Pro/ENGINEER oktatóanyag

CAD ALKALMAZÁSOK – I.

CSUKLÓS MUNKADARABBEFOGÓ KÉSZÜLÉK KONCEPCIONÁLIS TERVEZÉSE, REDUKÁLÓ SZERSZÁM TERVEZÉSE

Halbritter Ernő Széchenyi István Egyetem Győr 2005, 2007

HEFOP-3.3.1-P.-2004-06-0012/1.0

A HEFOP pályázat a humán erőforrás fejlesztését támogatja a szakképzés és a foglalkoztatás területén.

A pályázatot az Európai Unió és a magyar állam támogatja.

Tartalomjegyzék

CSUKLÓS MUNKADARABBEFOGÓ KÉSZÜLÉK KONCEPCIONÁLIS TERVEZÉSI	Ξ,
KEDUKALO SZERSZAM TERVEZESE	I
Bevezeto	4
A mechanizmus vonalas modellje	4
A peremfeltetelek megfogalmazása l	6
Négytagú mechanizmus tervezése a peremfeltételek 1 alapján	6
A működést szemléltető vonalas modell létrehozása	8
Holtpontok meghatározása a vonalas modell alapján	10
A rudak összhosszának minimalizálása	13
A célfüggvény érzékenységének vizsgálata	17
Alkatrészek létrehozása függő modelként	22
A vonalas modell elhelyezése az összeállításban	22
A párhuzamos munkavégzés előkészítése függő modellként	23
A vázlat felhasználása	26
Az alkatrészek módosítása	30
Animáció készítése	31
A mechanizmus alkatrészeinek az összeszerelése	31
Szervó motor felvétele, a mozgások lehatárolása	37
Az animáció beállításai	39
A peremfeltételek megfogalmazása 2	42
Négytagú mechanizmus tervezése a peremfeltételek 2 alapján	42
A peremfeltételek megfogalmazása 3	44
Négytagú mechanizmus tervezése a peremfeltételek 3 alapján	46
Irodalomjegyzék	49
REDUKÁLÓSZERSZÁM TERVEZÉSE	50
A redukálással megoldandó feladat ismertetése	51
Részfeladatok	53
A munkadarab geometriai modellje	53
A hatszögprofil elkészítése külön vázlatként / *.sec /	53
Az alakítási zóna létrehozása átmenettel	56
Előzetes számítás paraméterek felvételével	56
Az átmenet / Blend / parancs kiadása, az átmenet tulajdonságainak megada	ása58
Az első vázlat felvétele	59
Az előre elkészített vázlat importálása	60
A vázlat haladási irányának módosítása	62
Osztópontok elhelvezése	63
A kezdőpont áthelyezése	64
Változó sugarú lekerekítés előírása az élek mentén	64
Tervezői összefüggések megadása	65
Gyárthatósági vizsgálat mérésénítőelemek alkalmazásával	68
Vázlatkészítés a meglévő élek vetítésével /az átmenet előtti és utáni rész kialakítá	sa /72
A kiinduló huzal hosszának megadása mérésénítőelem alkalmazásával	74
Redukáló szerszám geometriai modelliének előállítása	76
Konstrukciós szempontok a redukálógyűrűk kialakításához	76
2	10
2	

Módosított munkadarab előállítása az üregképzéshez	78
Segédgörbék előállítása metszősíkkal	79
A bevezető kúp kialakítása forgatással	81
A redukálógyűrű geometriai modellje	82
A módosított munkadarab kivonása a szerszámüregből	85

BEVEZETŐ

A munkadarab-befogó készülékek között szép számmal fordulnak elő csuklós mechanizmusok [1]. Ezek többnyire egyedi tervezésű gyártóeszközök. Az egyedi tervezést nagymértékben segíti a hasonló feladatoknál alkalmazott megoldások ismerete. A hasonló megoldások ismerete ötleteket, koncepciókat adhatnak, amik elvezethetnek a helyes megoldáshoz. Az ötlettől a megvalósításig többnyire hosszú út vezet. Mindenekelőtt az ötleteket ki kell dolgozni, a tényleges megvalósíthatóságukat meg kell vizsgálni. Az ötletek kidolgozásá-nak első szakasza a koncepcionális tervezés [2]. A koncepcionális tervezés eredménye gyakran egy ajánlati terv, egy virtuális prototípus, esetleg a mechanizmus működését bemutató animáció.

A koncepcionális terv alapján még nem lehet legyártani, elkészíteni az objektumot, de arról már előzetes véleményt lehet alkotni. A korszerű CAD szoftverek erősen támogatják a koncepcionális tervezést.

A segédletben nem tárgyaljuk a mechanizmusok kinematikáját, amely a helyzet sebesség- és a gyorsulásállapotát vizsgálja, valamint a mechanizmusok dinamikáját, amely a kinematikai vizsgálatokon túl a mechanizmusok erőjátékának vizsgálatával foglalkozik. Ezek vizsgálata is megoldhatóa Pro Engineer megfelelő moduljával.

Munkánkban bemutatjuk a Pro Engineer szoftver alkalmazhatóságát néhány lehetséges négycsuklós szerkezet koncepcionális tervezésénél.

A MECHANIZMUS VONALAS MODELLJE

Mint ismeretes a modell nem más, mint a valós, vagy elképzelt objektum mása, szűkített információkkal való leképezése. A CAD szoftvereknél többnyire geometriai modellt készítenek, ahol metrikusan jellemző információkat képeznek le. A csuklós mechanizmusok koncepcionális tervezésénél egy másfajta / mechanikai / modellt kell készíteni!

Itt a modell célja, a megfelelő a peremfeltételekkel megfogalmazott mechanizmus működéshelyes elvi megtervezése, az elvi modell viselkedésére vonatkozó számítások végzése [3]. Mint már említettük, az egyedi tervezésű csuklós munkadarabefogó készülékek tervezését segítik a hasonló feladatoknál alkalmazott megoldások. Ennek szellemében először olyan négycsuklós mechanizmusokat tárgyalunk, amelyekhez hasonló kerül / kerülhet / beépítésre egyes heverők betétjének nyitásához, csukásához / 1. ábra /, illetve néhány személyautónál a csomagtartó ajtajának mozgatásához / 79. ábra /.

1. ábra Egy heverő betétjének nyitó – csukó szerkezete

A 2. ábra mutatja az 1. ábrán látható csuklós mechanizmus géprajzi vázlatát. A vázlat a lényeges dolgokat kiemeli, a lényegtelen dolgokat elhanyagolja. A tervezés kezdeti szakaszában mindenekelőtt a mechanizmus működési elve, mozgásviszonya tisztázandó. Ehhez elegendő a csuklós szerkezet elemeit az ábrán látható 4

módon jelképesen vázolni. A 2. ábra a csuklókat háromszög és a csúcspontjában lévő kör, a rudakat egy – egy vonal jelöli.

2. ábra A mechanizmus vázlata

A számítógépes környezetben a vázlat tovább egyszerűsíthető.

3. ábra A mechanizmus számítógépes durva vázlata

Az új vázlatnál a csuklók jelképei nincsenek kirajzolva, a csuklópontokat a vonalasan rajzolt elemek csatlakozó pontjai jelentik. A számítógépes vázlat nemcsak egyszerűsítést jelent, hanem minőségi változást is, hiszen a vázlat életre kelthető, mozgatható. Ez úgy érhető el egy parametrikus CAD szoftvernél, hogy a vázlatot ellátjuk megfelelő geometriai és méretkényszerekkel, majd az egyik méretkényszert / pl. egy rögzített csuklóval rendelkező tag α szögállását / utólag módosítjuk.

4. ábra A mechanizmus mozgatása a szögérték változtatásával

A méretmódosítás után a mechanizmus rúdjait szemléltető egyenes szakaszok felveszik a beállított méretnek megfelelő új helyzetet. Tehát a számítógépes környezetben a mechanizmus vázlata hasonlóan viselkedik, mint maga a mechanizmus, így a vonalas vázlat a mechanizmus modelljeként kezelhető.

A valós mechanizmusnál a **b** jelű rögzített csuklóval rendelkező tag szögállását változtatva a **d** jelű rúd forgó, a **c** jelű rúd változó lefolyású mozgást végezve veszi fel az új helyzetet. A 4. ábrán látható számítógépes vonalas modell csak a beállított méretnek megfelelő helyzetet ábrázolja, de magát a mozgást nem szemlélteti.

Természetesen a vonalas modell csak megfelelő geometriai adatokkal működik helyesen. A geometriai adatokat / a rúdhosszakat / az előírt feltételek / továbbiakban peremfeltételek / figyelembevételével kell meghatározni. Az eltérő peremfeltételek befolyásolhatják a feladatmegoldás menetét.

A PEREMFELTÉTELEK MEGFOGALMAZÁSA 1

A 2. ábrán látható négycsuklós mechanizmus középső, **c** hosszúságú tagját a vízszintes / 1 jelű / helyzetből függőleges / 2 jelű / helyzetbe kell állítani! A két, hiányosan előírt helyzeten túl követelmény még, hogy a mechanizmus 2 jelű helyzetében az egyelőre ismeretlen **b** hosszúságú rúd a vízszintessel 95 fokos szöget zárjon be! A mechanizmus két megadott helyzetét biztosítsák ütközők! Az 1 jelű helyzetben a rögzített és a mozgó csuklók egymással **h** távolságban lévő párhuzamos egyeneseken találhatók. Ezenkívül a tervezés kezdetén, ideiglenes jelleggel vegyük fel a **b** és a **c** rúd hosszúságát / **b**=131, **c**=70 /!

Négytagú mechanizmus tervezése a peremfeltételek 1 alapján

A négytagú mechanizmus tervezése két előírt helyzet alapján szögfelezők alkalmazásával már régóta megoldott [4]. A Pro Engineer vázlatkészítő környezetében a megoldást a számítógép hathatósan támogatja.

A parametrikus szoftvereknél főleg háromdimenziós építőelemeket hoznak létre. Az építőelemek alapja többnyire egy vázlat. Ennélfogva a parametrikus szoftverek fejlett vázlatkészítő környezettel rendelkeznek.

A vázlatkészítő környezet film felhasználható segédgörbék készítésére is. A segédgörbék több geometriai elemből / szakasz, kör, körív / állhatnak.

Kezdjünk új objektumot vmodell.prt névvel! Készítsük el a FRONT síkon a 3. ábrán látható mechaniz-

mus vázlatát ¹¹¹! Ha a vázlatkészítő környezetben először elkészítjük a 3. ábrán látható mechanizmus vonalas vázlatát / 5. ábra /, akkor a szoftver automatikus kényszerező képességének megfelelően geometriai és méretkényszereket helyez el.

5. ábra A mechanizmus egyik szélső helyzetének durva vázlata

Az automatikus méretmegadást befolyásolja a vázlatsík kiválasztásánál felvett két méretezési referencia, ami az 5. ábrán kettős pont- vonalként látható.

A szoftver automatikusan egy-egy vízszintességet / H / előíró geometriai kényszert helyezett el. Ezeket hagyjuk meg, és helyezzük el a peremfeltételeknél megismert méretkényszereket / 6. ábra, h=38, b=131, c=70 /! A 6. ábrán az **a** és **d** szakasz / rúd / hossza még egyelőre ismeretlen, ezért a 6. ábrán gyenge méret is látszik / 129.88 /.

6. ábra

A mechanizmus egyik szélső helyzete az ismert méretek megadásával

Rajzoljuk hozzá a másik szélső helyzetet is durva vázlatként / 7. ábra /!

7. ábra A mechanizmus két szélső helyzetének durva vázlata

Adjuk meg az ismert szögértéket / 95° /, és végül a megfelelő rudaknál írjuk elő az egyenlő hosszúság

kényszerét. Az utolsó kényszer elhelyezésekor a vázlat geometriailag határozott lesz, azaz a 8. ábrán látható modell alkalmas az a és d rudak hosszának meghatározására. Ha ezeket a rúdhosszakat szeretnénk feltüntetni a vonalas modellnél, akkor azokat referenciaméretként tudjuk csak megadni.

A 8. ábrán látható méret bármelyikét módosíthatjuk. A módosítás után az ábra az új méretnek megfelelő geometriát veszi fel. Az ábra úgy kezelhető, mint egy adott peremfeltételekkel megfogalmazott feladatokat megoldó automata. Ez a vonalas modell lesz a későbbiekben bemutatott optimalizálás alapja, illetve ezt lehet felhasználni a függő alkatrészek létrehozásánál.

8. ábra Vonalas modell / vmodell / mint feladatmegoldó automata

A működést szemléltető vonalas modell létrehozása

A 8. ábrán látható vonalas modell segítségével meghatározhatjuk a peremfeltételeknek megfelelő négycsuklós mechanizmus ismeretlen \mathbf{a} és \mathbf{d} rúdhosszait. A rúdhosszak ismeretében elkészíthetünk egy olyan vonalas modellt, amely a 4. ábrához hasonlóan mozgatható.

A mozgó modellhez készítsünk a vmodell-ről egy másolatot mmodell névvel!

Model Name	VMODELL.PRT		
New Name	MMODELL		
Туре	Part (*.prt)		~
	ЭК	Cancel	

9. ábra Mentés más névvel

Zárjunk be minden ablakot, és töröljük az összes modellt a memóriából! File ►Close Window, illetve File ►Erase ►Not Diplayed Ezt követően hívjuk be az mmodell.prt fájlt, és módosítsuk a vázlatot!

10. ábra A vázlat módosítása Sketch 1 ► Edit Definition ► Sketch

A vázlatkészítési környezetbe lépve, töröljük le a b, c, d jelű rúd felső állásának megfelelő vonalakat!

11. ábra A modell képe a felső állásnak megfelelő vonalak letörlése után

Ilyen állapotban már nem szabad méretet módosítani, mert egy esetleges méretmódosítás esetén a modell nem felelne meg a peremfeltételeknek. Annak érdekében, hogy ne változzon egyetlen rúd hosszúsága sem, a rudak hosszát meg kell adni.

