
Theory of algorithms (1st lecture)

Pál Pusztai

pusztai@sze.hu

Széchenyi István UniversityTheory of algorithms

2

Outline

 Foundations

 Efficiency of the algorithms

 Asymptotic notation

 Sorting methods

 Insertion sort

 Merge sort

 Quicksort

 Exercises

Széchenyi István UniversityTheory of algorithms

3

Preface

„Before there were computers, there were algorithms. But now that there are computers,

there are even more algorithms, and algorithms lie at the heart of computing.”

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms

Széchenyi István UniversityTheory of algorithms

4

Foundations

 What is the algorithm?

 Informally, an algorithm is any well-defined computational procedure that takes

some value, or set of values, as input and produces some value, or set of values, as

output.

 An algorithm is thus a sequence of computational steps that transform the input into the

output.

 The algorithm describes a specific computational procedure for achieving that

input/output relationship.

 The sorting problem (formally definition)

 Input: A sequence of n numbers: < 𝑎1, 𝑎2, … , 𝑎𝑛 >.

 Output: A permutation (reordering), < 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′ > of the input sequence

such that 𝑎1
′ ≤ 𝑎2

′ ≤ ⋯ ≤ 𝑎𝑛
′ .

 For example: < 31, 41, 59, 26, 41, 58 > → < 26, 31, 41, 41, 58, 59 >.

Széchenyi István UniversityTheory of algorithms

5

Foundations

 „How good” an algorithm is?

 An algorithm is said to be correct if, for every input instance, it halts with the

correct output.

 We say that a correct algorithm solves the given computational problem.

 The measure of efficiency usually is speed, i.e., how long an algorithm takes to

produce its result (running time).

 There are some problems, however, for which no efficient solution is known.

 Data structure, memory size

 The (used) memory size is inversely proportional to the (running) time and vice versa.

 It is necessary to think about designing and analyzing algorithms.

 „With modern computing technology, you can accomplish some tasks without knowing

much about algorithms, but with a good background in algorithms, you can do much,

much more.”

Széchenyi István UniversityTheory of algorithms

6

Foundations

 Our algorithms will be given with subroutines (procedure or function) and with

pseudocode.

 Advances/properties of pseudocode

 It is similar to C, C++, Java, Python, or Pascal languages.

 The most expressive and clear method can be employ (to specify a given algorithm).

 An English phrase or sentence can be embedded in a section of “real” code.

 It is not typically concerned with issues of software engineering.

 Issues of data abstraction, modularity, and error handling are often ignored (in order to

convey the essence of the algorithm more concisely).

Széchenyi István UniversityTheory of algorithms

7

Foundations

 Pseudocode conventions, notation

 One line contains one statement.

 The indentation of the pseudocode indicates the block structure.

 Multiply assignment

 i = j = e equivalent j = e assignment followed by i = j assignment.

 The symbol == indicates the relation of equality.

 Access an element of an array

 A[i] indicates the ith element of the (one dimensional) array A.

 B[2, j+1] indicates the j+1th element of the 2nd row of the (two dimensional) array B.

 A[1..j] indicates the subarray of A consisting of the j elements A[1], A[2], …, A[j].

 Giving an (one dimensional) array

 For example: A = <5, 3, 8, 1, 9, 7, 2, 6, 4>

 Compound data (treated as objects) are composed of attributes

 For example: A.length specifies the number of elements in array A.

Széchenyi István UniversityTheory of algorithms

8

Foundations

 Pseudocode conventions, notations

 The Boolean operators (and, or) are short circuiting.

 The symbol // indicates that the remainder of the line is a comment.

 The keyword error

 It is occurred when the conditions are wrong for the procedure to have been called.

 The calling procedure is responsible for handling the error (so we do nothing).

 The return statement

 It immediately transfers control back to the point of call in the calling procedure.

 Most return statements also take a value to pass back to the caller. We allow multiple

values to be returned in a single return statement.

 Variables and parameters

 Variables (such as i , j, key) are local to the given procedure.

