

Design of structures STEEL STRUCTURES

EIFFEL TOWER, PARIS (1889, Worlds Fair)

ORANGERY, SCHÖNBRUNN, VIENNA

STEEL STRUCTURES

CAPITAL GATE, ABU DHABI

CHICAGO

STRUCTURAL MEMBERS OF A SIMPLE HALL CONSTRUCTION 1.

IN PLANE FRAME LOADS

Adventages of steel I. :

high strength to weight ratio (the weight of steel structure will be small) big toughness (steel has both strength and ductility) elasticity big modulus of elasticity (follows Hook's law very accurately) consistent material quality (properties of steel do not change)

Adventages of steel II. :

- □ big ductility
 - (steel can withstand extensive deformation under
 - tensile stresses without failure,
 - warning before failure)
- strength and deformation properties can be
 - controlled within wide limits
- easy formability
 - (malleable, rollable, can be pull, pourable)

Adventages of steel III. :

- easy workability
 - (drillable, can be cut, can be sawn, machinable, weldable,)
- can be use both for pull and pressure
 hihg resistance against beats and repeated stresses

CONCRETE, REINFORCED CONCRETE BRICK, STONE

- □ for same load bearing capacity smaller weight
- lower overall height,
- Iarger span
- due to plastic overplus it better stand the earthquake
- production can be mechanized
- converible, expandable, relocateble
- easy to strengthen
- easy to unbuild and recyclable
- easy to prefabricated, fast to assemble, require little propping

due to action of **rust** in steel (high maintenance cost)

CONCRETE,

BRICK, STONE

average condition 0,1-0,2 mm/year, unfavorable condition 1 mm/year (expensive paints are required to renew time to time)

very small resistance against fire (600-700 C°)

relatively expensive building material (require ecconomic design)

<u>Steel</u>

Steel is an alloy of iron, carbon and other elements.

> It is metallurgical product.

> It is hot rollable, malleable industrial iron alloy.

Usually the slightly alloyes materials with carbon content under 1.7 % are malleable in high temperature so it is considered steel (carbon content is usually under 0.3 %).

Ę

The required properties

- easy formability and workability
- hot malleable, rollable, can be cut, machinable
- be plastic
- high strength (the quality is influenced by the chemical composition)

ALLOYING AND POLLUTER:

Most common chemical elements as polluter:

oxygen, nitrogen, hydrogen, sulfur, phosporus, copper, (too much carbon), (too muvch silicon)
 Most common chemical elements as

alloying:

carbon, manganese, szilicon, nickel, chromium, wolfram, molibdenum, vanadium, titanium

The effect of the carbon content at the steel properties

ROLLED PRODUCTS:

hot rolled products \succ steel bars, \succ wire rods, \succ steel sections, > plates and coils, \succ rolled hollow sections, \succ other rolled sections. cold rolled products

STEEL BARS

produced for further processing (intermediers)

Iong, straight pieces

reinforcing rad (in RC), mechanical raw material, bolts, wires

Megnevezés	Mé	ret	[mm]		
és alak	Le kis	ebb	Leg- nagyobb			
Köracél	ā	9	Б	N ²		
a		7	180			
Négyzetacél	ā)	а			
		5	60			
Hatszögacél	ā	3	а			
a	1	0	4	8		
Laposacél	Ь	h	Ь	h		
b b	10	З	140	50		

More important steel bars [2]

WIRE RODS

>produced for further processing (intermediers)

reinforcing rad (in RC), nail, wire, cable

rolled deliver

Megnevezés	٢	léret	[mn	ן [
és alak	Le kis	ebb	Leg- nagyobb		
Kör keresztmetsze- tű hengerhuzal		а	а		
	5	5,5	15		
Négyzetes hengerhuzal		а	-	9	
		6	1	1	
Lapos hengerhuzal	а	Ь	а	Ь	
	10	4	20	12	

More important wire rods [2]

STEEL SECTIONS

usually designated by the shapes of the cross section

 the traditional cross section types lost their importance after the spread of welding

 wide flange cross sections are wide spread (e.g: HEA400)

