
Acta Technica Jaurinensis Vol. 3. No. 1. 2010

65

A Simultaneous Solution for General Linear
Equations on a Ring or Hierarchical Cluster

G. Molnárka, N. Varjasi

“Széchenyi István” University Győr, Hungary, H-9026 Egyetem tér 1.
Phone: +3696503400, fax:
e-mail: varjasin@sze.hu

Abstract: There are several iterative models for solving general, large linear
equations. In this paper a parallel algorithm with slow convergence speed
for studying the speed-up effect of the parallel algorithms has been
presented. The difference between the ring and hierarchical topology
considering running speed and efficiency has also been explored. Detailed
numerical test results of the algorithm including the speedup of parallel
execution are shown.

Keywords: parallel programming, linear equation, cluster computing

1. The minimal residual algorithm
The main goal of this article is to study the speed up effect on a parallel computer using
a parallel algorithm for solving a full rank, general, symmetric, positive definite not
sparse (but dense) linear equation with high condition number
(1000=n , 10102 ⋅=cond ; 5000=n , 13104 ⋅=cond ; 10000=n , 12107 ⋅=cond ;

15000=n , 16105 ⋅=cond), where 1)(−⋅= AAAcond and Euclidean norm was used.

The condition number shows the difficulty of the linear equation. Higher condition
number means the complexity of the problem, in other words the equation gets more
and more difficult with numerical methods.

The solving algorithms of the general b=Ax equation are well known [1] [2] [3]. In
the case of large systems direct algorithms are inefficient. Only iterative methods can be
used that can produce results with the desired precision [4] [10], otherwise the floating
point arithmetic causes several rounding errors.

The base of the presented numerical algorithm for the solution of linear systems of
equations is a generalisation of the classical one-step iterative algorithm (such as the
gradient method). Generalisation will not improve the convergence speed of the
algorithm but it highly improves parallel execution. In a sequential case the base
algorithm [5] [6] has slow convergence speed. The minimal residual algorithm is a
widely known algorithm, but the suggested versions of Algorithm1 and Algorithm2 have
been created by the authors. The results of the parallel realisation of the algorithms and
the measured data are the results of the present research.

Vol. 3. No. 1. 2010 Acta Technica Jaurinensis

66

The suggested algorithms give a good opportunity to study the effects of parallel
processing. If a cluster or a multiprocessor computer is used, one can expect
considerable speed-up effect.

2. Methods for parallelisation on homogeneous and heterogeneous systems
The aim of parallel processing is to break a large problem down to several smaller
components or calculations that can be solved parallelly with different processors at the
same time. The most efficient tools for scientific computations would be massively
parallel computers, with a large shared memory, but this hardware is expensive and
unattainable for the research team. Other solutions can be distributed systems and
cluster computing. A small cluster of 16 PCs with normal network connection and an
interconnected cluster machine with 88 processors (HP BladeSystem C3000) were used.
On the cluster computing model a message passing software (MPI) was used to solve
the tasks.

2.1. Ring and hierarchical topologies

In parallel solutions there are two bottlenecks for optimisation: the communication and
the calculations. These aspects have been studied with two topologies. For linear
equations based on numerical models the ring model is often used [8]. In this case every
node has a connection with the two neighbouring nodes, or other nodes. This solution
works efficiently on homogeneous systems. On this model the heartbeat algorithm is
useful (see Figure 1 a). First it starts an initialization procedure, then a loop starts. In
the first phase of the loop a data sending and receiving mechanism process is
accomplished (synchronization). This is the data exchange period between each
computation node. After that, every node runs the computation algorithm. This is the
“cpu” period of the work. The loop runs until the stopping criteria. In this model every
node has an equivalent role. This model needs a homogeneous network and the same
type of processor because each synchronization step made by the slowest node. Fast
nodes need to wait for them.

Figure 1. Ring (a) and hierarchical (b) topology

In other cases hierarchical topologies are useful [9]. The master-worker model is based
on a distributed and large, heterogeneous cluster (see Fig 1b.). The master node controls

Acta Technica Jaurinensis Vol. 3. No. 1. 2010

67

the running processes, assigns problems to workers and manages the partial solutions.
The role of the worker nodes is to solve smaller parts of the problem. This model works
well with asynchronous methods, too because worker nodes have not connected to each
other. Every worker node can reach the maximum performance of the processors.

2.2. Algorithm 1

For a ring topology the following algorithm has been used:

I. Let P be the number of nodes, let eps be the tolerated error value.

II. Let A be the matrix to be solved and let b be the solution vector.

III. For every node Pp∈ do in parallel: generate 1x random vector.

IV. For every node Pp∈ do in parallel:

 Operation() while a result arrives or converges.