 Simple parameters are passed by value and objects are passed by reference.

 Variables are representing an array or object as a pointer to the data.

 NIL indicates if a pointer refers to no object at all. In some figures (if there is no enough

space) it will be replaced with /.

Széchenyi István UniversityTheory of algorithms

9

Foundations

 Floors and ceilings

 For any real number x, we denote

 the greatest integer less than or equal to x by ⌊x⌋ (“the floor of x”), and

 the least integer greater than or equal to x by ⌈x⌉ (“the ceiling of x”).

 For all real x, x−1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+1.

 For example: x = 3.8, ⌊x⌋ = 3, ⌈x⌉ = 4; x = −3.8, ⌊x⌋ = −4, ⌈x⌉ = −3

 For all integer n, ⌊n/2⌋ + ⌈n/2⌉ = n.

 For example: n = 7, ⌊n/2⌋ = 3, ⌈n/2⌉ = 4; n = 6, ⌊n/2⌋ = 3, ⌈n/2⌉ = 3

Széchenyi István UniversityTheory of algorithms

10

Elements of structured programming

 Every algorithm can be constructed with sequence, selection and iteration.

 If an algorithm is given with these elements only, then (we say that) this algorithm

is a structured algorithm.

 Remarks

 The program languages (usually) allow us to make unstructured subroutine, but a

structured subroutine is (usually) more clear and easier to maintain.

 For example: exit from loop or subroutine, conditional and unconditional control passing.

Széchenyi István UniversityTheory of algorithms

11

Elements of structured programming

 Sequence

 Selection

 Si, S: Statement(s)

 Ci, C: Condition

(logical expression)

S1

S2

…

Sn

if C1

S1

else if C2

S2

...

else if Cn

Sn

 Iteration 1 (testing before executing S)

 Iteration 2 (testing after executing S)

 Iteration 3 (incremental/for loop)

 The counter is incremented (to) or decremented

(downto) automatically by 1.

while C

S

repeat

S

until C

for counter = start to|downto end

S

Széchenyi István UniversityTheory of algorithms

12

Input and output statements

 Input statement

 read variable-list

 For example: read a,b,c

 Output statement

 write expression-list

 For example: write ”The result:”, result

 Remarks

 Usually these statements are not necessary due to the algorithms are given with

subroutines where the input and output data can be passed with parameters.

Széchenyi István UniversityTheory of algorithms

13

Exercises

 Give algorithm with pseudocode to output the odd integers in [1, 10]. Do it

with all kind of iterations!

Széchenyi István UniversityTheory of algorithms

14

Growth of functions

Asymptotic notations

n0

n

f(n) = Ω(g(n))

c g(n)

f(n)

n0

n

f(n) = Θ(g(n))

c2 g(n)

f(n)

c1 g(n)

n0

n

f(n) = Ο(g(n))

c g(n)

f(n)

Θ(g(n))={f(n): there exist positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Ο(g(n))={f(n) there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Ω(g(n))={f(n): there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

o(g(n))={f(n): for any constant c > 0, there exists a constant n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}.

ω(g(n))={f(n): for any constant c > 0, there exists a constant n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}.

Θ: asymptotically tight bound; o, ω: not asymptotically tight bounds.

Ο, Ω: asymptotically tight or not asymptotically tight bounds.

Θ(1), O(1) denotes the constant functions.

Széchenyi István UniversityTheory of algorithms

15

Growth of functions

 Remarks

 The asymptotic notations give set of functions, but we use symbol = instead of

symbol .

 For example: 2n2 + n + 100 = Θ(n2) instead of 2n2 + n + 100 Θ(n2)

 Polynomials

 Given a nonnegative integer d, a polynomial in n of degree d is a function p(n) of the

form 𝑝 𝑛 = σ𝑖=0
𝑑 𝑎𝑖𝑛

𝑖, where the constants 𝑎0, 𝑎1,…, 𝑎𝑑 are the coefficients of the

polynomial and 𝑎𝑑 ≠ 0.