Működés közben a modell C jelű elemének változó lefolyású mozgást kell végezni. Az ilyen mozgását jelenleg gátolja az elemre vonatkozó automatikusan elhelyezett vízszintességet "H" előíró geometriai kényszer, illetve a vízszintes rudaknál előírt 38 mm távolság. Töröljük ki ezt a geometriai, illetve méretkényszert!

Ezt követően már megadható egy szögérték / 16,87 /, aminek változtatásával a modell különböző helyzete beállítható / 12. ábra /.

12. ábra A mechanizmus közbenső helyzeteit szemléltető vonalas modell / mmodell /

A vázlatkészítési környezetből kilépve egy segédgörbének számító építőelemet kapunk. Ez az építőelem megfelel a mechanizmus mozgatható vonalas modelljének. A vonalas modellnél tetszés szerint állítható a szög értéke, és megfigyelhető a modell viselkedése.

Meggyőződhetünk arról, hogy a 95 fokos szögállásnál a tervezett mechanizmus felveszi-e a kívánt szélső helyzetet.

13. ábra A modell szélső állása

Holtpontok meghatározása a vonalas modell alapján

A Pro Engineer szoftvernél lehetőség adódik bizonyos mérési feladatok elvégzésére, illetve mérésépítőelem létrehozására.

Analysis ► Measure ► Angle

14. ábra A rudak által bezárt szög mérése

A 14. ábra a vastag vonallal ábrázolt rudak által bezárt szöget szemlélteti. A két kijelölt rúd határesetekben egy egyenesre esik. Ilyenkor a bejelölt szög értéke vagy 180°, vagy 0°. Ez a két határeset a mechaniz-10

musnál holtpontot jelent [4]. A holtpontokban a bejelölt szögnek szélsőérték maximuma, illetve minimuma van.

A kijelölt szög / Angle /értékét a szoftver kiírja. A mérésről egy építőelemet hozhatunk létre / Add Feature /, melynek egy nevet kell adni / ALFA /.

15. ábra A mért eredmény, a mérésépítőelem / ALFA / létrehozása

A mérésépítőelem paraméterként tárolja a mért értéket. Külön parancs áll rendelkezésre a paraméter vizsgálatára, annak maximum, illetve minimum értékének meghatározására egy megválasztott változó függvényében.

Analysis ► Optimization

Változóként jelöljük ki a forgattyú mozgatására megadott szöget / Add Dimension /! A mechanizmus vizsgálatánál az a kérdés, hogy a holtpontok a forgattyú milyen szögállásához tartoznak. A forgattyúnak a meghatározott szögértékek mellett / max = 109,65°; min =15,97° / szélső helyzete van, tovább nem forgatható [4].

File Bun Options Study Type/Name Study Type/Name Optimization Feasibility Name OPTIM1 Goal Maximize Maximize ANGLE:ALFA Design Constraints Parameter Op Value	
Image: Study Type/Name Image: Optimization Image: Optimization <	ile <u>R</u> un <u>O</u> ptions
Study Type/Name Optimization Feasibility Name OPTIM1 Goal Maximize ANGLE:ALFA Design Constraints Parameter Op Value Add Delete Design Variables	🗅 🚅 🛄 🚺
Optimization Feasibility Name OPTIM1 Goal Maximize ANGLE:ALFA Design Constraints Parameter Op Value Add Delete Design Variables Design Variables	- Study Type/Name
Name OPTIM1 Goal Maximize ANGLE:ALFA Design Constraints Parameter Op Value Add Delete Design Variables	 Optimization
Goal Maximize ANGLE:ALFA Design Constraints Parameter Op Value Add Delete Design Variables	Name OPTIM1
Maximize ANGLE:ALFA Design Constraints Parameter Op Value Add Design Variables	Goal
Design Constraints Parameter Op Value Add Design Variables	Maximize 💌
Parameter Op Value Add Delete Design Variables	Design Constraints
Add Delete	Parameter
Add Delete	
Add Delete	
Add Delete	
Design Variables	
	Add
Variable Min Max	Add - Design Variables
d12:MMODELL 20.000000 180.000000	Add Design Variables Variable
	Add - Design Variables Variable d12:MMODELL
	Add Design Variables Variable d12:MMODELL
	Add Design Variables Variable d12:MMODELL
Add Dimension Add Parameter Delete	Add Design Variables Variable d12:MMODELL
Compute Undo Close	Add Design Variables Variable d12:MMODELL

16. ábra Optimalizálás

Az optimalizálás végrehajtásához kattintsunk a Compute mezőre! Az optimalizálás végén a mechanizmus felveszi a kiszámított szélső helyzetet / 17. ábra /.

17. ábra A forgattyú maximális szélső helyzete

A másik szélső helyzet meghatározásához minimalizálni / minimize / kell a mért építőelem értékét.

A forgattyú minimális szélső helyzete

Hasonló vizsgálat végezhető el a leghosszabb rúd forgatásánál is. A rudak mérete befolyásolja a forgatás lehetőségét. Ennek elemzése megtalálható szakkönyvekben [pl. 4].

A rudak összhosszának minimalizálása

A 8. ábrán látható vonalas modell feladatmegoldó automataként használható. Ha módosítunk egy peremfeltételt, akkor azonnal megkapjuk az új megoldásnak megfelelő geometriai adatokat. Ez a módszeres hatásvizsgálaton túl az optimalizálás egyik feltételét is biztosítja.

Matematikai értelemben az optimalizálás szélsőértékszámítást jelent. A bemutatott feladatnál azt vizsgáljuk, hogy a b jelű rúdnak létezik-e olyan értéke, melynél a rudak összhossza minimális. Az érthetőség kedvéért előzetesen bemutatjuk a MAPLE matematikai programmal végzett vizsgálat eredményét / 19. ábra /. A vizsgálatnál a c jelű rúd hossza 70 mm volt. Az ábrán jól látható, hogy a megadott peremfeltételek mellett létezik szélsőértékminimum. Úgy is fogalmazhatjuk, hogy a peremfeltételek által meghatározott mérethálózat mellett a rudak összhossza egy olyan függvénnyel adható meg, amelynek létezik szélsőérték minimuma, ha a b jelű rúd a független változó.

19. ábra A rudak összhosszának változása a **b** jelű rúd függvényében

Az optimalizálásnál mindig egy mérés-építőelemre hivatkozunk, amikor a célfüggvényt megfogalmazzuk. Tehát a rudak összhosszának minimalizálásánál mérhetővé kell tenni a rudak összhosszát. A mérhetőség érdekében a vázlatkészítő környezetben rajzoljunk egy egyenes szakaszt! Később tervezői összefüggéssel biztosítjuk a szakasz megfelelő hosszát. A tervezői összefüggések megadásánál mind a négy rúd hosszméretével számolunk. Két rúdnak a méretét a peremfeltételeknél megadtuk / b=131, c=70 /, a másik két rúd hoszsza pedig a feladatmegoldáskor adódott ki. A kiadódó hosszakat adjuk meg referenciaméretként / d4 REF, d5 REF 20. ábra /!

20. ábra Referenciaméretek felvétele

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

Zárjuk be a vázlatkészítő környezetet, majd alkatrészszintű tervezői összefüggéssel a d6 szakasz hosszát tegyük egyenlővé a rudak összhosszával / d6=d1 + d2 + d4 + d5. / ! Ezt követően mérjük meg a felvett szakasz hosszát / 21. ábra /! Analysis \blacktriangleright Measure \triangleright Curve Length

Curve Length
Definition
Curve/Edge
Curve/Edge
Curve:F5(SKETCH_1)
Results
Curve length = 794.967
Compute Display Info
Saved Analyses
Close Add Feature

21. ábra

A rudak összhosszának mérése

A mérésről vegyünk fel egy építőelemet / Add Feature /! Az építőelem neve legyen SL! Ezek után már elvégezhető az optimalizálás.

Analysis ► Optimization

Változóként jelöljük ki a b jelű rúd méretét, vagy annak kódját / Add Dimension > d2 /

A rudak összhosszának minimalizálása

Az optimalizálás elindításakor / Compute / a program egy konvergenciadiagramot készít, melynek képe az alábbiakban látható.

23. ábra Konvergenciadiagram

A mechanizmus rúdjainak megváltozott méreteit a 24. ábrán tekinthetjük meg.

24. ábra A mechanizmus rúdjainak méretváltozása

A szoftver a **b** jelű rúd optimális hosszúságát egy alapértelmezés szerinti pontossággal határozta meg. Pontosabb értéket kapunk, ha a hibaszázalékot csökkentjük.

Optimization/Feasibility	
<u>F</u> ile <u>R</u> un <u>O</u> ptions	
Range Preferences	
Range Options +/- percentage +/- number min to max +/- tolerance 	
OK Cancel	

25. ábra A számolási pontosság beállítása

A célfüggvény érzékenységének vizsgálata

Az érzékenységvizsgálat olyan elemző eljárás, amely során felderíthető, hogy milyen hatással vannak az optimális megoldásra a modell paramétereinek értékeiben bekövetkezett változások [7].

A 19. ábra alapján már fogalmat alkothattunk arról, hogyha eltérünk a **b** jelű rúd optimális értékétől, akkor milyen mértékben változik a rudak összhossza. A 19. ábra MAPLE matematikai programmal készült. Először ehhez hasonló ábra elkészítésének a lehetőségét mutatjuk be a Pro Engineer szoftveren belül.

Vegyük fel a családtábla tagjai közé a független változónak számító d2 rúd hosszát és a rúdak összhosszát / d6 / ! Ezek az értékek szerepelnek a 19. ábra koordinátatengelyein is.

26. ábra A családtábla részére kiválasztott értékek

27. ábra A d2 változó mintázat szerinti felvétele

A d2 értékekhez kapcsolódó d6 értékeket számíttassuk ki a szoftverrel ! A számítások eredményét a VERIFY , majd a CLOSE mezőre kattintva kapjuk meg.

File E Look In: V	mily Table :\ dit Insert Tools MODELL	/MO		×		
do "≣ Type	Instance Name	d2	96 29 (AT		Tree Edit	ee 🔼
	VMODELL	131.00	794.97			Verification Status
	VMODELL_INST	130.00		^	VMODELL.PRT	^
	VMODELL_INSTO	130.00	•		WMODELL_INST	Unverified
	VMODELL_INST1	135.00	•	=	VMODELL_INST	Unverified
	VMODELL_INST2	140.00		_	VMODELL_INST	Unventied
	VMODELL_INST3	145.00	•		VMODELL_INST	
	VMODELL_INST4	150.00		~	VMODELL_INST	Unverified
	VMODELL_INST5	< 10	>		WMODELL INST	Unverified 🗸
	<u>x</u>	Dgen	<u>C</u> ancel]	VERIFY	CLOSE

28. ábra Közbenső értékek kiszámíttatása

A kiszámított értékeket mentsük el Excel táblázatkezelő szoftver számára!

F	amily Table	:VMO 🔲 🗖 🗙
<u>F</u> ile	<u>E</u> dit <u>I</u> nsert <u>T</u> oo	ls
Ī	mport Table	▼ 1
E	xport Table 🕨	
III E	dit with E <u>x</u> cel	
Туре		d2 d6
	Edit the current	table using Excel
	VMODELL	131.00 734.37
	VMODELL_INST	Г 130.00 797.81 🔨
	VMODELL_INST	ro 130.00 797.81
	VMODELL_INST	r1 135.00 785.17
	VMODELL_INST	140.00 775.95

29. ábra Az adatok mentése Excel táblázatkezelő szoftver számára

Az Excel táblázatkezelő szoftverben az adatok ábrázolhatók / 30. ábra /.

30. ábra Az adatok ábrázolása az Excel táblázatkezelő szoftverrel

A 30. ábra alapján megállapíthatjuk, hogy a rudak összhossza alig változik, ha a **b** jelű rúd hossza 155 és 170 mm között van. Ilyen esetben más tervezői szempontok is előtérbe kerülhetnek.

Az előzőekben a **b** jelű rúd hosszúságát optimalizáltuk. A célfüggvényt - a rudak összhosszának minimalizálását - más értékek is befolyásolják. Így például a peremfeltételek megfogalmazásánál említettük, hogy a **c** jelű rúd hosszát ideiglenes jelleggel vegyük fel 70 mm-re. A felvett érték egy előzetes közelítésnek tekinthető. A tényleges méretét főleg szilárdsági megfontolásból kell ellenőrizni. Ha túl rövid a **c** jelű elem, akkor a betét mozgatásánál nem lehet a fellépő erőt megfelelően elosztani. Szilárdsági számításra itt nem vállalkozunk, de azt érdemes megvizsgálni, hogy a **c** jelű rúd miképpen befolyásolja a rudak összhosszát. A vizsgálathoz vegyük fel változónak a **c** jelű rudat is / Add Dimension \blacktriangleright d1 /!

31. ábra A második változó megadása

A kétváltozós optimalizálás eredményét a 32. ábrán mutatjuk.

32. ábra Kétváltozós optimalizálás eredménye

A kétváltozós optimalizálás eredményét vizsgálva egyértelmű, hogy a **c** jelű rúd hossza jelentősen befolyásolja a rudak összhosszát. Az is kitűnik, hogy matematikai értelemben a **c** jelű rúdnak nincs optimális értéke. Erre utal, hogy a legkedvezőbb értékként a megadott intervallum / c= 50 - 70 mm / legkisebb értékét kapjuk. Úgy is fogalmazhatunk, hogy az optimalizálást a **c** jelű rúdnak a megengedhető legkisebb értékére célszerű elvégezni.

Hasonló módon bevonható a vizsgálatba a megadott szögérték is. A szögérték megengedhető intervallumát 91° és 100° között vettük fel. A harmadik változónak szintén nincs optimális értéke, de a vizsgálat további lehetőséget mutat a rudak összhosszának csökkentésére.

