dq Transformations

$$\begin{bmatrix} f_{\alpha} \\ f_{\beta} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \times \begin{bmatrix} f_{\alpha} \\ f_{b} \\ f_{c} \end{bmatrix} \qquad \begin{bmatrix} f_{d} \\ f_{q} \end{bmatrix} = \begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix} \times \begin{bmatrix} f_{\alpha} \\ f_{\beta} \end{bmatrix}$$
$$\begin{bmatrix} f_{d} \\ f_{q} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos(\phi) & \cos(\phi - \gamma) & \cos(\phi + \gamma) \\ -\sin(\phi) & -\sin(\phi - \gamma) & -\sin(\phi + \gamma) \end{bmatrix} \times \begin{bmatrix} f_{a} \\ f_{b} \\ f_{c} \end{bmatrix}$$
$$\begin{bmatrix} d\mathbf{q} & \mathbf{q} & \mathbf{q} \\ \mathbf{q} & \mathbf{q} & \mathbf{q} \\ \mathbf{q} & \mathbf{q} & \mathbf{q} \end{bmatrix}$$
$$\begin{bmatrix} f_{\alpha} \\ f_{\beta} \\ f_{\beta} \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \times \begin{bmatrix} f_{d} \\ f_{q} \end{bmatrix} \qquad \begin{bmatrix} f_{a} \\ f_{b} \\ f_{c} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \times \begin{bmatrix} f_{\alpha} \\ f_{\beta} \\ f_{\beta} \end{bmatrix}$$
$$\begin{bmatrix} f_{a} \\ f_{b} \\ f_{c} \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \cos(\phi - \gamma) & -\sin(\phi - \gamma) \\ \cos(\phi + \gamma) & -\sin(\phi - \gamma) \\ \cos(\phi + \gamma) & -\sin(\phi + \gamma) \end{bmatrix} \times \begin{bmatrix} f_{d} \\ f_{q} \end{bmatrix}$$
$$\frac{\gamma}{2\pi}$$

 ϕ = angle between dq and $\alpha\beta$ reference frames

A space vector $\overrightarrow{f_o}$ and its time rate of change $\overrightarrow{g_o}$ are attached to an $\alpha\beta$ coordinate system rotating at the speed $\omega_m = \frac{d\theta}{dt}$. The transformation to a dq coordinate system rotating at the speed $\omega_k = \frac{d\psi}{dt}$ is performed using the rotating matrix $M(\phi)$ where $\phi = \psi - \theta$.

Specifically, in terms of Space vectors and Rotating matrix,

$$\vec{f_o} = \begin{bmatrix} f_\alpha \\ f_\beta \end{bmatrix} \qquad \vec{f_k} = \begin{bmatrix} f_d \\ f_q \end{bmatrix} \qquad M(\phi) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

the transformation of variables takes the form

 $\overrightarrow{f_o} = M(\phi)\overrightarrow{f_k}$ or the reverse $\overrightarrow{f_k} = M^t(\phi)\overrightarrow{f_o}$

The time rate of change of the initial space vector $\overrightarrow{f_o}$ is

$$\overrightarrow{g_o} = \frac{d}{dt} \overrightarrow{f_o} = \frac{d}{dt} \left[M(\phi) \overrightarrow{f_k} \right] = M(\phi) \frac{d}{dt} \overrightarrow{f_k} + \frac{d}{dt} M(\phi) * \overrightarrow{f_k}$$
$$\overrightarrow{g_o} = M(\phi) \overrightarrow{g_k} = M(\phi) \frac{d}{dt} \overrightarrow{f_k} + (\omega_k - \omega_m) M(\phi) M\left(\frac{\pi}{2}\right) \overrightarrow{f_k}$$

so that, after cancelling $M(\phi)$, the time derivative in the k frame becomes

$$\overline{g_k} = \frac{d}{dt} \overline{f_k} + (\omega_k - \omega_m) M\left(\frac{\pi}{2}\right) \overline{f_k}$$
Note that $\frac{d}{dt} M(\phi) = \frac{d\phi}{dt} \frac{d}{d\phi} M(\phi) = (\omega_k - \omega_m) \frac{d}{d\phi} M(\phi)$ and
$$\frac{d}{d\phi} M(\phi) = \begin{bmatrix} -\sin(\phi) & -\cos(\phi) \\ \cos(\phi) & -\sin(\phi) \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \times \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$= M(\phi) M\left(\frac{\pi}{2}\right)$$

A matter of scale in $3 \Longrightarrow 2$ and $2 \Longrightarrow 3$ phase transformations:

$$\begin{bmatrix} f_d \\ f_q \end{bmatrix} = \kappa \begin{bmatrix} \cos(\phi) & \cos(\phi - \gamma) & \cos(\phi + \gamma) \\ -\sin(\phi) & -\sin(\phi - \gamma) & -\sin(\phi + \gamma) \end{bmatrix} \times \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix} \text{ or }$$

$$f_{dq} = \kappa T f_{abc}$$

Pseudo-inverse conversion:

$$f_{abc} = k_i T^t f_{dq}$$
 where $k_i = \frac{2}{3} \frac{1}{\kappa}$ and $\frac{2}{3} T T^t = U_2$

Quadratic form conversion:

 $f_a^2 + f_b^2 + f_c^2 = k_p (f_d^2 + f_q^2)$ where $k_p = \frac{2}{3} \frac{1}{\kappa^2}$

Magnitude conversion:

$$f_{\alpha} = k_m f_a$$
 where $k_m = \frac{3}{2}\kappa$

Common conventions:

	а	b	С	d
K	2/3	$\sqrt{2/3}$	1	$\sqrt{2}/3$
k_i	1	$\sqrt{2/3}$	2/3	$\sqrt{2}$
k_p	3/2	1	2/3	3
k_m	1	$\sqrt{3/2}$	3/2	$1/\sqrt{2}$

a: Equal magnitude of 2- and 3-phase balanced sinusoidal signals

- b: Equal 2- and 3-phase power (power invariant)
- c: 2-phase amplitude equals 3/2 3-phase amplitude
- d : 2-phase amplitude equals rms of 3-phase signal