# Evolution of Hybrid Vehicle Electric System and its Support Technologies



Kimimori Hamada TOYOTA MOTOR CORPORATION

## <u>Contents</u>

- 1. Toyota Hybrid System-II (THS-II)
- 2. Electric Components in Hybrid system
- **3. HV Inverter Simulation**
- 4. IGBT development
- 5. Conclusion

## 1. Toyota Hybrid System-II (THS-II)



# **Toyota Hybrid System II**



# **Toyota Hybrid System II**

With two-stage motor speed reduction device



APEC 2007 - System Design

28 February 2007 – Anaheim

## **Motor Efficiency**



APEC 2007 - System Design

28 February 2007 – Anaheim



## 2. Electric Components in Hybrid System



### **Electric Circuits and Energy Flow in THS-II**





#### Evolution of Electric Components in Hybrid System



#### Progress of Power Density of PCU



by H. Ohashi in the Journal of the Institute of Electrical Engineers of Japan No.122 (3).

## Internal Structure of PCU for GS450h



- Power semiconductors
- Simulation

Smoothing capacitor

## **3. HV Inverter Simulation**



ΤΟΥΟΤΑ

### **Aims of Simulation Technology**



### **Overall Structure of HV Inverter Simulation**

![](_page_14_Figure_3.jpeg)

Diagram of electro-thermal-mechanical simulation for HV inverter system

28 February 2007 – Anaheim

### **Major Parts of Inverter Simulation**

(1) Electrical model

![](_page_15_Figure_4.jpeg)

ΤΟΥΟΤΑ

![](_page_16_Figure_2.jpeg)

including water-cooling system

### **Verification of HV Inverter Simulation**

![](_page_17_Figure_3.jpeg)

Prediction of IGBT temperature at full-throttle acceleration

## 4. IGBT Development

![](_page_18_Picture_3.jpeg)

### **High-Voltage Electrical System**

![](_page_19_Figure_3.jpeg)

### **Improvement of IGBT Breakdown Voltage**

![](_page_20_Figure_3.jpeg)

General ways to improve breakdown voltage of IGBT

Increase of on-state losses accompanied with improvement in breakdown voltage

### Introduction of Electric Field Dispersion (EFD) Layer

![](_page_21_Figure_3.jpeg)

## **Design and Effect of EFD Layer**

![](_page_22_Figure_3.jpeg)

## **Benchmark of Toyota In-House IGBTs**

![](_page_23_Figure_3.jpeg)

# **Evolution of In-House IGBTs**

| Item                                    | '03 Prius   | '05 RX     | '06 GS     |
|-----------------------------------------|-------------|------------|------------|
| Chip appearance                         |             |            |            |
| Device structure                        | Planar IGBT | EFD IGBT   | EFD IGBT   |
| Chip size (mm <sup>2</sup> )            | 13.7×9.7    | 12.75×9.39 | 12.75×9.39 |
| Chip thickness (um)                     | 380         | 375        | 300        |
| Breakdown voltage (V)                   | 970         | 1200       | 1200       |
| On-state losses<br>(W/cm <sup>2</sup> ) | 265         | 242        | 232        |

## 5. Conclusion

- THS-II realizes dual requirements of fuel efficiency and acceleration performance by employing boost converter and two-stage motor speed reduction device.
- The electrical components of the THS-II are contributing to making the system more compact, and lightweight, and to increasing its power density.
- An HV inverter simulation has been developed as a powerful tool for HV system development.
- Low loss high-breakdown voltage novel IGBTs ,named EFD IGBTs, have been successfully developed for the THS-II.

# Thank you!

![](_page_26_Picture_3.jpeg)