33. ábra Háromváltozós optimalizálás eredménye

A 38 mm-s beépítési méretet adottnak, véglegesnek tekinthetjük, így annak vizsgálatára nincs szükség. Az optimalizáló modulnál **korlátozó feltételt is megadhatunk**. Alkalmazzunk távolságmérést a mechanizmus felső állásánál a **c** jelű rúd alsó pontja és a mozdulatlan vízszintes rúd között. A mért értékkel vegyünk fel egy H nevű építőelemet!

A vizsgálni kívánt távolság mérése

A távolságmérés alapján az optimalizálásnál előírhatjuk / Add /, hogy a H értéke legyen kisebb egy megadott értéknél / 33. ábrán H < 155 /.

- Design Constraints			
Parameter	Юр	Value	
DISTANCE:H	<	155.000000	
Add		Delete	
	_		

35. ábra A korlátozó feltétel előírása

A kapott érték nem a rudak összhosszának minimuma lesz, hanem a megengedhető értékek közül a leg-inkább megfelelő.

Ezt egy felvett referenciamérettel szemléltetjük / 36. ábra /.

36. ábra A megengedhető legjobb megoldás H < 155 esetén

ALKATRÉSZEK LÉTREHOZÁSA FÜGGŐ MODELKÉNT

A vonalas modell / vmodell.prt / elkészítésével a feladatot koncepcionálisan részben megoldottuk. Az elvi modellnél a rudaknak egy-egy szakasz, a csuklóknak a szakaszok végpontjai felelnek meg. A vonalas modell, mint elvi megoldás a további koncepcionális tervezést és a részlettervezést is többféle módon támogatja. Helyes tervezés esetén:

- a vonalas modell felhasználható a megfelelő rudak / alkatrészek / modellezésénél,
- a vonalas modell módosítása kihat a megfelelő rudak méretére,
- segíti a további munka kiosztását, az egyes alkatrészek párhuzamos tervezését.

A felsoroltakat az un. függő modellek létrehozásával és a konkurens tervezéssel lehet elérni. A függő modellek összeállítási környezetben hozhatók létre. Az összeállítást a bázisalkatrész beépítésével szokás kezdeni. A vonalas modell formailag / a fájl kiterjesztése alapján / alkatrésznek tekinthető, így bázisalkatrész ként beépíthető.

A vonalas modell elhelyezése az összeállításban

Nyissunk meg egy új összeállítást, legyen az összeállítás neve elemek.asm. Lépések: File ► New ► Assambly ► sablonfájl választása / design_asm_mmns sablont /.

Az alkatrész / adott esetben a vmodell.prt fájl / beépítéséhez kattintsunk a megfelelő ikonra ^{LE}, vagy Insert ► Component► Assemble mezőre!

Jelöljük ki a beépítendő alkatrészt / vmodell.prt fájlt /!

Az alkatrész kiválasztása után megjelenik a vezérlőpult:

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

PRO ENGINEER OKTATÓANYAG

37. ábra A vonalas modell alapértelmezés szerinti beépítése

Az alkatrész koordinátarendszerét hozzáilleszthetjük a szerelési koordinátarendszerhez, ha a vezérlőpult-

nál a Default opciót használjuk. Ilyenkor a helyzet-meghatározás alapértelmezés szerinti, és a beszerelendő alkatrész minden szabadságfokát leköti / Placement Status - Fully Constrained /. A zöld pipára kattint-

va

fejezhetjük be a vonalas modell beépítését.

A párhuzamos munkavégzés előkészítése függő modellként

A következőkben feltételezzünk egy olyan munkamegosztást, ahol a mechanizmus rúdjainak geometriai modelljét külön-külön más-más ember készíti el. Eddig a vezető tervező elkészítette a vonalas modellt, beépítette egy ELEMEK.ASM nevű összeállításba, ezután pedig előkészíti a párhuzamos munkavégzés lehető-

ségét. Az összeállítási környezetben kezdeményezi az új alkatrész létrehozását . Az új alkatrész neve legyen alkatrész1, röviden A1.

38. ábra Új alkatrész létrehozása összeállítási környezetben

A névadás után megjelenő ablaknál kijelöli a Create features opciót.

39. ábra Az alkatrész létrehozási módjának kiválasztása

A Create Options ablak lezárása után az összeállítási környezetben az A1 nevű alkatrész lesz az aktív, ennél az alkatrésznél lehet új építőelemeket létrehozni.

40. ábra Az aktív állapotú új alkatrész / A1.PRT / bejegyzése

A vezető tervező az A1 alkatrésznél csak annyi építőelemet készít el, annyi információt ad tovább, amennyi elegendő a további önálló munkavégzéshez. Jelen esetben elegendő egy vázlat készítése. Ennek

megfelelően a vezető tervező kér egy új vázlatot . A vázlat síkjának kiválasztja a FRONT síkot / 41. ábra /, mivel a vonalas modell is azon a síkon készült. A méretezési referenciákat mutató ablakot üresen hagyja, a References ablakot bezárja / Close /. A szoftver figyelmeztető üzenetet ad, mely szerint nincs elegendő referencia. Ennek ellenére a vezető tervező folytatja a munkát a Yes nyomógombra kattintva.

A méretezési referenciák a mérethálózat kialakításához, egy –egy vázlatrész helyzet-meghatározásához kellenek. A jelenlegi esetben csak egy szakaszt kell átvenni, amely egy kiválasztott rúdnál megadja a csuklópontok távolságát. Az egyenes szakasz átmásolásához nincs szükség méretezési referenciára.

A megfelelő szakasz átmásolásához a kaszára / 42. ábra / kattint.

Single opciót kijelölve a vonalas modell megfelelő sza-

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

24

PRO ENGINEER OKTATÓANYAG

41. ábra Vázlatsík kijelölése

42. ábra A kiválasztott egyenes szakasz átmásolása

Ezek után befejezi a vázlatkészítést. Az így elkészített vázlat egyetlen szakaszból áll, melynek hossza függő viszonyban van a vonalas modell megfelelő szakaszával. Ha a vonalas modellt módosítjuk, akkor a szakasz átmásolt képe követi a változást. Az A1 alkatrész geometriai modellje az eddig elkészített vázlat alapján már felépíthető. Az A1 alkatrész kimentéséhez az egész összeállítást aktív állapotba kell hozni.

	Activate
ASM_TOP	Open
ASM_FRONT	Send To Info Edit Parameters
Insert Here	

43. ábra Az összeállítás aktivizálása

A vázlat felhasználása

A korábbi feltételezések szerint az alkatrészek geometriai modelljét külön-külön más-más személy végzi. Az egyik kolléga E-mail-en megkapja az A1 alkatrésznek megfelelő, egyelőre csak egyetlen szakaszt tartalmazó fájlt. A fájl megnyitásakor látható képet a 44. ábra szemlélteti.

44. ábra Az al alkatrész vonalas modellje

A koncepcionális tervezésnél az alkatrészt többnyire leegyszerűsítve modellezik, mert az alkatrészek alakját még szilárdsági, gyárthatósági, szerelhetőségi szempontból még nem tekintik véglegesnek. Jelen esetben mind a négy rúd laposvasból készülhet. Az A1 alkatrész leegyszerűsített geometriai modelljét a 45. ábrán látható.

45. ábra Az A1 alkatrész leegyszerűsített geometriai modellje

A 45. ábra szerinti alkatrész kihúzással modellezhető. Mint ismeretes a kihúzás alapja egy vázlat, amit az adott feladatnál az alkatrész kerületét leíró zárt vonalból és azon belül két szigetből - körből - áll / 46. ábra /. A szigetek / lyukak / helyét az átmásolt szakasz végpontjai határozzák meg.

Az al alkatrész vázlata

A 46. ábrán látható vázlat elkészítése átmeneti nehézséget jelent, mert a kapott fájl / 44. ábra / nem tartalmaz síkokat, így a vázlat síkját sem lehet kijelölni. Mint ismeretes a vmodell.prt elkészítésekor a vázlat 26

síkja az egyik koordinátasík volt. Utólag felvehetjük a három koordinátasíkot, ha az alkatrész geometriai modellje még nem tartalmaz építőelemeket. Ezt az állapotot a meglévő vázlat / sketch / elrejtésével / Suppress / érhetjük el.

47. ábra Az építőelem elrejtése, új vázlatsík/ok/ felvétele

Ha már az A1 alkatrészfájl üres, akkor egyszerre három segédsík / koordinátasík / jeleníthető meg a Dutum Plane ikonra kattintva / 48. ábra /.

48. ábra A koordinátasíkok utólagos felvétele

Ezek után az elrejtett építőelem feléleszthető / Resume /.

A1.PB1	- 0
TT DTM1	Delete
	Resume
	Rename
Insert H	Info 🕨

49. ábra Az elrejtett építőelem felélesztése

A modellfán az építőelemek sorrendje akár fel is felcserélhető / 50. ábra /.

50. ábra Az elrejtett építőelem felélesztése

Az A1 alkatrész modellezésénél fontos, hogy a kapott információt megfelelően vegyük át. Kérjünk kihúzást! Ügyeljünk arra, hogy a kihúzás kérésekor a Sketch1 vázlat / szakasz / ne legyen kijelölt állapotban, mert akkor a szoftver felületmodellt készít a kijelölt szakasz felhasználásával. A vázlat síkja legyen a DTM3 segédsík, méretezési referenciának vegyük fel a meglévő egyenes szakaszt.

✓ Inter	nt Manager		
Sket	th Setup		
Refe	rences		
Lir Sp	ecify referer	nces w	which the section will be dimensioned and constrained to.
Rect	angle		
Circle	3	•	
Arc		•	
Fillet			1
		_	Curve:F4(SKETCH_1) Curve:F4(SKETCH_1) Curve:F4(SKETCH_1) Curve:F4

51. ábra Az információ átvétele méretezési referenciaként

Az átvett méretezési referencia segít a szakasz végpontjaiban / a csuklópontok helyén / megrajzolni a köröket. A körök páronként legyenek azonos átmérőjűek, majd a külső köröket kössük össze egy-egy érintőszakasszal.

52. ábra A vázlat közbenső állapota

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

28

53. ábra Az Al alkatrész vázlatának kihúzása

Az Al alkatrész geometriai modellje a koncepcionális tervezés szempontjainak már megfelel, így kimenthető, a vezető tervezőnek visszaküldhető. A visszaküldött fájl verziószáma megnövekedett, így ha a vezető tervező megnyitja az ELEMEK.ASM fájlt, akkor az Al alkatrész helyén már az 53. ábrán látható modell jelenik meg.

54. ábra

A visszaküldött A1 alkatrész megjelenése a vonalas modellre épülő összeállításnál

A többi / A2, A3, A4 / alkatrész geometriai modellje hasonlóképpen készíthető el.

55. ábra A visszaküldött A1, A2, A3, A4 alkatrész megjelenése a vonalas modellre épülő összeállításnál

Az alkatrészek módosítása

Az alkatrészek hosszméretét a vonalas modell egy-egy szakasza határozta meg. A hosszméretek változtatását ennek megfelelően a vonalas modellnél / vmodell.prt / kell kezdeményezni.

56. ábra A vonalas modell méretmódosítása / 38 ► 80 /

Ha a vonalas modell módosítása után frissítjük a ELEMEK:ASM összeállítást, akkor az alkatrészek hosszmérete is módosul a vonalas modellnek megfelelően.

57. ábra A függő alkatrészek automatikus módosulása az összeállítás frissítésénél

Az itt bemutatásra kerülő ELEMEK.ASM összeállítás csak a függő alkatrészek létrehozásához, azok hatékony módosításához használható, ebben a környezetben az alkatrészek között nincs szerelési kényszer, az alkatrészeket nem lehet mozgatni. A mozgatáshoz, az animáláshoz az alkatrészeket egy új összeállításba kell szerelni.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

30

ANIMÁCIÓ KÉSZÍTÉSE

Mint már említettük a koncepcionális tervezés eredménye gyakran egy virtuális prototípus, egy animáció, amely a mechanizmust működés közben szemlélteti. Ebben a fejezetben azt mutatjuk be, hogyan lehet a négycsuklós mechanizmusnál animációt készíteni.

A mechanizmus alkatrészeinek az összeszerelése

Mint ismeretes a geometriai modellekből készíthetünk egy statikus összeállítást, vagy a szerelésnél biztosíthatjuk az alkatrészek egymáshoz viszonyított elmozdulását, pl. animáció készítésének céljából.

A szerelés tulajdonképpen az alkatrészek beépítését – helyzetmeghatározását, bizonyos fokú rögzítését - jelenti. A számítógépes tervezésnél a szerelést az összeállítási környezetben végezzük el. Az elsőnek beépített alkatrészt bázisalkatrésznek szokás nevezni.

A bázisalkatrész beépítéséhez mindenekelőtt egy új fájlt kell megnyitni. A fájl neve legyen animacio.asm. File ► New ► Assambly . Válasszuk sablonfájlként a mmns_asm_design sablont!

Hívjuk be az összeállításba az első alkatrészt ¹¹⁵. Legyen ez az alkatrész az ágykerethez csavarokkal rögzített elem, amihez kapcsolódnak a mozgó alkatrészek. Rögzítsük ezt az alapértelmezett /Default / helyzetben / 58. ábra /!

58. ábra A bázisalkatrész alapértelmezés szerinti rögzítése

Ezután hívjuk be az egyik csatlakozó alkatrészt és statikus kényszerekkel / Align, Mate / határozzuk meg a helyzetét!

Mate V T	🔀 STATUS : Fully Constrained
Constraint Enabled	
Constraint Type Constraint Type	
Offset	
	Align
Status	
Allow Assumptions	
Fully Constrained	

59. ábra A csatlakozó alkatrész statikus szerelése

Az Align, illetve a Mate szerelési kényszerek a 59. ábra szerint teljesen / Fully Constrained / lekötik a szabadsági fokokat. Ez csak azon feltételezés / Allow Assumptions / mellett igaz, hogy a behívott alkatrész helyzete / ferdesége / változatlan marad. Ha ezt nem feltételezzük, akkor az Allow Assumptions felírat előtti zöld pipát kapcsoljuk ki. A feltételezés kiiktatásával a kényszerezés részlegessé válik / Partially Constrained – 60. ábra /.

