Development of the "New Energy Train -hybrid type-"

Takehito Fujii R&D Center, East Japan Railway Co.

Purpose

- **1. Background of the NE Train project**
- 2. Outline of development
 - 2-1 Concept
 - 2-2 Overview of NE Train
 - 2-3 Energy control system
- **3.** Evaluation test
- 4. Conclusion

Background of the project

DMU Problem

- =A JR East's DMU : 530cars=
- Low energy efficiency
- Pollution and Noise
- High maintenance
- Poor acceleration and deceleration

Purpose • Reduce environmental load of railcars through innovation of propulsion system. 1st step: Hybrid system 2nd step: Fuel cell system

Concept & Target

= Environmental friendliness =

- Energy saving
- Reduction of pollutants and noise

= Conversion to electric railcar technology =

- Labor saving maintenance
- Improvement of driving performance

Body	Stainless	steel (Length:20 m)	
Max. speed		100km/h	
Power unit	 Hybrid type Main controller Main motor Main battery Main generator Engine 	 Series type VVVF inverter (IGBT) Induction motor(120kW × 2) Lithium-ion battery (10kWh) Induction motor(180kW) Diesel engine(330kW/2100rpm) 	
Bogie	Bolsterless Bogie		
Brake system	Electric command air brake system with regenerative braking		

2 types of hybrid system

Requirements demanded of NE Train

- Advance and sternway used equally.
- Adoption of fuel cell system in future.
- Effective use of latest EMU technology.
- Achieve high performance equivalent to EMU.

ne@train new energy train

• Effective use of latest EMU technology and equipments

NOx

PM

	Selection	of	battery	unit
--	-----------	----	---------	------

Canacity			ne@train new energy train
Regeneration energy per 1 stop	1kWh		
5km running by Battery only	3kWh	10kWh	
Optimal operation range	40%)		

Comparison of electricity storage equipment

	Energy density (Wh/kg)	Power density (W/kg)	Life span (cycle)	Cost
Ultra Capacitor	6	500	Infinity	High
Lead Acid Battery	40	300	500	Low
Nickel-Metal Hydride Battery	40 ~ 70	200 ~ 700	1000	Average
Lithium-Ion Battery	30~130	30~1400	1000	High
Flywheel	~ 50	1000~	Infinity	Average

Requirements demanded of system

- = Energy saving =
 - Effective storage of brake generation energy
 Operation of engine at optimal rpm.
- = Reduction of pollutants and noise =
 - Use of battery as power source at station

- **1. Keep the sum of kinetic energy and storage battery energy.**
- **2. Control engine for charging a battery efficiently**

4 energy management zones

Management diagram of energy control system

E: Engine G: Generator C: Converter SIV: Auxiliary power supply I: Inverter B: Battery M: Motor W: Wheel

NE Train test run

Drivers' monitor

• Functionality and basic performance

(a value equivalent to that of electric railcar) Acceleration = 2.3km/h/s at 35km/h Deceleration = 3.6km/h/s Proper coordination of generative and mechanical brake

Energy-saving effects (Target) saving of 20% in energy

compared with diesel railcars (Result) regeneration ratio is 33% *Karasuyama line max

Temperature effects

(Condition) from - 5 degree to 35 degree Basic performance operated satisfactory

Noise reduction at stations

(Target) Engine stop at stations and at a low speed (Result) Engine stop at stations: within 5 minutes; at low speed

Basic performance (Power running & Braking)

Basic performance (Speed control at a downward slope)

Nikko station

Imaichi station

•JR East began the NE Train project and developed a prototype with a hybrid system.

•We adopted a series hybrid system with future potential of conversion to fuel cell system.

•We developed an original "Energy Control System" for the control of the hybrid system.

•Results of the test runs demonstrate hybrid system achieved planned performance.

•Test runs on various routes to be conducted henceforth.