is full, and if 

we attempt to enqueue an element, then the queue overflows. The error checking is omitted here. 

Efficiency: Both queue operations take O(1) time.



Széchenyi István UniversityTheory of algorithms

12

Queues

A queue implemented using an array Q[1..12]

Q

2 31 4 5 6 7

3 5 15

Q.head=8

9 108 11 12

6 9 8 4 17

Q.tail=3

Q

2 31 4 5 6 7

15

Q.head=7

9 108 11 12

6 9 8 4

Q.tail=12

Q

2 31 4 5 6 7

3 5 15

Q.head=7

9 108 11 12

6 9 8 4 17

Q.tail=3
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Exercises

 Give the result of operations in the sequence ENQUEUE(Q, 4), 

ENQUEUE(Q, 1), ENQUEUE(Q, 3), DEQUEUE(Q), ENQUEUE(Q, 8), and 

DEQUEUE(Q) on an initially empty queue Q stored in array Q[1..6]. What is 

the value of Q.head and Q.tail if the initial values are Q.head=Q.tail=5?

 We implement a queue with Q[1..n]. Why does it contain at most n−1 element 

instead of n?
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Linked lists

LIST-SEARCH(L, k)

1 x = L.head

2 while x ≠ NIL and x.key ≠ k

3 x = x.next

4 return x

LIST-INSERT(L, x)

1 x.next = L.head

2 if L.head ≠ NIL

3 L.head.prev = x

4 L.head = x

5 x.prev = NIL

Efficiency: To search a list of n objects, the LIST-SEARCH function takes Θ(n) time in the worst case, 

since it may have to search the entire list. The running time for LIST-INSERT is O(1).
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Linked lists

LIST-DELETE(L, x)

1 if x.prev ≠ NIL

2 x.prev.next = x.next

3 else

4 L.head = x.next

5 if x.next ≠ NIL

6 x.next.prev = x.prev

Efficiency: LIST-DELETE runs in O(1) time, but if we wish to delete an element with a given key, 

Θ(n) time is required in the worst case because we must first call LIST-SEARCH to find the element.
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Linked lists

A doubly linked list L representing a dynamic set

9 16L.head 1 // 25

/ 9 16L.head 4 1 /

prev key next

9 16L.head 4 1 // 25
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Exercises

 For each of the four types of lists in the following table, what is the asymptotic

worst-case running time for each dynamic-set operation listed?

unsorted, 

singly 

linked

sorted, 

singly 

linked

unsorted, 

doubly 

linked

sorted, 

doubly 

linked

SEARCH(L, k)

INSERT(L, x)

DELETE(L, x)

SUCCESSOR(L, x)

PREDECESSOR(L, x)

MINIMUM(L)

MAXIMUM(L)
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Implementing pointers and objects

A multiply-array and a single-array 

representation of a doubly linked list

A

2 31 4 5 6 7

4 7 13 1

8

/

L 19

10 119 12 13 14 15 16

4 16 4 19 9 13 /

18 1917 20 21 22 23 24

key

next

prev

2 31 4 5 6 7

3 / 2 5

prev

key

next

8

L 7

4 1 16 9

5 2 7 /
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Exercises

 Give the multiply-array representation of a doubly linked list that contains the 

keys given in arrays A. Let the size of the arrays be 10, and let the elements be 

in the odd positions of the arrays. 

 A = < 5, 4, 8, 2, 1 >

 Give the single-array representation of a doubly linked list that contains the 

keys given in arrays A. Let the size of the array be 15, and let the elements be 

in the array continuously from the 1st position.

 A = < 6, 2, 5, 3 >
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Implementing pointers and objects

ALLOCATE-OBJECT( )

1 if free == NIL

2 error ”out of space”

3 else

4 x = free

5 free = x.next

6 return x

FREE-OBJECT(x)

1 x.next = free

2 free = x

Remark: The free list initially contains all n unallocated objects. Once the free list has been exhausted, 

running the ALLOCATE-OBJECT signals an error.

Efficiency: Both subroutines run in O(1) time.
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Implementing pointers and objects

Allocating and freeing objects

The result of calling ALLOCATE-OBJECT() 

(that returns index 4), setting key[4] to 25, and

calling LIST-INSERT(L, 4).

The new free-list head is object 8, 

which had been next[4] on the free list.

After executing  LIST-DELETE(L, 5), 

we call FREE-OBJECT(5) .

Object 5 becomes the new free-list head, with 

object 8 following it on the free list.

2 31 4 5 6 7

/ 3 / 7 8 1 2

prev

key

next

8

6

free 5

4 1 25 9

7 2 / 4

L 4

2 31 4 5 6 7

/ 3 / 8 2 1 5

prev

key

next

8

6

free 4

4 1 16 9

5 2 7 /

L 7

2 31 4 5 6 7

/ 3 / 7 2 1 5

prev

key

next

8

6

free 8

4 1 25 16 9

5 2 / 7 4

L 4
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Exercises

 Insert elements with key 12 and 8 into the previous list and delete the element 

index 3. Give the result after the operations.
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Representing rooted trees

The representation of a binary tree T
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Representing rooted trees

The left-child, right-sibling representation of a tree T
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Exercises

 Draw the binary tree rooted at index 6 that is represented by the following 

attributes.

index key left right

1 12 7 3

2 15 NIL NIL

3 4 10 NIL

4 10 5 9

5 2 NIL NIL

6 18 1 4

7 7 NIL NIL

8 14 6 2

9 21 NIL NIL

10 5 NIL NIL