	User Defined	anism connection or vice versa.	🏂 STATUS : Partially Constrained
S S	 Set1 (User Defined) Align Mate Surf:F5(PROTRUSION):/ Surf:F5(PROTRUSION):/ New Constraint 	Constraint Enabled Constraint Type Mate Flip Offset	Align
	New Set	Allow Assumptions Partially Constrained	

60. ábra A forgatási lehetőség biztosítása az előzetes feltételezés kikapcsolásával

A teljes kényszerezés megszüntetése után a beszerelt alkatrész a tengely körül elforgatható. Ilyen állapotban a statikus kényszerezés átalakítható, konvertálható a mechanizmusoknál szükséges kényszerekre / pl. Pin

/. A konvertálás a ikonnal kezdeményezhető.

Select aligning axis or edge on other part.	
🕍 🕒 🏷 🖋 Pin 💌	🕺 STATUS : Connection Definition Complete.

61. ábra A statikus kényszerek konvertálása

Szereljük be az előbb ismertetett módon a többi alkatrészt is, természetesen a csatlakozási sorrendnek, helyzetnek megfelelően. A záróelem szerelésénél a szoftver konfigurálásától függően előfordul, hogy a beszerelendő komponensnél / zárótagnál / automatikusan értelmezi az Align, illetve a Mate kényszereket, így azokat csak az összeállítási komponensnél kell kijelölni.

A megoldás hasonló a Komponens Interfész használatához / Lásd Képlékenyalakító technológiák számítógépes tervezése 122 oldal /.

A 62. ábrán a Placement mezőt lenyítva érzékelhetjük, hogy a beszerelendő zárótagnál a tengely automatikusan kijelölt állapotban van / \Rightarrow Align A _4(Axis) /, és a szoftver a az összeállítási referenciára vár / Select assembly item /. Az adott esetben az összeállítási referencia megfelel a bázisalkatrésznek, így jelöljük

Select assembly item /. Az adott esetben az összeállítási referencia megfelel a bázisalkatrésznel ki a tengely / A_4(Axis) / párját.

Ezt követően ki kell jelölni az automatikusan értelmezett Mate kényszer párját is.

Interface To Geom	INTFC001	Auto Place STATU
Placement Move Uptions Flexibility ■ Location1 ■ INTFC001 (User Defined) Align Align Select assembly item Mate		
New Location	Status Not Fully Constrained	/INTFC 001 Mate

62. ábra A záróalkatrésznél automatikusan kijelölt kényszerek

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

🖌 📙 🆒 Interface To Geom	INTFC001 V	Auto Place STATUS : Partially
Placement Move Options Flexibility	Properties	
 □ Location1 □ INTFC001 (User Defined) Align Mate 	Constraint Enabled	
Surf:F5(PROTRUSION	Offset	
New Location	Status Allow Assumptions Partially Constrained	INTEC 001
	Align	

63. ábra A záróalkatrésznél automatikusan kijelölt kényszerek

A 63. ábra szerint elvégezve a szerelést a beszerelendő rúd még elfordítható / Ctrl + Alt + középső egérgomb /, de természetesen csak akkor, ha a mozgási szabadsága nincs feltételezéssel lekötve / Allow Assumptions – Partially Constrained /.

64. ábra Az elforgatott helyzetű zárótag

Az elfordított helyzet jól mutatja a hiányos kapcsolatot. A szerelést csak új szerelési csoporttal / New Set / tudjuk folytatni. Ha a New Set felirat nem aktív, akkor kattintsunk a Place manually ikonra.

65. ábra Újabb szerelési csoport kezdése "kézi" módszerrel

A Place manually ikonra kattintva már kezdeményezhető egy új szerelési csoport a New Set feliratra kattintva.

🕺 🔃 🏷 🛛 User Defined 🛛 👻	-Mate
Placement Move Options Flexibility	Properties
 □ Location1 □ Set3 (User Defined) Align → Mate 	Constraint Enabled
New Set	Offset
	Status Allow Assumptions Partially Constrained

66. ábra Új szerelési csoport kezdése / New Set /

A New Set parancs kiadása után újabb / Set4 / szerelési csoporttal dolgozhatunk tovább / 67. ábra /.

🖞 🛄 🏷 🛛 User Defined 🛛 💌	Automatic 💌 🎞 🕶
Placement Move Options Flexibility	Properties
 □ Location1 ① Set3 (User Defined) □ Set4 (User Defined) → Automatic 	Constraint Enabled Constraint Type Automatic
Select component item Select assembly item New Constraint New Set	Offset Coincident

67. ábra

Automatikus helyzetmeghatározás az új / Set4 / szerelési csoportnál

A Set4 csoportnál elegendő a tengelyeket igazítani. Az összetartozó tengelyek kijelölése után a statikus szerelési kényszereket még konvertálnunk kell.

f 📙 🏷 🔀 Cylinder 🛛 💌	O Align	🔀 STATUS : Connection Definition Co
Placement Move Options Flexibility	Properties	
 Location1 Connection_3 (Pin) Connection_4 (Cylinder) Axis alignment A_3(AXIS):F5(PROTRI A_4(AXIS):F5(PROTRI Translation Axis Rotation Axis New Set 	Constraint Enabled Constraint Type C Align Flip Offset Coincident Status	Axis alignment
	Connection Definition Complete.	

68. ábra Automatikus helyzetmeghatározás az új / Set4 / szerelési csoportnál

Ha a Set4 szerelési csoportnál az Align statikus kényszeren kívül a Mate kényszert is alkalmazzuk, akkor a konvertálás épúgy lehetséges és szükséges, de akkor a kapcsolat a Cylinder helyett Pin lesz.

A dinamikus kényszerekkel létrehozott összeállítás a koncepcionális tervezésnek megfelelően egy egyszerűsített konstrukció. A csuklóknál nem építettünk be csapokat, az alkatrészek alakja, mérete nem tartalmaz szilárdsági, illetve valós szerelési megfontolásokat. A modell szerepe a működés szemléltetése, a tervezés helyességének bizonyítása. A modell az összeállítási környezetben kézzel mozgatható / Ctrl + Alt + bal egérgomb /. A mechanizmusnál nem mindegy, hogy melyik elemét mozgatjuk. Erről könnyen meggyőződhetünk, ha a kézi mozgatást más – más alkatrészre kattintva végezzük el. A továbbiakban a magyarázatot csak az A1 alkatrész forgatására korlátozzuk. Ahhoz, hogy az A1 alkatrész rögzített csuklójánál értelmezzük a forgatást, egy szervó motort kell felvenni az említett csukónál / Joint axis / .

69. ábra A mozgatásra kijelölt alkatrész / A1 /

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

36
Szervó motor felvétele, a mozgások lehatárolása

Az Applications legördülő menüben válasszuk ki a Mechanism menüpontot!

70. ábra

A modellfa kiegészítése a Mechanizm menü választásakor

A kiegészített modellfán az alkalmazott kapcsolatok megjelennek : Joints ►Connection_1 – Connection 4.

A megfelelő tengely kijelölése után a Servo Motor Definition ablaknál a választás bejegyzésre kerül / Connection_1_axis_1 /.

A grafikus képernyőn a hajtott alkatrész narancs-sárga színnel, a referencia alkatrész pedig zöld színnel jelenik meg. A forgatás irányát egy lila színű nyíllal jelöli a szofver. / The direction of motion is shown by the magenta arrow. Driven entity (body1) is highlighted in orange and reference entity (body2) is highlighted in green. / Az irány a Flip kapcsolóval megfordítható. A forgatás pozitív iránya a mágneses erővonalak irányának meghatározásánál alkalmazott jobbkézszabály szerint értelmezhető.

71. ábra A szervomotor elhelyezése

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

Ebben a környezetben állíthatjuk be a mechanizmus szélső helyzeteit / Minimum Limit, Maximum Limit

/. Kattintsunk rá a Profile feliratra, majd a speciális beállítást igénylő mezőre ! A szélső helyzeteket / szögértékeket / a megjelenő Motion Axis ablaknál / 72. ábra / akkor tudjuk beírni, ha előbb a komponens referenciát, illetve a szerelési referenciát az igényeknek megfelelően kijelöljük / Select component , illetve assembly zero reference /.

	×
Rotation Axis Select component zero Select assembly zero re) reference
Current Position	Regen value
76.27 >> Enable regeneration v.	alue
Minimum Limit	180.00 👽
Maximum Limit	180.00 🗸

72. ábra Az új referenciák kijelölési lehetősége

	MOTION AXIS	×
16.000000	Rotation Axis Surf:F5(PROTRUSION):A1 Surf:F5(PROTRUSION):A4	
(The state of the	Current Position	Regen value
	16.00 Enable regeneration value	0.00
	Minimum Limit 16.00	~
	Maximum Limit 95.00	~
	Dynamic properties >>	
	ರಿರ್ 🗸	X

73. ábra Az új referenciák megadása

Az új referenciák az A1, illetve az A4 alkatrésznél legyenek lemezvastagságnak megfelelő sík felületek. A szög minimum értékét / Minimum Limit / a modellnél előzetesen meg kell mérni a mechanizmus kiinduló helyzeténél. A szög maximum értéke a peremfeltételből adódik / 95° /. 38

> Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

Ezek után bezárhatjuk az ablakokat. A mechanizmus modellje már csak a két meghatározott végállás között mozgatható / a Ctrl + Alt + bal egérgomb tartós lenyomása mellett mozgassuk az egeret /.

Az animáció beállításai

Az animációnál egy képsorozatot hozunk létre, ami kimenthető, áttünés nélkül megjeleníthető. Először az Applications legördülő menüből válasszuk az Animation menüpontot, majd a ikont!

🔲 Key Frame Sequence 🛛 🔀
Name
Kfs1
Reference Body
Ground
Sequence Bodies
Key Frame
💼 🔽 රිත්
Time Edit or create a snapshot
Time Snapshot

74. ábra Fényképek felvétele, ütemidők beállítása

A heverő emelő mozgását szemléltető animációnál elegendő "lefényképezni" a két szélső helyzetet., a többit a szoftver generálja. A szélső helyzetek beállításához, a felvételek / Snapshots / elkészítéséhez a Key

Frame Sequence ablaknál kattintsunk fényképezőgépnek megfelelő ikonra ! A Drag feliratú ablaknál a

nyitott tenyérre katintva tudjuk kijelöni, mozgatni a megfelelő alkatrészt. A mozgatásnál bal egérgombbal kattitsunk a mozgatandó alkatrészre, majd mozgassuk az egeret az egérgombok lenyomása nélkül. A kívánt helyzet elérésénél bal gom kattintásával rögzíthetkük a pillanatnyi állást. A mozgatást először vé-

gezzük el az összecsukott állapotnak megfelelő szélső helyzetig. Ezután a fényképezőgép képére kattintva készíthetünk egy felvételt / Snapshot1 /. A második felvétel / Shapshot2 / a nyitott állapotot rögzítse. Végezetül a harmadik felvétel ugyancsak az összecsukott állapotnak feleljen meg!

75. ábra A beállított helyzetek lefényképezése

A sikeres felvételek után / Snapshot1 – Snapshot3 / Close –zal bezárhatjuk a Drag ablakot!

A Key Frame Sequence ablaknál a felvételekhez ütemidők tartoznak. Az idő változását a képrnyő alján is figyelemmel kisérhetjük. Alapértelmezés szerint az időskála 10 egység hosszúságú, ami az adott esetben nincs kihasználva.

¥kís1.1 ⊽ ⊽	Time Snapshot 0 Snapshot1 1 Snapshot2 2 Snapshot3	
Time 0 1 2 1.90 11111111111111111111111111111111111	Reverse Remove	ļ

76. ábra Ütemidők megjelenítése

Ha az ablaknál beállítjuk valamelyik felvételt, akkor a hozzá tartoző időt át lehet írni / 77. ábra /.

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

Key Frame				
D Snapshot3	🔽 රිත			
Time 10.000000	+			
Time Snapshot				
0 Snapshot1				
6 Snapshot2				
10 Snapshot3				
Reverse	Remove			
- Translation	- Rotation			
 Linear 	 Linear 			
O Smooth	O Smooth			
OK Regenerate Cancel				

77. ábra Ütemidők átírása

Az OK gomb megnyomásával zárjuk be az ablakot. A modelltér alsó részén lévő idősávban már az új értékek jelennek meg.

Ha ezzel megvagyunk, már készen is áll a modellünk az animálásra. Az animació a legördülő menüből, vagy a megfelelő ikonra / Strart the animation / kattinva indítható.

Az animáció indítása

Ha ezt ki szeretnénk menteni mozgókép formátumú fájlba, akkor a Playback ikonra kattintva megjelenik a Playback (visszajátszás) ablak. Itt a Capture gombra kattintás után beállíthatjuk a mozgókép paramétereit, a kimeneti fájlformátumot.

A PEREMFELTÉTELEK MEGFOGALMAZÁSA 2

A 79. ábra egy személygépkocsi csomagtartó ajtajának nyitó-csukó szerkezetét szemlélteti.

79. ábra Egy személygépkocsi csomagtartó ajtajának nyitó-csukó szerkezete [8]

A szerkezet áttervezésénél ismertnek tekinthetjük a négycsuklós mechanizmus középső **c** jelű tagjának hosszát és két előírt helyzetét, valamint a rögzített csuklópontokat tartalmazó egyenesről tudjuk, hogy az átmegy egy adott ponton, és a koordinátarendszer X tengelyével α szöget zár be. Az α szög értéke egy megengedett intervallumon belül változhat / 80. ábra /.

80. ábra Vázlat a peremfeltétel magyarázásához

Négytagú mechanizmus tervezése a peremfeltételek 2 alapján

A tervezésnél célfüggvényként fogadjuk el a rudak összhosszának minimalizálását!