Megnevezés	en Si Git Si - Fi tra	dba Hào	day alar	Mére	t[mm]	en sta	eda 635		Szabvány
és alak	Le	gki	set	рр	Le	gna	здус) DD	száma
Egyenlőszárú	а			t	а			†	
	20		3		200	ad log		20	MSZ 328
Egyenlőtlenszárú	а	Ь	,	t	а	t	C	†	Az egyeb ho
	25	4(0	4	4 100 150 14		14	MSZ 329	
U-acél	а		nia	Ъ	а	а		Ъ	A hengereit i
	50		.jej	38	300		ba	100	MSZ 326
I – acél	а			Ь	в			Ъ	sources
	80	1	nre	42	400	aya Nya Nya Nya	elvi iko X	155	MSZ 325
Magasgerincű T–acél	а			t	Б		10	(† 1997) († 1997)	and show area
	20	10		3	75	to vi		8	MSZ 324
Z – acél	а			Ь	Б	id 1		Ь	(gev)odstover
	30			15	60	vén tók	50		MSZ 4311

Traditional steel sections [2]

SECTION **FRADITIONAL I**

I-szelvény MSZ 325—51 Megnevezés:

Pl. a 260 mm magas I-szelvény megnevezése:

I 260 MSZ 325

 S_x a félszelvény statikai nyomatéka az x-xsúlyponti tengelyre. $z=J_x/S_x$ a belső erők karja, a nyomó- és húzófeszültségek eredőinek távolsága.

-		-							w w tongolyre							
			Mére	etek				G		x—2	x tengely	re				
t	h	h ₁	b	v = r	t	<i>r</i> ₁	A	U	J_x	Wx	i _x	Sx	Ζ			
ł			m	m	· and		cm ²	kg/m	cm ⁴	cm ³	cm	cm ³	cm			
ł	80	59	42	3,9	5,9	2,3	7,57	5,94	77,8	19,3	3,20	11,4	6,8			
	100	76	50	4,5	6,8	2,7	10.6	8,34	171	34,2	4,01	19,9	8,5			
	120	92	58	5,1	7,7	3,1	14,2	11,1	328	54,7	4,81	31,8	10,3			
	140	109	66	5,7	8,6	3,4	18,2	14,3	573	81,9	5,61	47,7	12,0			
	160	126	74	6,3	9,5	3,8	22,8	.17,9	935	.117	6,40	68,0	13,7			
	180 200 220	142 159 176	82 90 98	6,9 7,5 8,1 8 7	10,4 11,3 12,2	4,1 4,5 4,9	27,9 33,41 39,5 46 1	21,9 26,2 31,1 36,2	1 450 2 140 3 060 4 250	161 214 278 354	7,20 8,00 8,80 9,59	93,4 125 162 206	15,5 17,2 18,9 20,6			
	240	200	113	9.4	14.1	5.6	53.3	41.9	5 740	442	10,4	257	22,3			
	280 280 300 320 340* 360 380* 400	209 225 242 258 274 290 307 323	113 119 125 131 137 143 149 155	9,4 10,1 10,8 11,5 12,2 13,0 13,7 14,4	15,2 16,2 17,3 18,3 19,5 20,5 21,6	6,1 6,5 6,9 7,3 7,8 8,2 8,6	61,0 69,0 77,7 86,7 97,0 107 118	47,9 54,2 61,0 68,0 76,1 84,0 92,4	7 590 9 800 12 510 15 700 19 610 24 010 29 210	542 653 782 923 1090 1260 1460	11,1 11,9 12,7 13,5 14,2 15,0 15,7	316 381 457 540 638 741 857	24,0 25,7 27,4 29,1 30,7 32,4 34,1			

[4]