 A polynomial is asymptotically positive if and only if 𝑎𝑑 > 0. For an asymptotically

positive polynomial p(n) of degree d, we have 𝑝 𝑛 = Θ(𝑛𝑑).

 A function f(n) is polynomially bounded if f(n) = O(𝑛𝑘) for some constant k.

 Exponential and polynomial functions

 For any c > 1 and k > 1 integer we have 𝑐𝑛=ω(𝑛𝑘), 𝑛𝑘=o(𝑐𝑛), thus any exponential

function with a base strictly greater than 1 grows faster than any polynomial function.

 Logarithm functions

 lg(n!)=Θ(n lg n)

 lg n=log2 n (binary logarithm), ln n=loge n (natural logarithm), 𝑙𝑜𝑔𝑏𝑎 =
𝑙𝑜𝑔𝑐𝑎

𝑙𝑜𝑔𝑐𝑏

Széchenyi István UniversityTheory of algorithms

16

Exercises

 True or false?

 0.1n2−3n+1=Θ(n2)

 2n=O(n2)

 2n=Ω(n2)

 2n=o(n2)

 2n=o(n)

 2n2=ω(n)

 2n+1=O(2n)

 22n=O(2n)

 n! = Ω(nn).

 n! = Ω(2n).

 f(n)=Θ(g(n)) if and only if f(n)=O(g(n)) and f(n)=Ω(g(n)).

 f(n)=Θ(g(n)) if and only if g(n)=Θ(f(n)).

 f(n)=O(g(n)) if and only if g(n)=Ω(f(n)).

 f(n)=o(g(n)) if and only if g(n)=Ω(f(n)).

 o(f(n))  ω(f(n))=Ø

Széchenyi István UniversityTheory of algorithms

17

Insertion sort

INSERTION-SORT(A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j−1]

4 i = j−1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i−1

8 A[i+1] = key

Efficiency: For n elements (the size of input is n=A.length), the running time is O(n2).

Széchenyi István UniversityTheory of algorithms

18

Insertion sort

The operation of INSERTION-SORT

25 4 6 1

2 5 6 1

2 4 5

2 4 5 6

1 2 4 5 6

1 2 3 4 5

3

3

31

3

6

4

6

1

3

Sorted sequence (output)

Initial sequence (input)

Széchenyi István UniversityTheory of algorithms

19

Exercises

 What input is the worst-case and what is the best-case for the INSERTION-

SORT?

 Illustrate the operation of INSERTION-SORT with array A. Give the contents

of the array after each element is inserted into its place.

 A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

Széchenyi István UniversityTheory of algorithms

20

Merge sort

 Divide-and-conquer approach:

 Divide the problem into a number of subproblems that are smaller instances of the same problem.

 Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however,

just solve the subproblems in a straightforward manner.

 Combine the solutions to the subproblems into the solution for the original problem.

 The merge sort algorithm follows these steps:

 Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.

 Conquer: Sort the two subsequences recursively using merge sort.

 Combine: Merge the two sorted subsequences to produce the sorted answer.

MERGE-SORT(A, p, r)

1 if p < r

2 q = ⌊(p+r)/2⌋

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)

Remark: To sort entire array A, the initial call is MERGE-SORT(A, 1, A.length).

Efficiency: For n elements the running time is Θ(n lg n).

Széchenyi István UniversityTheory of algorithms

21

Merge sort

MERGE(A, p, q, r)

1 n1 = q−p+1

2 n2 = r−q

3 let L[1..n1+1] and R[1..n2+1] be new arrays

4 for i = 1 to n1

5 L[i] = A[p+ i−1]

6 for j = 1 to n2

7 R[j] = A[q+ j]

8 L[n1+1] = ∞

9 R[n2+1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i+1

16 else

17 A[k] = R[j]

18 j = j+1

Efficiency: For the subarray of n elements the running time is Θ(n).