A megoldást vezessük vissza egy egyszerűbb esetre! Válasszuk meg az α szög értékét, azaz vegyünk fel egy valamilyen szögben hajló egyenest az adott ponton át!

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

Az egyenesen vegyünk fel $\mathbf{A}^{\mathbf{I}}$ és $\mathbf{B}^{\mathbf{I}}$ pontokat, majd ezeket kössük össze a két helyzetben adott **c** jelű tag megfelelő végpontjaival a 81. ábra szerint, és végül a kapott szakaszokra páronként írjuk elő az egyenlőség kényszerét.

Megoldási algoritmus

Az egyenlőségi kényszer érvényesülésekor megkapjuk a keresett A és B pontok helyét, illetve az A, B pontokhoz kapcsolódó **a**, **b**, **d** szakaszok hosszát. Az **a**, **b**, **d** szakaszok - rudak - hossza kiadódó méret. Ezeknek a méreteknek az értékét a Pro Engineer szoftvernél csak referenciaméretként adhatjuk meg.

A 81. ábra is úgy kezelhető, mint egy adott peremfeltételekkel megfogalmazott feladatokat megoldó automata. A **c** jelű rúd hosszát, helyzetét változtatva a 81. ábra a modell frissítése után az új méreteknek megfelelően változik, azaz újból meghatározza az A, B csuklópontok helyét, és ezzel együtt a mechanizmus **a**, **b**, **d** rúdjainak hosszát is.

Ezt követően a vonalas modelltől függetlenül vegyünk fel egy egyenes szakaszt. A szakasz hosszát tervezési összefüggéssel adjuk meg. Az előírt tervezői összefüggés / reláció / szerint a szakasz hossza legyen egyenlő a rudak összhosszával.

Az optimalizálás változójaként jelöljük ki az α szöget / 82. ábra /!

82. ábra A szögérték optimalizálása

Az optimalizálás végrehajtásakor a szoftver megkeresi, majd beállítja azt az α szögállást, amelynél a rudak összhossza minimális.

Matematikai értelemben optimális megoldásról csak akkor beszélhetünk, ha a célfüggvénynek van szélsőérték minimuma. Esetenként a relatív szélsőérték megkeresése is hasznos lehet.

Ennél a mechanizmusnál is érdemes érzékenységi vizsgálatot végezni.

A valóságban a rögzített csuklókat nem mindig köti össze külön az \mathbf{a} jelű rúd. Ilyenkor a rudak összhosszát előíró tervezői összefüggésnél az \mathbf{a} jelű rúd méretét nem kell figyelembe venni.

A PEREMFELTÉTELEK MEGFOGALMAZÁSA 3

A bevezetőben már írtuk, hogy a munkadarabbefogó készülékeknél a szorítást gyakran csuklós szerkezetekkel oldják meg. Ezek a szorítók az egyvonalba kényszerített csuklópontok szorítási elvén működnek. Az áttételi arányok helyes megválasztásával kis kézi erővel nagy szorítóerő érhető el. Megfelelő állítócsavarok alkalmazásával ugyanazon gyorsszorítók különböző munkadarabok befogására használhatók. A következőkben ilyen megoldásokat mutatunk be.

A 83. ábrán egy munkadarabbefogó készülék vázlata látható [1]. A négycsuklós mechanizmus két helyzetének vonalas vázlatát a 84. ábra tartalmazza. Legyen ismert a rögzített csuklópontokat összekötő **a** jelű egyenes szakasz hossza / L=200 mm / és hajlásszöge / β =15° /! A mechanizmus **b** és **c** jelű rúdjai a szorítási elvnek megfelelően essenek egy egyenesbe, és a kedvező erőátadás érdekében a **c** jelű rúd legyen merőleges a **d** jelű rúdra! A szorítás oldásakor a **d** jelű rúd α szöggel, a **b** jelű rúd pedig γ szöggel fordul el a fix csuklópontja körül. A **d** jelű rúd hossza ideiglenesen legyen 100 mm!

83. ábra Munkadarabbefogó készülék [1]

84. ábra A munkadarabbefogó készülék vonalas vázlata

Négytagú mechanizmus tervezése a peremfeltételek 3 alapján

A tervezésnél célfüggvényként fogadjuk el, hogy a **b** és **c** jelű rudak hosszának arányát a kívánt értékre lehessen állítani.

Segédgörbeként rajzoljuk meg a rögzített csuklópontok által meghatározott egyenes szakaszt, majd az egyenes szakasz végpontjaiból kiindulva a mechanizmus durva vonalas vázlatát a szorító és egy közbenső állásának megfelelően / 85. ábra /!

85. ábra A munkadarabbefogó készülék vonalas vázlata

Írjuk elő a megfelelő rudaknál az egyenlőség, a **c** és **d** jelű rudaknál a merőlegesség, a **b** és **c** jelű rudaknál pedig az egyvonalba esés kényszerét! Adjuk meg az ismert rúdhosszat / **d** = 100 mm /, és a pillanatnyi szögértékeket! Ezzel a vonalas modell minden szabadsági fokát lekötöttük, nem maradt egyetlen gyenge méret sem. Ebben az állapotban a **b** és **c** jelű rudak hossza csak kiadódó, referencia méretként adható meg / 86. ábra/.

Végezetül a vázlatkészítő környezetben a célfüggvény megfogalmazása érdekében vegyünk egy vízszintes szakaszt tetszés szerinti hosszúsággal / a 86. ábrán a szakasz hossza 50 mm /! Kilépve a vázlatkészítő környezetből változtassuk meg a **b**, illetve a **d** rúd elfordulási szögét! A szögek módosítása kihat a **b** és **c** jelű rudak méretére, megváltozik azok hosszúságának aránya.

Az említett rúdhosszak arányát tervezői összefüggéssel rendeljük a különálló egyenes szakasz hosszához / d5= d7/d8 /! A d5, d7, d8 jelöléseket lásd 86. ábrán! A segédszakasz hosszáról készítsünk mérésépítőelemet / Add Feature 87. ábra /! A mérésépítőelem paraméterként tárolja a **b** és **c** rúdhosszak arányát!

86. ábra A vonalas modellnél alkalmazott geometriai és méretkényszerek, illetve kódok

Measure
Туре
Curve Length
Definition
Curve/Edge
Curve/Edge
Curve:F5(SKETCH_1)
Results
Curve length = 2.65316
Compute Display Info
Saved Analyses
Close Add Feature

87. ábra

A segédszakasz hosszának mérése, mérésépítőelem létrehozása

Hívjuk elő az optimalizáló modult!

Analysis ► Optimization

Változóként jelöljük ki a **d** jelű forgattyú mozgatására megadott szöget / Add Dimension /! Korlátozó feltételként / Design Constraints / adjuk meg a mérésépítőelem paraméterének kívánatos értékét / R=3 /!

88. ábra A változó kijelölése, a korlátozó feltétel megadása / R=3 /

Az optimalizálás során a szoftver megkeresi azt a szögértéket, amelynél a rúdhosszak aránya az előírtaknak megfelelő. Ilyen megoldást mutat a 88, illetve 89. ábra. Az ábrákon a **b** és **c** rudak hosszmérete referencianéretként szerepel. Természetesen az R értéke csak a geometriától függő intervallumon belül változtatható.

89. ábra A korlátozó feltétel módosítása / R=4 /

Ennél a négycsuklós mechanizmusnál is lehetne átfogó érzékenységi vizsgálatot végezni. Az előzőekhez hasonló peremfeltételeket és célfüggvényt lehet alkalmazni a 90. ábrán látható munkadarabbefogó készüléknél.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

48

90. ábra Prizmás munkadarabbefogó készülék [1]

Az előzőekben bemutattunk három különböző peremfeltétellel megfogalmazott feladatot. A tervezésnél gyakran a peremfeltételek csak részben ismertek. Ilyenkor a tervező kénytelen kitalálni a kedvező peremfeltételeket, illetve az optimalizálás célfüggvényét.

A rudak összhossza csak abban az esetben minimalizálható, ha a mérethálózat által meghatározott függvénynek van szélsőérték-minimuma. A peremfeltételek 1 fejezetben bemutatott példánál és az ahhoz hasonló mérethálózattal felépített négycsuklós mechanizmusnál a rudak öszzhosszának minimalizálása megvalósítható.

IRODALOMJEGYZÉK

- [1]. Hiram E. Grant: Munkadarabbefogó készülékek Példatár, Műszaki Könyvkiadó, Budapest, 1970
- [2]. Horváth Imre Juhász Imre: Számítógéppel segített gépészeti tervezés, Műszaki Könyvkiadó, Budapest, 1996
- [3]. M. Csizmadia B. -- Nándori E.(szerk.): Mechanika mérnököknek Egyetemi tankönyv, Nemzeti Tankönyvkiadó, Budapest, 2003.
- [4]. Ifj. Dr. Sályi István: Mechanizmusok tervezésének elemei, Tankönyvkiadó, 1963.
- [5]. Halbritter Ernő Jezsó Károly: Egy négycsuklós mechanizmus tervezésének lehetséges módja a Pro/Engineer felhasználásával. XII. Nemzetközi Gépész Találkozó, Csiksomlyó, 2004 április, pp.: 113-116.
- [6]. Dr. Jezsó Károly: Mechanizmusok, Egyetemi jegyzet, Miskolci Egyetemi Kiadó, 1999.
- [7]. Ferenczi Zoltán: Operációkutatás, egyetemi jegyzet, Széchenyi István Egyetem, NOVODAT Kiadó, 2004.
- [8]. Kőműves Roland:Személygépkocsi csomagtartó nyitó-csukó szerkezetének konstrukciós és gyártástervezése, Diplomamunka, Széchenyi István Egyetem 2005.
- [9]. Halbritter Ernő Kozma István: CAD CAM alapjai, elektronikus jegyzet, Széchenyi István Egyetem Győr, HEFOP-3.3.1-P.-2004-06-0012/1.
- [10]. Halbritter Ernő Kozma István: Képlékenyalakító technológiák számítógépes tervezése, / Kivágószerszám előterve, függő modellek készítése, párhuzamos tervezés /, Széchenyi István Egyetem Győr, HEFOP-3.3.1-P.-2004-06-0012/1.

REDUKÁLÓSZERSZÁM TERVEZÉSE

Halbritter Ernő Széchenyi István Egyetem

A REDUKÁLÁSSAL MEGOLDANDÓ FELADAT ISMERTETÉSE

Tervezzen képlékeny hidegalakító szerszámot az ábrán látható típusfeladathoz!

A munkadarab gyártásánál huzalból induljunk ki, azt daraboljuk, majd alakítsuk készre redukálással, vagy előrefolyatással egy lépésben!

92. ábra A redukálás elvi ábrája

Az "S" laptávolság az MSZ 220-84 alapján választható.

Laptávolság MSZ 220 – 84 szerint					
Sorszám	Névleges méret	Tűrés	r		
1.	4,0				
2.	4,5	+ 0			
3.	5,0	- 0,18	0,5		
4.	5,5				
5.	6,0				
6.	7,0				
7.	8,0	+0			
8.	9,0	-0,22	1		
9.	10,0				
10.	11,0				
11.	12,0	+0	1,5		
12.	13,0	-0,27			

1. táblázat

Szabványos laptávolságok

A hengeres és a hatlapú rész hossza a laptáv ismeretében adott / h1=h2=1,5 S /. A hengeres és a hatlapú rész közötti un. képlékeny alakítási zóna H magassága a D és az S méret alapján számítható ki. / Lásd később! / A D átmérő megegyezik valamelyik szabványos átmérőjű huzal névleges átmérőjével. Ez az átmérő az MSZ 17784-85 szerint választható. Az ármérő kiválasztásánál figyelembe kell venni, hogy a kiinduló huzal átmérője hibátlanul kiadja a munkadarab hatlapú részét, törekedve az anyagtakarékosságra, és a gyárthatóságra.

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

Képlékeny hidegalakításra szánt huzalok					
MSZ 17784 – 85 szerint					
Sorszám	Névleges átmérő	Tűrés			
1.	4,37				
2.	4,49				
3.	4,8				
4.	4,85	+0			
5.	5,1	-0.08			
6.	5,19	-0,00			
7.	5,22	_			
8.	5,85				
9.	6,4				
10.	6,66	_			
11.	7,05	+0			
12.	7,8	-0.06			
13.	8,87	-0,00			
14.	9,8				
15.	10,69	+0			
16.	11,68	0.08			
17.	12,5	-0,08			
18.	13,68	+0			
19.	14,5				
20.	15,68	-0,11			

2. táblázat Képlékeny hidegalakításra szánt huzalok

Részfeladatok

Készítsük el a munkadarab 3D–s geometriai modelljét a névleges méretekkel! Határozzuk a meg a kiinduló huzal darabolási méreteit! Végezzünk gyárthatósági vizsgálatot! Készítsük el a szerszám 3D-s geometriai modelljét!

A MUNKADARAB GEOMETRIAI MODELLJE

A feladat megoldásához először a munkadarabot modellezzük! A modellezés leglényegesebb része a hengeres és a hatszögletű rész közötti átmenet képzése. Az átmenetnél a kiinduló rúdanyag átmérőjének megfelelő körprofilt kell szabályos hatszögprofillá alakítani. A hatszögnél előírt lekerekítést utólag készítsük el!

A hatszögprofil elkészítése külön vázlatként / *.sec /

Mint ismeretes a Pro/Engineer szoftvernél lehetőség van önálló vázlatkészítésre. Az ilyen vázlat később, a modellezés során behívható, felhasználható.

Az új fájl megnyitásánál válasszuk a Sketch opciót, adjunk a fájlnak elnevezést – Hatszog / 93. ábra / ! Az OK gombot megnyomva egy üres rajzterületet kapunk a vázlatkészítés eszközeivel.

93. ábra Új fájl megnyitása vázlatkészítéshez

Középvonallal húzzunk egymásra merőleges vonalakat és a metszéspontba helyezzük el a koordinátarendszert az ábra szerint!