		m	ien	irel	<	•			51	atiko	i ad	atok			Construction of the	
IPE	h	b	s mm	t	r mm	h,	A	1,	1V,	i, cm		W,	i,	S,	3,	8
80	8(1)	16	1 8	57	5	KU	161	80 1	20.0	1 71	9 10	1 (0			cm	KN/M
100	100	55	11	57	7	71	10 1	171	14.7	1.07	0,49	5,09	1,05	11.0	6,90	0.060
120	120	64	4.4	63	7	91	11 2	318	53.0	4 90	777	9.65	1.24	19.1	8,08	0.081
140	140	73	4,7	6.9	7	112	16,4	541	77,3	5.74	44.9	12,3	1,65	44.2	10.5	0.129
160	160	82	5.0	7.4	9	127	20.1	869	109	6.58	68.3	16.7	1.84	61.9	14.0	0 158
180	180	91	5.3	8.0	2	146	23.9	1 3 2 0	146	7,42	101	22.2	2.05	83.2	15.8	0.188
200	200	100	5.6	8,5	12	159	28.5	1940	194	8.26	142	28.5	2,24	110	17.6	0.224
220	220	110	5.9	9,2	12	177	13.4	2770	252	9.11	205	37,3	2.48	143	19,4	0.262
240	240	120	6.2	9.8	15	190	19.1	3890	324	9.97	284	47.3	2.69	183	21.2	0 107
270	270	135	6,6	10,2	15	219	15.9	\$ 790	429	11,2	420	62.2	3.02	242	23.9	0.361
300	300	150	7.1	10.7	15	248	\$3,8	8360)	557	12.5	604	80.5	3.35	314	26.6	0.422
330	330	160	7.5	11.5	18	271	12,6	11770	713	13,7	788	98.5	3,55	402	29,3	0.491
360	360	170	8.0	12.7	18	298	12.7	16270	904	15,0	1040	123	3.79	510	31.9	0.571
400	400	180	8.6	13.5	21	331	84.5	23130	1 160	16.5	1 320	146	3,95	654	35.4	0.663
450	450	190	9.4	14,6	21	378	18.8	33740	1 500	18.5	1680	176	4,12	851	39.7	0.776
500	500	200	10,2	16.0	21	426	116	48 200	1930	20,4	2140	214	4,31	1100	43,9	0,907
550	550	210	11.1	17.2	24	467	134	67 120	2440	22,3	2670	254	4,45	1390	48.2	1.06
600	600	220	12.0	19.0	24	514	156	92080	3070	24,3	3 3 90	308	4,66	1760	52,4	1.22

IPE SECTIONS

(managed contracte	-			a ena startikas		Net Mirzogania	-	Contraction of the second	Sea to a los subjects	Iberaphi gangar dalama	a degenetise beneficie des			an the state of th	and the shift of the state	- and a state of the	
100			M	érele	k ·	16.12			K	eresztr	netszet	i jeller	nzök				
IPBI IE-A	ћ mm	b mm	s mm	nm	r nim	h, mm	A cm ²	<i>l</i> ₁ cm ⁴	W, cm'	i, cm	l _a cm ⁴	W, cm ³	/ i, cm	S, cm ³	s, cm	8 kN/m	
100 120	96 114	100 120	5 5	8 8	12 12	56 74	21.2	349 606	72,8 106	4.06 4,89	134 231	26.8 38:5	2,51 3,02	41.5	8,41 10,1	0.167	
140	133	140 160	5,5	8.5 9	12 15	92	31.4	1030 1670	155	5,73 6.57	389	55,0 76,9	3.52	123	13,6	0.304	
180 200	171 190	180 <u>,</u> 200	6.5	9.5	15 18	122 134	45.3 53.8	2 510 3 690	294 389	7,45 8,28	925 1340	.103 134	4,52 4,98	162 215	15.5	0.355	
220 240	210 230	220 240	7 7.5	11 12	18 21	152 164	64.3 76.8	5410 7760	515 675	9.17 10.1	1950 2770	178	5.51 6.00	284 372	19.0 20.9	0.505	
260 280	250 270	260 280	7,5 8	12,5 13	24 24	177 196	H6.8	10 450 13 670	836 1010	11,0 11,9	3670 4760	282 340	6.50 7.00	460 556	22.7	0.682	
300 320	290 310	300 300	8.5 9	14 15.5	27 27	208 225	113 124	18260 22930	1260	12.7	6310 6990	421 466	7,49	692 814	28.2	0.883	
340 360 400	330 350 390	300 300 300	9.5 10 11	16.5 17.5 19	27 27 27	243 261 298	133 143 159	27 690 33 090 45 070	1680 1890 2310	14.4 15.2 16.8	7 4 40 7 8 90 8 5 60	496 526 571	7.46 7.43 7.34	925 1040 1280	29.9 31.7 35.2	1,05 1,12 1,25	+
450	440	300	11.5	21	27	344	178	63720	2900	18.9	9470	631	7.29	1610	39.6	1.40	
550	540 590	300 300	12,5	24 25	27 27	438 486	212 226	111900	4150 4790	23.0	10820	721 751	7.15	2310 2680	48.4 52,8	1,68 1,78	
650 700	610	300	13.5	26	27	534 582	242	175200 215300	5 470 6 2 4 0	26.9	11720 12180	782	6.97	3070 3520	57.1	1.90	y n,
800 900	790 890	300 300	15 16	28 30	30 30	674 770	286 321	103 400 122 100	7 680 9 480	32.6 36.3	12 640 13 550	843 903	6.65 6.50	4350 5410	69.8 78.1	2.24	
1000	990	300	16.5	31	30	868	347	553 800	11190	40.0	14000	934	6,35	6410	86.4	2.72	