Széchenyi István UniversityTheory of algorithms

22

Merge sort

The operation of MERGE-SORT

5 2 4 7 1 6

2 5

3 2

2 4 5 7

4 7 1 3

1 2 3 6

2 6

Initial sequence (input)

Sorted sequence (output)

1 2 2 3 4 5 6 7

1 2

3

4 5

6

7

Széchenyi István UniversityTheory of algorithms

23

Merge sort

The operation of MERGE-SORT

5 2 4 8 1 6

2 5

3 7

2 4 5

1 8

2 3 6 7

3 6

Initial sequence (input)

Sorted sequence (output)

1 2 4 5 8

1

2

3

4

5 6

7

2

2 7

21 2 3 4 5 6 7 8

8

Széchenyi István UniversityTheory of algorithms

24

Exercises

 Illustrate the operation of MERGE-SORT with array A. Give a figure with

arrows and the number of merge steps.

 A = < 8, 11, 5, 10, 2, 1, 9, 6, 7, 4, 3 >

Széchenyi István UniversityTheory of algorithms

25

Quicksort

 Three-step divide-and-conquer process for sorting a typical subarray A[p..r]

 Divide: Partition (rearrange) the array A[p.. r] into two (possibly empty) subarrays A[p..q−1]

and A[q+1..r] such that x ≤ A[q] ≤ y is satisfied if x  A[p..q−1] and y  A[q+1..r]. Compute

the index q as part of this partitioning procedure.

 Conquer: Sort the two subarrays A[p..q−1] and A[q+1..r] by recursive calls to quicksort.

 Combine: Because the subarrays are already sorted, no work is needed to combine them: the

entire array A[p..r] is now sorted.

QUICKSORT(A, p, r)

1 if p < r

2 q = PARTITION(A, p, r)

3 QUICKSORT (A, p, q−1)

4 QUICKSORT(A, q+1, r)

Remark: To sort entire array A, the initial call is QUICKSORT(A, 1, A.length).

Efficiency: For the subarray of n elements the average-case running time is O(n lg n). If the

partitioning is balanced, the algorithm runs asymptotically as fast as merge sort, if it is unbalanced,

it can run asymptotically as slowly as insertion sort.

Széchenyi István UniversityTheory of algorithms

26

Quicksort

PARTITION(A, p, r)

1 x = A[r]

2 i = p−1

3 for j = p to r−1

4 if A[j] ≤ x

5 i = i+1

6 exchange A[i] with A[j]

7 exchange A[i+1] with A[r]

8 return i+1

The four regions maintained by PARTITION

x

rjip

≤ x > x unrestricted

Széchenyi István UniversityTheory of algorithms

27

Quicksort

The operation of PARTITION

2 8 7 1 3 5 6 4

i p,j r

2 8 7 1 3 5 6 4

p,i j r

2 8 7 1 3 5 6 4

p,i r

2 8 7 1 3 5 6 4

p,i j r

j

2 871 3 5 6 4

p rji

2 8 71 3 5 6 4

p rji

2 8 71 3 5 6 4

p rji

2 8 71 3 5 6 4

p ri

2 871 3 5 64

p ri

Széchenyi István UniversityTheory of algorithms

28

Quicksort

 Problem: Bad efficiency (O(n2)) with some input cases.

 Solution: Randomly choose the pivot element.

RANDOMIZED-PARTITION(A, p, r)

1 i = RANDOM(p, r)

2 exchange A[r] with A[i]

3 return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

1 if p < r

2 q = RANDOMIZED-PARTITION(A, p, r)

3 RANDOMIZED-QUICKSORT(A, p, q−1)

4 RANDOMIZED-QUICKSORT(A, q+1, r)

Remark: The RANDOM(a, b) function gives a random integer number in the interval [a, b].

Széchenyi István UniversityTheory of algorithms

29

Exercises

 Illustrate the operation of PARTITION(A, 1, 9) call with array A. How many

exchanges will be done? What is the result value of the function?

 A = < 8, 2, 1, 5, 6, 9, 4, 3, 7 >

 Illustrate the operation of QUICKSORT(A, 1, 6) call with array A. Give the

contents of the array after each exchange.

 A = < 3, 6, 2, 4, 5, 1 >