94. ábra A koordinátarendszer felvétele

ν

Ezzel egy kétdimenziós, koordinátatengelyekkel ellátott rajzterületet kaptunk, ahol a vázlatkészítés a szokásos módon elvégezhető.

Rajzoljuk meg durva vázlatként a hatszög 6 oldalát!

A hatszög durva vázlata

A geometriai kényszereket / pl. az oldalak egyenlőségét / úgy kell megadnunk, hogy egyedüli méret a laptávolságnak megfelelő méret legyen. A megoldásnál előnyösen alkalmazható a szerkesztőkör, illetve a szerkesztőkörhöz előírt érintőlegesség. Vegyük fel a laptávolságot 12 mm -re!

97. ábra A vázlat mentése a munkakönyvtárba

Ezt követően zárjuk be a fájlt / File ► Close Window /!

Az alakítási zóna létrehozása átmenettel

Előzetes számítás paraméterek felvételével

A kiadott feladatnál az átmenetet meghatározó vázlatok két párhuzamos síkon vannak. A Pro/E használatánál a párhuzamos síkok távolságát a vázlatkészítés után külön kell megadni. A párhuzamos síkok távolsága megfelel az alakítási zóna magasságának. Az alakítási zóna magasságát egy előzetes, leegyszerűsített számítással határozhatjuk meg.

A gyakorlatban a kiinduló keresztmetszet is, és a redukált keresztmetszet is többnyire kör alakú. Ilyen esetekben az alakítási zóna egy csonkakúpnak felel meg. A csonkakúp félkúpszögét egyes helyeken egységesen

 $\alpha = 13^{\circ}$ -ra veszik fel. Ezen szög alapján meghatározható a képlékeny alakítási zóna H magassága. A számí-D – d

tásnál H = $\frac{D - d}{2 \text{ tg}\alpha}$, ahol D kiinduló huzal átmérője, d redukált átmérő. Az adott feladatnál is ezt az össze-

függést alkalmazzuk az alakítási zóna magasságának meghatározására némi módosítással. A módosított ösz-

szefüggés $H = \frac{D - S}{2 tg\alpha}$, ahol **S** a hatszög laptávolsága. Az értéket egytized mm pontosságra kell kerekíteni.

A számítást célszerű a Pro/E környezetén belül elvégezni. Az előzetes számítás elvégzéséhez vegyük fel a **D**, illetve az **S** paramétert, és adjunk azoknak értéket. A kiinduló huzal átmérőjét első közelítésként 15 mm - re vegyük fel!

98. ábra Paraméterek felvétele

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

PRO ENGINEER OKTATÓANYAG

🔲 Parame	ters			l			
File Edit Parameters Tools Show							
- Look In							
Part	~	MD			*		
Name	Туре	Value	Designate	Access	Source		
DESCRI	String		✓	agFull …	User-Del		
MODELE	String		~	^க ுFull	User-Del		
PTC_CO	String	md.prt	~	க் _ச Full	User-Del		
D	Real Nu	15		க் _ச Full	User-Del		
s	Real Nu	12		₽ Erul …	User-Del		
🕂 💻 Main 🔽 (Properties)							
		Main Ok	Res	Properties	28		

99. ábra A paraméterek értéke

A felvett paraméterekkel tervezői összefüggést írhatunk elő / Tools / Relation /. Az összefüggések írásánál a szoftver nem tesz különbséget kis- és nagybetű között.

100.ábra Az előzetes számítás elvégzése

A számítás helyességét leellenőrizhetjük, ha rákattintunk a Relation párbeszédablaknál a zöld pipára. A Verify Relations párbeszédablak üzenete szerint az ellenőrzés sikeres volt, a Relations párbeszédablak alján lenyitható Local Parameters ablakban pedig látható a H kiszámított értéke.

	Verify	Relations.			×		
	i Re	elations have	been suc	cessfully veri	fied.		
			OK				
MODELE	String		~	tang ang Full	Us	er-Defi	
PTC_CO	String	md.prt	V	aFull	Us	er-Defi	
D	Real Nu	15.000000		a _Full	Us	er-Defi	
S	Real Nu	12.000000		6 Full	Us	er-Defi	
Н	Real Nu	6.497214		🔂 Lock	e Re	elation	
<)
+-			Main			✓ F	, tob
				Ok		Reset	

101.ábra A mellékszámítás ellenőrzése

A felvett paramétereket / D, S /, a mellékszámítás eredményét / H / később kötjük össze a geometriai modellel.

Az átmenet / Blend / parancs kiadása, az átmenet tulajdonságainak megadása

Kezdjünk egy új modellfájlt munkadarab néven, majd hozzuk létre a bázistestet! A rúdanyagot hatszögkeresztmetszetűre alakítjuk. Az alakítási zónát átmenettel / Blend / hozzuk létre. Az átmenet parancsot az Insert menüben érjük el.

102.ábra Az átmenet / Blend / parancs elérése

A redukálásnál a kiinduló rúdanyag és az alakítási zóna találkozásánál egyenes az átmenet, míg az alakítási zóna kilépő oldalán simított / 91. ábra /. Ezt a felemás megoldást úgy lehet modellezni, hogy egyenes átmenete alkalmazunk, majd a kilépő oldalon utólagos lekerekítést végzünk. / Ha a redukálás helyett előrefolyatást használunk, akkor a simított megoldást célszerű választani. /

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

PRO ENGINEER OKTATÓANYAG

103. ábra Az átmenet / Blend / parancs opciói

Az első vázlat felvétele

Az első vázlat legyen egy kör, melynek átmérője a kiinduló rúdanyag átmérőjének feleljen meg.

104.ábra A kiinduló rúdanyag profilvázlata

A kört annyi részre kell osztani / szétvágni /, ahány vonaldarabból áll a következő vázlat. A szétvágást később, a hatszög profilvázlat behívása után végezzük el.

Térjünk át a második vázlat készítésére! Nyomjuk meg az egér jobb gombját és válasszuk a Toggle Section opciót!

105.ábra Vázlatváltáskor felbukkanó menü

A művelet eredményeképpen az első vázlat elszürkül.

Az előre elkészített vázlat importálása

Az első vázlat elszürkült állapotában importáljuk az előre elkészített hatszog.sec vázlatot!

106. ábra A vázlat megnyitása

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

A behívott vázlat megjelenik egy szaggatott vonallal körülhatárolt területen belül. A vázlatnak egy beillesztési pontja van, amit körrel, és benne keresztbe húzott vonalakkal ábrázolnak.

107. ábra A megnyitott vázlat képe

A vázlat nagyítható, kicsinyíthető /Scale / és elforgatható / Rotate /.

108.ábra A vázlat nagyítása, kicsinyítése és elforgatása

Állítsuk be az 1:1 méretarányt / Scale 1 / és fogadjuk el az elfordítás nélküli állapotot / Rotate 0.0 /! Egyelőre ne zárjuk le a zöld pipával a párbeszédablakot, hanem kattintsunk az egér bal gombjával a behívott ábra beillesztési pontjára, majd a beillesztési pontot mozgassuk el a kör középpontjába!

109.ábra A vázlat helyének meghatározása az egér mozgatásával

A sikeres művelet után kattintsunk a zöld pipára a vázlat méretarányát ill. beillesztési szögét megadó párbeszéd-ablaknál! Előfordul, hogy a behívott vázlatnál a geometriai kényszerek részint elvesznek, ilyenkor a vázlaton megjelenik a gyenge méret.

A bemutatott példánál a gyenge mérettel rendelkező oldalt egyenlő hosszúvá tettük a szomszédjával, minek hatására a geometria határozott lett.

Az átmenet vázlatai

A vázlat haladási irányának módosítása

A behívott vázlaton egy nyíl látható. A nyíl az un. kezdőpontból indul és kijelöl egy haladási irányt. A hala-

dási irány megfordításához jelöljük ki a kezdőpontot , nyomjuk meg a grafikus képernyő fölött a jobb egérgombot és állítsuk be a Start Point opciót!

A haladási irány megváltoztatása

Osztópontok elhelyezése

A kör alakú vázlaton is alakítsunk ki egy kezdőpontot és annyi további csomópontot, amennyi a hatszögprofilnál van! A kezdőpont, illetve a csomópontok kialakításához először aktivizáljuk a körprofil vázlatát, majd azon osztópontokat helyezünk el. A körprofil aktivizálását a Toggle Section nyomógomb segítségével végezhetjük el. Az első váltásnál mindkét vázlat / a köralakú is és a hatszögletű is / elszürkül, majd a következő kapcsolásnál lesz az elsőnek megrajzolt vázlat aktív.

Rajzoljuk meg középvonallal **a** hatszög csúcspontjain át a hiányzó szimmetriatengelyeket! Helyezzük el az osztópontokat a szimmetriatengelyek és a kör metszéspontjaiban!

A vonalak osztására külön ikon áll rendelkezésre Vegyük észre, hogy az osztópontok a referenciákhoz, a középvonalakhoz tapadnak!

113.ábra Az átmenet képe

A kezdőpont áthelyezése

A kezdőpontok áthelyezésével az átmenetnél egy csavart felület alakítható ki. Az ilyen lehetőség a középkategóriás szoftvereknél többnyire nincs meg, ugyanakkor az egyenes átmenet lényegesen egyszerűbben oldható meg.

114.ábra Csavartvonalú átmenet az osztópontok áthelyezésével

Változó sugarú lekerekítés előírása az élek mentén

A feladatkiírás szerint a hatszögletű részt egy előírt lekerekítéssel kell elkészíteni. A hatszögletű profilvázlat eleve készülhetett volna lekerekítéssel. Ez a megoldás tovább bonyolította volna az átmenet létrehozását, mert az osztópontok száma duplájára adódott volna. A lekerekítés utólag is elvégezhető. Az átmenet tulajdonképpen a képlékeny alakítási zóna. Ebben a zónában elősegítjük az anyagáramlást, ha a lekerekítési sugár értékét a körprofil felé haladva fokozatosan növeljük, azaz változó lekerekítést írunk elő.

Egy-egy él mentén két rádiuszt kell megadni a változó lekerekítéshez. Egyet az él elején, a hatszögnél, egyet az él végén, a körnél. A 12 mm-es laptávolságú hatszögnél a rádiusz értéke adott / R 1,5 /. A másik rádiuszt az elvégezhetőség figyelembevételével adjuk meg. A tapasztalatunk szerint a nagyabbik rádiusz értékét célszerű a kör átmérőjének 25 - 40 % - ára felvenni.

A lekerekítésnél az átmeneti zóna hat élét jelöljük ki egyszerre! A kijelölésnél közelítsük meg a kurzorral az átmeneti zóna egyik élét, és amikor az előválasztás jeleként az él elkékül, akkor kattintsunk egyet a jobb egérgombbal. Ennek hatására mind a hat él az előválasztás állapotába kerül. A sikeres előválasztást a bal egérgomb megnyomásával hagyhatjuk jóvá. A bal egérgomb megnyomásával a 115/1. ábrának megfelelő az élek kijelölése. A 115/1. ábra azt is szemlélteti, hogy a rádiusz értékét hogyan lehet megváltoztatni. Egy méretszám átírását lehetővé tesszük, ha a méretszámra kettőt kattintunk a bal egérgombbal. Az ábrán látható 1,5 mm-es rádiusz a feladatkiírásnak megfelelően érték. A változó rádiusz megadása érdekében vigyük a kurzort a még állandó rádiusz értékéhez, várjuk meg az előválasztást, majd tartósan nyomjuk le a jobb egérgombot. Amikor megjelenik az Add Radius felirat / 115/2. ábra /, akkor a bal egérgombbal kattintsunk arra. A kattintás után minden élnél két rádiusz jelenik meg. A felső rádiuszok értékét utólag írjuk át!

A változó sugarú lekerekítések megadása

Lezárva a rádiuszkészítést a modellfánál kezdeményezhetjük a méretmódosítást, illetve megtekinthetjük a méreteknek megfelelő kódokat.

Tervezői összefüggések megadása

Rendeljük hozzá az átmeneti zóna méretkódjaihoz a korábban felvett paramétereket / d3=H, d4=D, d5=S /!

A tervezői összefüggés megerősítése

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

A kódokkal írhatjuk elő az azonos rádiuszok egyenlőségét / pl.: d10=d8; d12=d8, stb. /.

118.ábra A változó sugarú lekerekítések megadása, tervezői összefüggések előírása

A felső rádiuszok a megadott tervezői összefüggés alapján egyenlők, és az értéküket a d7 jelölésű méret határozza meg. Vegyük fel a d7 méretet a kiinduló átmérő negyedére / d7=D/4 /. A tervezői összefüggést írjuk be a Relations párbeszédablakba / Tools ► Relation /. A szoftver képes rendezni a tervezői összefüggések

sorrendjét Sort relations . A rendezésnél a d7=D/4 összefüggés előzze meg a d9=d7, stb. összefüggéseket!

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

PRO ENGINEER OKTATÓANYAG

Relations	
File Edit Insert Parameters Utilities Show Look In	
Part 💌 📐 🖬 MUNKADB	~
✓ Relations	
က္ကန္က 🖁 🖺 🗙 🏭 =? 🛏 🖓 fx () 🐴 📄 🔽	
$\begin{array}{l} + & h=[D-S]/(2^{n}tan(13)) \\ - & d3=H \\ \times & d4=D \\ / & d5=S \\ \wedge & d10=d8 \\ d12=d8 \\ d14=d8 \\ d14=d8 \\ d16=d8 \\ d18=d8 \\ d7=D/4 \\ d9=d7 \\ d11=d7 \\ d13=d7 \\ d15=d7 \\ d17=d7 \end{array}$	

119.ábra Tervezői összefüggések

A tervezői összefüggések működését ellenőrizzük le, változtassuk meg a kiinduló ártérő értékét a 2. táblázat méretválasztéka szerint, majd frissítsük a modellt!