WIDE FLANGE I SECTIONS (HEA)

PLATES AND COILS

- > pates are deliver as straight element while coils are deliver rolled
- \succ thickness of plates (t) are beetwen 3 and 60 mm, the width (s) are beetwen 500 and 2500 mm.

Grouping of plates:

thin plate
medium plate
thick plate

 $\begin{array}{ll} t < 3 \mbox{ mm} & s = 10 \mbox{ -140 mm} & (flat steel) \\ t = 3 \mbox{ - 7 mm} & s = 150 \mbox{ - 500 mm} & (wide steel) \\ t > 7 \mbox{ mm} & s = 500 \mbox{ - 2000 mm} & (plate) \end{array}$

Grouping of coils:

narrow coil wide coil s < 60 mm s > 60 mm

OTHER ROLLED SECTIONS

Crane rails [4]

Corrugated sheet

<u>COLD ROLLED CROSS</u> <u>SECTIONS</u>

if special shape cross section
thin gauge cross section

From small carbon content plate bars or from coils (fabrication with cold bending)

Thin gauge sections [2]

Trapezoidal steel sheet [4]

Ielölés	t	A	G	J	W	σ_{H}
Jeroies	mm	cm ² /m	kg/m ²	cm ⁴ /m	cm ³ /m	N/mm ²
DV-1-HT	0,8	13,20	10,36	77,5	25,4	78
	1,0	16,50	12,95	96,9	31,7	95
	1,25	20,63	16,19	121,3	39,6	107
	1,5	24,75	19,43	137,0	44,8	110
DV-2-HT	0,8	13,28	10,42	41,1	17,9	92
	1,0	16,60	13,03	51,4	22,3	106
	1,25	20,75	16,29	64,3	27,9	115
DV-5-HT	0,5	6,75	5,30	2,40	3,38	112
	0,75	10,13	7,95	3,97	5,41	120
	1,0	13,50	10,60	4,84	6,76	120

LINDAB thin gauge C- and Z-elements

C-profile

Z-profile

EUROPEAN HOLLOW SECTIONS

SHS

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

THE YIELD STRENGTH AN TENSILE STRENGTH FOR S STEEL [3]	ID ULTIMATE STRUCTURAL	To to m
t ≤ 40 mm ?		TO TO TO
40 mm ≤ t ≤ 80 mm	?	a to to to
	S 235	
$f_v 2$	S 275	
$\frac{f}{f_u} \approx \frac{1}{3}$	S 355	the second secon

	A sz	erkezeti e vastagság	elem névle ga t [mm]	eges
Acélfajta jele	t ≤ 40) mm	$ \begin{array}{r} 40 \text{ mn} \\ \leq 80 \end{array} $	n <t≤ mm</t≤
orazati (Nenany)	f_y	fu	f_y	fu
EN 10025				
S 235	235	360	215	360
S 275	275	430	255	410
S 355	355	510	335	470
S 450	440	550	410	550
S 275 N/NL	275	390	255	370
S 355 N/NL	355	490	335	470
S 420 N/NL	420	520	390	520
S 460 N/NL	460	540	430	540
S 275 M/ML	275	370	255	360
S 355 M/ML	355	470	335	450
S 420 M/ML	420	520	390	500
S 460 M/ML	460	540	430	530
EN 10210-1				
S 235 H	235	360	215	340
S 275 H	275	430	255	410
S 355 H	355	510	335	490
S275NH/NHL	275	390	255	370
S355NH/NHL	355	490	335	470
EN 10219-1				
S 235 H	235	360		
S 275 H	275	430		× 63
S 355 H	355	510		
S275NH/NHL	275	370		
S355NH/NHL	355	470		

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

SOME CHARACTERISTICS OF STRUCTURAL STEEL :

- modulus of elasticity : 210000 N/mm²
- □ ultimate strain : 18-30 %
- Brinell-hardness number: 1000-2000 N/mm²
 coefficient of thermal
 - expansion (CTE):
- density:

1,2 · 10 ⁻⁵ 1/C° 7850 kg/m³

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

P 01

			C max		Mn	Si	Р	S	Ν	Ali)	Nb	V		CEV	ת max	
ny			%		max	max	max	max	max	max	max	max			%	
ová		névle	eges va	stag-	%	%	%	%	%	%	%	%				
zal		52	ig (mn) > 40									111	244	> 40	2.62
S		≤10	>10 <40	>40									≤10	>10 <40	>40 <63	>03 <150
	6005 ID 00	0.17	0.17	0.20	14		0.045	0.045	0.009				0.35	0.35	0.38	0.38
	5255 JKG2	·,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,20	-,.		0,015	0,010	4) 5)				0,00	0,00	0,00	0,00
	\$235.10	0,17	0,17	0,17	1,4	-	0,040	0,040	0,009				0,35	0,35	0,38	0,38
	3235]0								4) 5)							
ଚ	S275 JR	0,21	0,21	0,22	1,5	-	0,045	0,045	0,009				0,40	0,40	0,42	0,42
93		0.18	0.18	0.18	15	-	0.040	0.040	0.009							
13	S275 J0	0,10	0,10	0,10	-,-		0,010	0,010	4) 5)							
25	S355 JR	0,24	0,24	0,24	1,6	0,55	0,045	0,045	0,009				0,45	0,45	0,47	0,47
10									4) 5)						o	I
Z	S355 J0	0,20	0,20	0,22	1,6	0,55	0,040	0,040	0,009 40.50				0,45	0,45	0,47	0,47
E	C255															
	12G3/G4	0,20	0,20	0,22	1,6	0,55	0,035	0,035	-				0,45	0,45	0,47	0,47
	S355															
	K2G3/G4	0,20	0,20	0,22	1,6	0,55	0,035	0,035	-				0,45	0,45	0,47	0,47
	\$ 355 M	0,16	0,16	0,16	1,6	0,50	0,035	0,030	0,015	0,02	0,05	0,010	0,39	0,39	0,40	0,45
ନ	5 <u>5 5 5 1 1 1</u>		-	-	-		-	-	-			-			-	
93	S 355 ML	0,16	0,16	0,16	1,6	0,50	0,030	0,025	0,015	0,02	0,05	0,010	0,39	0,39	0,40	0,45
15	S 420 M	0,18	0,18	0,18	1,7	0,50	0,035	0,030	0,020	0,02	0,05	0,012	0,43	0,45	-	-
3-3:	3 420 M	-	-	-	-	-	-	-	-		-	-				
113	S 420 ML	0,18	0,18	0,18	1,7	0,50	0,030	0,025	0,020	0,02	0,05	0,012	0,43	0,45	-	-
1 10	S 460 M	0,18	0,18	0,18	1,7	0,60	0,035	0,030	0,025	0,02	0,05	0,012	0,45	0,46	-	-
EN																
	S 460 ML	0,18	0,18	0,18	1,7	0,60	0,030	0,025	0,025	0,02	0,05	0,012	0,45	0,46	-	-

Chemical composition of structural steel [1]

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

□ <u>Stress-strain diagram</u>:

Represent the connection between stress and strain.

tension stress-strain diagram
shear stress-strain diagram
compression stress-strain diagram

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

<u>tension stress-strain diagram in case of structural steel (ductile material)</u>

-Less strength, large strain, steel with good ductile properties (f_u = 300-500 N/mm² ϵ_u ≈ 20 %, c < 0,1-0,4 %)

Stress-strain diagram of structural steel [1]

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

P 01

Stress-strain diagram in case of high strength steel:

-No or short yield sections

 conventional yield point

(the stress which belongs to the 0,2 % residual strain

Stress-strain diagram in case of high strength steel [2]

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

P 01

<u>CHECKING OF</u> <u>STEEL</u> <u>STRUCTURES</u>

DESIGN:

- New structure
- Static system
- Cross-sectional sizes
- Connections
- Customer interest

CHECKING:

- Existing or designed construction
- Verify the rightness of the structural elements and connections

STEEL STRUCTURES

Instructor: Bukovics Ádám PhD

PARCELLING THE STRUCTURE