	🗢 Local Par	ameters				
120.ábra	Name	Туре	Value	Designate	Access	Source
A kiinduló átmérő módosítása	D	Real Nu	14.500000		Brull	User-Defi
	S	Real Nu	12.000000		Er Full	User-Defi
	н	Real Nu	5.414345		🕞 Locke	Relation
	<					
	+-			Main		P
					Ok	Reset

Gyárthatósági vizsgálat mérésépítőelemek alkalmazásával

A nagymértékű keresztmetszet-csökkentés jelentős alakítási erőt igényel. A redukáló erő növelésével a felzömülés veszélye áll fenn a kiinduló hengeres résznél. A zömülésmentes redukálás érdekében korlátozni kell az alakváltozás értékét. Az alakváltozás kifejezhető a kiinduló huzal A_0 , és a lekerekített, szabályos

hatszög alakú rész A_1 keresztmetszetének hányadosával.

121.ábra A kiinduló és a redukált keresztmetszet

A zömülésmentes redukálással elérhető alakváltozás értékét több tényező befolyásolja. Itt leegyszerűsítve a

problémát, a megvalósítható logaritmikus alakváltozás értékét a $\varphi_r = \ln \frac{A_0}{A_1} \le 0.25$ összefüggéssel korlá-

tozzuk.

A pontosabb érték meghatározásához javasoljuk a végeselemes vizsgálatot.

A keresztmetszetek lekérdezésére méréseket kell végeznünk. Az Analysis legördülő menüből válasszuk ki a Measure-t / 122. ábra /.

Az előugró ablakban a mérés típusának /**Type**/ válasszuk a terület /**Area**/ opciót. Jelöljük ki a mérni kívánt felületet. Az eredmény a **Results** ablakban látható / 124. ábra /.

Az Add Feature gomb megnyomásával vegyünk fel a mérésépítőelemet! Ezt mind a két felületen (A0, A1) végezzük el! Az építőelemek neve legyen A0, illetve A1. A két új építőelem megjelenik a modellfán / 123. ábra /. A mért értékek az A0 és A1 építőelemek paraméterei.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

68

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

File Edit View Insert	Analysis	Info Applications	Tools	Window Help
R 2 . 3 B	Measure		Þ	E Distance
	Mode	I	•	🔒 Length
Select a surface, quilt, fa	Geometry Mechanica Analysis Excel Analysis		•	Angle
Surface area = 165.130				Area
Current tool is paused, 9				() Diameter
Pause mode has been co	Mathcad Analysis			
	User-	Defined Analysis		

122.ábra Az Analysis legördülő me

123.ábra Az A0, A1 építőelemek a modellfán

124.ábra Terület meghatározása

A keresztmetszetek ismeretében számítsuk ki a logaritmikus alakváltozás értékét! A számítást tervezői összefüggésként írjuk elő / Tools ► Relation /! A tervezői összefüggés beírásánál használjuk a beépített függvényeket /pl. ln /!

125.ábra

Beépített függvények / fx / használata a tervezői összefüggések megadásánál

A beírandó összefüggésnél hivatkozni kell a mérés építőelemekhez tartozó paraméterekre. A paraméterek

beillesztését a Relations párbeszédablakhoz tartozó ikon teszi lehetővé. Az ikonra kattintva egy újabb párbeszédablak jelenik meg. Mivel a mért értékeket építőelem-paraméterként tároltuk, ezért a Select Parameter ablaknál a Feature opciót kell beállítani. A beállítás után jelöljük ki az A0 építőelemet a modellfán. A kijelölés hatására az A0 építőelemhez rendelt terület / AREA / értéke / Value / megjelenik a párbeszédablakban, amit az Insert Selected nyomógomb megnyomásával illeszthetünk a tervezői összefüggésbe.

🛛 Param	eters				×
File Edit	Parameters	Tools Show	v		
- Look In					
Feature	~	Feature A0	id 932 of Mo	del 🚺 MD	~
-					
Filter By /	All	🗸 Sub I	tems		$\mathbf{\mathbf{x}}$
Name	Туре	Value	Access	Source	D
A0	Real Nu	165.1299	🕞 Locke	Analysis f.	8
-	24				
<					>
+ -	Prope	rties) 🛅	(iiiii)		
		Ok	Reset	Cano	el

126.ábra Építőelemhez kötött paraméternek a beillesztése egy tervezői összefüggésbe

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

A mért értékekre hivatkozva a $\varphi_r = \ln \frac{A_0}{A_1}$ összefüggésnek megfelelő tervezői összefüggés

F=ln(AREA:FID_232/AREA:FID_233). A hivatkozásnak egy másik formája is lehetséges / F=ln(AREA:FID_A0/AREA:FID_A1) /.

Ellenőrizzük az összefüggés helyességét, kattintsunk a Relation párbeszédablaknál a zöld pipára. A Verify Relations párbeszédablak üzenete szerint az ellenőrzés sikeres volt. A Relations párbeszédablak alján lenyitható Local Parameters ablakban látható az F kiszámított értéke / F=0,286 /.

Verify Relations.				×
Relations have been successfully verified.				
✓ Local Parameters				
Name	Туре	Value	Designate	Access
D	Real Nu	14.500000		Brull
S	Real Nu	12.000000		Brull
Н	Real Nu	5.414345		🛱 Locke.
F	Real Nu	0.286270		🔒 Locke.
<				
+ - Main				
Ok				

127.ábra

Az alakvátozás nagyságának számítása mérésépítőelemek alkalmazásával

A H és az F számított értékek, melyeket a Local Parameters ablaknál változtatni nem lehet. Erre utal az Access oszlopban látható jelképes zárt lakat a Locke megjegyzéssel.

A kapott eredmény / F=0,286 / alapján megállapíthatjuk, hogy a 14,5 mm-es kiinduló átmérő esetén a felzömülés veszélye áll fenn. Csökkentsük a kiinduló átmérőt, válasszunk a 2. táblázatból egy fokozattal kisebb átmérőt / D=13,68 /!

Ha a sikeres frissítés után rögtön megtekintjük az alakváltozás értékét, akkor azt tapasztaljuk, hogy az nem változott az előzőekhez képest. Vigyük a kurzort az F=ln(AREA:FID_A0/<u>AREA</u>:FID_A1) sorra, és végez-

tessünk el egy ellenőrzést, azaz kattintsunk a Relation párbeszédablaknál a zöld pipára! Az ellenőrzés után a szoftver már kiszámolja az alakváltozás értékét.

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

PRO ENGINEER OKTATÓANYAG

Name	Туре	Value	Designate	Access
D	Real Nu	13.680000		Brull
S	Real Nu	12.000000		ி ைFull …
н	Real Nu	3.638440		🕞 Locke
F	Real Nu	0.169829		🗑 Locke

128.ábra				
A helyi paraméter új	értéke			

Tervezői összefüggéseket több szinten is meg lehet adni (pl.: vázlat, építőelem, alkatrész stb.). A szinteket a Look In alatt található legördülő menüknél állíthatjuk be.

A mi esetünkben az összefüggéseket alkatrész szinten / a legfelső szinten / adtuk meg, de az F=ln(AREA:FID_A0/AREA:FID_A1) összefüggés kiszámításánál a paraméterek értékét alacsonyabb szint-ről (építőelem) kell behívni. Ezt a behívást biztosítottuk az összefüggés ellenőrzésénél, és ezt lehet biztosítani egy ismételt frissítésnél is.

A kapott eredmény alapján megállapíthatjuk, hogy a 12 mm laptávú hatszög a 13,68 mm átmérőjű huzalból zömülésmentesen redukálható.

A gyárthatóságnál az is fontos, hogy a kiinduló huzalátmérő egyértelműen biztosítsa a hatszögprofilt. Az átmeneti zóna alulnézeti képén láthatjuk, hogy a kiinduló átmérő mennyivel nagyobb a hatszög köré írt kör átmérőjénél. Ha az átmérők között nagyon kicsi a különbség, akkor az anyagáramlás szempontjából az kedvezőtlen lesz. A 129. ábrán látható esetet határesetként fogadjuk el. A bemutatott példánál az alakváltozás értéke φ =0,17 / 128. ábra /. Ettől kisebb alakváltozást ne engedjünk meg. Ha nincs megfelelő választási lehetőségünk, akkor válasszunk nagyobb átmérőt, és előrefolyatással oldjuk meg a feladatot!

129.ábra A kiinduló és a hatszögprofil méretének összehasonlítása.

Vázlatkészítés a meglévő élek vetítésével /az átmenet előtti és utáni rész kialakítása /

Az átmenet előtti és utáni részt extrudálással célszerű előállítani a meglévő élek átvételével. Először vegyük fel a vázlatsíkot az átmeneti zóna felső lapján, referenciáknak válasszuk az élben látszódó koordinátasíkokat! A vázlatkészítés tulajdonképpen az élek másolásából áll. Az élek másolásánál használjuk a Loop / hurok / opciót! A kihúzás mérete a feladatkiírás értelmében a laptávolság másfélszerese. Az erre vonatkozó tervezői összefüggést utólag, alkatrész-szintű összefüggéssel adjuk meg.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

130.ábra Az átmeneti zóna felső élének átmásolása, kihúzása

Az átmeneti zóna alsólapján hasonlóan végezhetjük el a kihúzást. A kihúzás mélysége a laptáv másfélszerese.

131.ábra Az átmeneti zóna alsó élének átmásolása, kihúzása

132.ábra A kihúzások után a munkadarab képe

Az ábrán látható, hogy a képlékeny zóna határainál törés van a modellnél. A hengeres résznél, - a belépő oldalon - a törés a technológiából adódik. A kilépésnél lekerekítést kell előírni. A lekerekítés a képlékeny alakítási zónához tartozik. Ha azt akarjuk, hogy az átmeneti zóna hossza ne változzon / jelenleg 3,64 mm /, akkor az érintőkúp félkúpszöge / jelenleg 13° / fog változni. A félkúpszög túlzott növekedése a képlékeny alakításnál növeli az anyagáramlás energiaszükségletét. A kimeneti oldalon a túl kicsi rádiusz hasonló okok miatt kedvezőtlen, ugyanis a kicsi rádiusz a kilépő oldalon az anyagáramlás hirtelen irányváltással jár. Az adott feladatnál eltekintünk a rádiusz optimalizálásától. A rádiusz értékét vegyük fel a mindenkori laptáv negyedére, és engedjük meg, hogy a rádiusz a képlékeny alakító zóna méretét növelje. Ügyeljünk arra, hogy a lekerekítés körbefutó legyen. Körbefutó lekerekítést kapunk, ha a kijelölésnél az előválasztást követően a jobb egérgombbal duplán kattintunk, majd a kiválasztást bal egérgombbal megerősítjük. A lekerekítés körbefutó kijelölése esetenként sikertelen. Ilyenkor a Pro/E számolási pontosságát kell növelni / EDIT ► SETUP ► Accuracy ► Enter Value - pl. 0.003 /.

133.ábra Lekerekítés előírása az átmeneti zóna kilépő oldalán

A kiinduló huzal hosszának megadása mérésépítőelem alkalmazásával

A darabolási hossz a kiinduló keresztmetszet és a modell térfogata alapján számítható ki. A szoftverrel térfogatmérést is végezhetünk. A térfogat lekérdezéséhez az Analisys legördülő menüből válasszuk ki a Model Analysis... mezőt!

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

Analysis	Info Applications Tools	Window Help	
Meas	ure		
Mode		Mass Properties	
Geometry 🕨		🙀 X-Section Mass Properties	
Mechanica Analysis		🗐 One-Sided Volume	
Excel Analysis		📅 Pairs Clearance	
Mathcad Analysis		A Short Edge	
User-Defined Analysis			

134.ábra A Model Analisys elérése

A térfogatméréshez a Model Analysis ablakhoz tartozó Type legördülő menüből a Model Mass Properties opciót kell kiválasztani.

Az ablak alsó részén található Compute gomb megnyomásával jelennek meg a mérési eredmények. A mérési eredmények közül számunkra a térfogat / Volume / a fontos. Az Add Feature gombra kattintva egy mérés építőelemet hozunk létre, amely paraméterként tartalmazza a térfogatot.

A kiinduló huzal darabolási hosszának kiszámításához tervezői összefüggést kell alkalmaznunk / Tools ► Relations.../.

Az előugró Relations ablakba kell beírni az $L_{ki} = \frac{V}{A_0}$ képletnek megfelelő összefüggést.

135.ábra A geometriai modell térfogatának számítása

Tervezői összefüggéseket több szinten is meg lehet adni. Állítsuk be az alkatrész / Part / szintet! Írjuk be összefüggésnek az: L=...

Az egyenlőség után a térfogatott kell folytatásként beírni. Mint már ismeretes az összefüggésbe beírhatunk már meglévő paramétereket / //. A párbeszédablaknál válasszuk a Feature / Építőelem / beállítást, majd

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1. a modellfán jelöljük ki az előbbiekben létrehozott Analysis1 építőelemet! Ekkor kapunk egy listát az építőelem paramétereiről / 136. ábra /.

] Parame	ters					
ile Edit I	Parameters	Tools Shov	v			
Look In						
Feature			Feature V id 1	1125 of Mode	el 👩 MD	Y
Filter By A	Tupo	Malua	Sub Ite	Cource	Description	Postriated
VOLUME	Real Nu	5371.043	Clocke	Analysis f	Description	Trestricted
<					- P	3
+	Prope	rties [ffff]				
<u> </u>						
			1 0	Jk	Reset	Cance

136.ábra A paraméterek listája

Válasszuk ki a térfogatot / Volume /, majd kattintsunk az Insert Selected gombra. Ennek hatására a kiválasztott paraméter azonosító nevével már folytatható a kiinduló huzal darabolási hosszának számítása L=4*VOLUME:FID_608. A FID_608 kód az építőelem azonosító neve.

A keresztmetszet azonosító nevét hasonlóan megkeresve és beillesztve az összefüggés:

L=VOLUME:FID_608/AREA:FID_232. Ellenőrizzük le az összefüggés helyességét ! Ezután a paraméterek listájában megjelenik az L, mint paraméter, és mellette az értéke is. Az OK gomb megnyomásával zárjuk be az ablakot. Ezzel meghatároztuk a kiinduló huzal darabolási hosszát.

REDUKÁLÓ SZERSZÁM GEOMETRIAI MODELLJÉNEK ELŐÁLLÍTÁSA

Konstrukciós szempontok a redukálógyűrűk kialakításához

A számítógéppel segített tervezésnek /CAD / és gyártásnak /CAM / egyik leggyakoribb területe a szerszámtervezés és szerszámgyártás.

A szerszámtervezésnél mindig az elkészítendő munkadarabból indulnak ki, figyelembe veszik a munkadarab gyártására felhasznált gép / szerszámgép / csatlakozó méreteit és bizonyos technológiai, szerszámkonstrukciós szempontokat. A szerszámtervezés többnyire alkotó és nem reprodukáló munka. A munka jellegéből adódik, hogy a kiadott feladatnál is létezhet nyitva maradt kérdés, a szerszámtervezőtől függő megoldás. Az egyéni megoldások gyakran valamilyen ismeretanyagra épülnek. Ilyen ismeretanyagot közlünk ebben a fejezetben.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

A tervezési feladatnál csapszeggyártó célgépek / BOLTMAKER / használatát feltételezzük. Ezeket a célgépeket főleg a csavargyártásra használják.

137.ábra Csavargyártás a felhasználásra kerülő célgépen

Mint már ismeretes, az adott feladatnál huzalból indulunk ki és az egyszerűség kedvéért csak darabolási, illetve egyszeri redukálási műveletet végzünk.

A csapszeggyártó célgépeknél általában egyszeresen foglalt redukáló gyűrűt használnak keményfém betéttel, illetve acél foglalógyűrűvel. A redukálógyűrű geometriai modellezésénél eltekinthetünk a foglalástól, azaz a szerszám lehet egyrészes is.

A redukáló gyűrű külső befoglaló alakját és méretét a gép csatlakozó méretei határozzák meg. Három géptípusra vonatkozóan adjuk meg a csatlakozó méreteket. A gépek típusmegjelölése BOLTMAKER 5/16", BOLTMAKER 3/8" és BOLTMAKER 5/8".

A megjelölésben szereplő számok a kiinduló huzal maximálisan megengedett átmérőjére vonatkoznak angol hosszegységben.

A kiinduló huzalok maximálisan megengedett átmérője, a kész munkadarabok megengedett teljes hossza metrikus hosszegységben, valamint a különböző nagyságú gépek percenkénti kettőslöketeinek a száma a következő táblázatban láthatók:

Gép	Huzal maximális átmérője / mm /	A munkadarab maximális hossza / mm /	Löketszám KL/min
5/16 "	8	80	90
3/8 "	9,5	90	80
5/8 "	16	160	60

A táblázatban megjelölt átmérőjű huzaloknál hidegalakításra szánt acélok esetén a redukálást elvégezhetőnek tekintjük, ha a redukálásnál az alakváltozás értéke $\varphi_r \leq 0.25$.

A redukáló-gyűrű geometriai kialakításánál vegyük figyelembe a következő szempontokat:

A redukáló-gyűrű homloklapján célszerű egy bevezető kúpot és egy bevezető hengert kialakítani. A bevezető kúp alkalmazása csökkenti a nyersdarab adagolási pontosságával szemben támasztott követelményeket. A bevezető kúp szögértéke $/2\alpha / 10^{\circ}$ és 40° között változhat, a kúpos rész hossza az anyagátmérő 1/4-e, 1/3–a.

A bevezető henger átmérője kissé nagyobb, mint a kiinduló anyagé, mélysége kb. a kiinduló átmérő fele. A bevezető henger alkalmazásával az igénybevétel a gyűrű homlokfelületéről eltolódik.

A bevezető henger elhagyása esetén a bevezető kúp mélységét növelni kell.

A kalibráló rész hossza 0,08 és 1,5 mm között változik. A kalibráló rész a redukáló gyűrűnek az a része, amely meghatározza a munkadarab végső alakját, méretét. Ezen a részen nem változik a szerszámüreg keresztmetszete. A kisebb érték mellett csökken az anyag súrlódása, a nagyobb érték pedig az élettartam szempontjából kedvezőbb. A kalibráló rész ármérőjét / laptávolságát / előnyös a redukálásnál a tűrés / d h11 / minimumára tervezni, mert akkor a szerszám némi kopás után is használható, felújítható, illetve a redukálást követő kismértékű rugalmas méretnövekedés nem okoz problémát.

A kalibráló rész / redukáló váll / után egy kúpos rész következik, majd a kifutó furatátmérő. A kúpos rész hossza, hajlásszöge nem játszik szerepet. A kifutó furatátmérő kb. 0,1 milliméterrel nagyobb, mint a redukáló váll legnagyobb mérete, a sokszög köré írt kör átmérője. Ez elég nagy ahhoz, hogy lehetővé tegye az anyag szabad eltávozását és elég szűk ahhoz, hogy megvezesse a kilökőcsapot, amely a munkadarabot kilöki a matricából.

Módosított munkadarab előállítása az üregképzéshez

Az alakos munkadarab gyártásához egy redukáló szerszámot kell készíteni. A szerszámgyártáshoz először elkészítik a szerszám geometriai modelljét, majd az alapján NC programot állítanak elő egy CAM szoftver segítségével, és végül NC szerszámgépen legyártják a szerszámot.

A szerszám geometriai modelljét legegyszerűbben úgy kaphatjuk meg, hogy egy tömbből kivonjuk a munkadarab átalakított, módosított geometriai modelljét.

A módosított munkadarab elkészítéséhez mentsük el a MUNKADARAB.PRT fájlt MODOSITOTTMD.PRT névvel.

HALBRITTER ERNŐ: CAD ALKALMAZÁSOK

	🛄 <u>S</u> ave	Ctrl+S	
	S <u>a</u> ve a Copy		
	Backup Save a copy of the active object		
	Integrate		
Model Name	MUNKADARAB.PRT		4
New Name	modositottmd		
Туре	Part (*.prt)		~
	OK	Cancel	

138.ábra A munkadarab mentése más névvel

Ezt követően nyissuk meg az új névvel elmentett fájlt!

139.ábra A módosított munkadarab behívása

Segédgörbék előállítása metszősíkkal

A Front koordinátasík a munkadarab egy olyan szimmetriasíkja, amely a hatszögletű rész síklapjain megy keresztül. Képezzünk egy síkmetszetet a Front koordinátasíkkal! A síkmetszetnél az átmeneti zónát egyenesek határolják / 141. ábra /.

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

140.ábra Síkmetszet kérése

A síkmetszet előállításához a View menüből válasszuk ki a View Manager, majd azon belül az Xsec, illetve a New mezőt! A síkmetszet neve legye "A". A névadás után a Menu Manager ablaknál fogadjuk el a felkínált beállítást a Done nyomógomb lenyomásával / Planar =sík, Single = egyszerű /!

A síkmetszet határoló vonalait segédgörbeként wehetjük fel.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

142.ábra Segédgörbék felvétele a síkmetszet alapján

A bevezető kúp kialakítása forgatással

Mint ismeretes, az alakítási zónát a redukálószerszámnál célszerű a szerszámtömb szélétől bizonyos távolságra helyezni és az alakítási zónához vezető résznél egy bevezető kúpot kialakítani. A bevezető kúp model-

lezésénél a módosított munkadarabhoz forgatással anyagot adunk hozzá. A forgatásnál a vázlatsík legyen a Front sík, referenciának a felkínáltakon kívül vegyük fel a hengeres rész jobboldali alkotóját, és az előzőleg felvett segédgörbének az alakítási zónára eső jobboldali részét.

143.ábra

Méretezési referenciák felvétele a bevezető kúp modellezésénél

Vegyük fel a forgatás tengelyét, és a méretezési referenciák felhasználásával rajzoljunk egy derékszögű háromszöget! Annak érdekében, hogy a bevezető kúp jól simuljon az átmeneti zónához, a derékszögű háromszög átfogója essen egy egyenesbe a segédgörbe segítségével felvett referenciával. Azért kellett segédgörbét alkalmazni, mert az átmeneti zóna szélső alkotóját a szoftverrel nem lehet méretezési referenciaként felvenni, vagy vetíteni. A forgatás mértéke 360 fok legyen!

144.ábra Vázlatkészítés a bevezető kúp modellezésénél

A redukálógyűrű geometriai modellje

A gépkiválasztás meghatározza a szerszám csatlakozó méreteit is. A 12 mm laptávolságú munkadarabhoz 5/8"-os gépet választunk. A redukálógyűrű csatlakozó méreteit lásd külön segédletben [1]. A csatlakozó méretek ismeretében a redukálógyűrűnél a bázistest geometriai modelljét forgatással készítjük el. Kezdjünk új modellt! File ► New.. A fájl neve legyen "redukalo gyuru" / ékezet, illetve szóköz nélkül /!

A vázlat síkja a **Top** sík legyen, mert a szerszámgépnél a szerszám fekvő helyzetű. A vázlatsík tájolására megfelelő a Rigth / Rigth párosítás. A felkínált méretezési referenciákat / Rigth, Front /fogadjuk el! A vázlat egy téglalap legyen, melynek egyik sarokpontja kerüljön a referenciatengelyek metszéspontjába. A forgatás

tengelyét vegyük fel i, majd méretezzük be a vázlatot. A forgatás 360 fokos legyen!

145.ábra A redukáló gyűrű bázisteste [Boltmaker 5/8"]

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

HALBRITTER ERNŐ : CAD ALKALMAZÁSOK

Alakítsuk ki a felfogó felületet a szerszámon anyageltávolító kihúzással!

A vázlat síkja legyen a **Top** sík, méretezési referencia a felkínáltakon kívül a henger alakú szerszám egyik alkotója.

Vázlatként rajzoljunk egy olyan derékszögű háromszöget, melynek átfogója a henger alkotójára esik! A 147. ábrán látható másik háromszöget javasoljuk másolással elkészíteni!

Ehhez a másolandó háromszöget jelöljük ki /célszerű ablakban/! Válasszuk a Másolás ikont Ekkor megjelenik a másolandó objektum egy párbeszédablak kíséretében.

146.ábra A másolás segédeszközei

A megjelent ábrát a fogópontja segítségével a helyére kell mozgatni. Ehhez a művelethez célszerű a vázlat fogópontját áthelyezni. A fogópont áthelyezéséhez nyomjuk meg a jobb egérgombot, tartsuk lenyomott állapotban, majd az új helyén / a háromszög átfogóján / kattintsunk a bal egérgombbal! Akkor jó az átmásolt vázlat helyzete, ha a háromszög átfogója csatlakozik a henger alkotóján felvett méretezési referenciához. Az egész vázlat áthelyezése után zárjuk le a másolási műveletet a zöld pipára kattintva! Az átmásolt vázlat távolságát a vízszintes méretezési referenciától külön meg kell adni / 98,5 mm /!

147.ábra A felfogófelületek kialakítása

A felfogófelületeknél alkalmazzunk lekerekítést!

A lekerekítés helye

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

84

A módosított munkadarab kivonása a szerszámüregből

Nyissunk egy új összeállítást! Az összeállítás neve legyen "SZERSZAM.ASM"! File ▶New.... Assamble

Az összeállításba hívjuk be a REDUKALO_GYURU.PRT alkatrészt! Az alkatrész helyzetének meghatározásához válasszuk az alapértelmezés szerintit!

🗉 Component Placement 🛛 🛛 🔀				
Place Move Connect				
— Constraints —				
Туре	Offset			
Default				
+-	14,20			

149.ábra A redukálógyűrű alapértelmezés szerinti beszerelése

Ezt követően hívjuk be a módosított munkadarabot / MODOSITOTTMD.PRT /, szerelési kényszerekkel határozzuk meg a helyzetét! A módosított munkadarab legyen egytengelyű a redukáló gyűrű bázistestével, és abból kb. 5 mm–t lógjon ki!

🗉 Component Placement 🛛 🛛 🔀	٢ 5
Place Move Connect	f y z
Type Offset	
Insert 🔽	
Align 5.0000	
+ - 1 4, 4	

150.ábra A módosított munkadarab beszerelése

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

Vonjuk ki a szerszámból a módosított munkadarabot! A kivonáshoz válasszuk az Edit menüből a COMPONENT OPERATIONS parancsot. A parancs kiadásakor megjelenik egy ablak, ahonnan válasszuk ki a Cut Out opciót!

151.ábra Alkatrészek kivonása egymásból

Először az alaptestet kell kijelölni, amiből kivonjuk a módosított munkadarabot! A kijelölést hagyjuk jóvá / OK /!

Ezt követően a kivonandó modellt jelöljük ki, és a kijelölést hasonlóképpen erősítsük meg /OK /! A kivágás legyen függő viszonyban a módosított szerszámmal! A "Support associative placement for the feature?" - kérdésre adjunk igenlő / Y / választ!

Az igenlő válasz esetén a szoftver elvégzi az üregképzést. Mentsük el az összeállítást, és a kapcsolódó alkatrészeket!

A kivágás eredménye a REDUKALO_GYURU.PRT modellen figyelhető meg.

152.ábra Redukáló gyűrű az alakító üreggel

Természetesen a redukáló szerszámnál az üreg átmenő jellegű, a kilökő számára még egy hengeres furatot kell készíteni.

Széchenyi István Egyetem Győr HEFOP-3.3.1-P.-2004-06-0012/1.

86

Redukálógyűrű a kilökő számára készített furattal

Ezt anyageltávolító kihúzással javasoljuk elkészíteni. Fontos, hogy az átmeneti zónát egy megfelelő hosszúságú redukáló váll kövesse. Ezzel kapcsolatos részletesebb tájékoztatás a 137. ábra szövegkörnyezetében olvasható.

Ajánlott irodalom:

[1.] Halbritter Ernő: Útmutató a csavargyártó szerszámok tervezéséhez, Oktatási segédlet, SZIF, 1985, Győr.