V. The result of solution is 1x on master node.

The algorithm uses the Operation() function on every node:

1. do

2. let 2x be a new random vector

3. let bAx=r −11 and bAx=r −22 , where 021 ≠− rr

4. let
()

2
21

21,2
12 :

rr

rrr
=c

−

−

5. let () 21211212 1: xc+xc=x −

6. let () 21211212 1: rc+rc=r −

7. let 121 : x=x , and 121 : r=r

8. if min<r 2
1 or n>umiterationn

 then send 1x to the next node and wait for a new 2x vector

9. while eps<r 2
1

10. return 1x , the solution with desired precision.

Remarks:

From the vector exchange it is expected that the given result is better, or when the
algorithm reaches a local minimum value this 1x solution is sent to another node, which
continues the computation with a new random number coming from another node (see
Figure 2).

Vol. 3. No. 1. 2010 Acta Technica Jaurinensis

68

In the implementation of the algorithm the Mersenne-twister pseudorandom number
generator has been applied [7] and the independence of iteration sequences is based on
the independent clock of the computing nodes.

Two error measure methods have been used in the algorithm. The first was the general
residual error: 22

1 bAxrerrr −== . When the exact solution of the test case is known

(x’), there is a chance to compute the absolute error value: 2xxerrx ′−= , where x is
the approximate solution vector.

Figure 2. The convergence of Algorithm1 (n = 100)

In the case of large-sized, badly conditioned linear equations these error values are
relatively high numbers (with 1610=cond , 1000=rerr means a close solution as

shown in Figure 4, in detail that means 2xx ′− is ∑
=

′−
n

i
ii xx

1

2 and the error for every

member of the solution vector is approximately 82 10−≈′− ii xx).

If a problem was solved where the correct solution had already been known, and the
residual and absolute error were compared it has to be noted that the absolute error of
the solution is always better than the residual.

The efficiency of the algorithm depends on load balancing: the operation can be
repeated several times with slow convergence speed or the result vector can be
exchanged between nodes to give extra speedup. In this case and referring to Amdahl's
law the ring model has a theoretical maximum number of nodes. If more nodes are used
and the best solution is sent to the next node, the larger ring will increase running time
as the solution waves slowly on to the other nodes.

Acta Technica Jaurinensis Vol. 3. No. 1. 2010

69

Figure 3. The convergence of Algorithm1 (n = 500)

This Algorithm1 works well on a homogeneous cluster (see Figure3). But if there is a
slower or a loaded computer on the ring the send-receive method will be slow and
several traffic jams are expected and running times also grow.

Algorithm1 has been revised and a new, hierarchical model has been composed.

2.3. Algorithm 2

I. Let P be the number of nodes, let eps be the tolerated error value.

II. Let A be the matrix to be solved and let b be the solution vector.

III. The master node generates a random vector 2x and sends for every worker
node.

IV. For every node Pp∈ do in parallel: generate a random vector 1x

V. On master node do Control() while eps<x 2
1

VI. For every worker node Pp∈ do in parallel:

 Operation(x1) while a vector arrives

VII. The result of solution is 1x on master node.

On the worker nodes the Operation() function uses a residual approach like Algorithm1.
The difference is that the operation function sends and receives data from the master
node only.

Vol. 3. No. 1. 2010 Acta Technica Jaurinensis

70

Figure 4. Residual and absolute error of the solution vector

 (n = 15000, P = 88 cpus, log-log scale)

The Control function of the master node distributes and collects data from every worker
node. On the master node the problem is not solved, but the result is presented here. The
master node controls the data exchanges, and presents the best approximate result vector
for every node (see Figure 4). This model is flexible because the number of worker
nodes number can grow dynamically [8].

This model can be used on heterogeneous clusters, too, because the worker nodes are
independent and communicate only with the master node. Every node works on the
master’s best solution.

Figure 5. Convergence speed between topologies (n = 500, P = 16 cpus);

Acta Technica Jaurinensis Vol. 3. No. 1. 2010

71

The difference between the ring and hierarchical algorithm is that the hierarchical
algorithm results in smaller computational time and better convergence. As it can be
seen in Figure 5 the ring solution (solid line) has a minor gradient whereas the
hierarchical solution (dotted line) has a steeper gradient. This is because at the ring
model the corrective effect of a new solution reaches the previous node in P–1 steps,
while in the hierarchical model the corrective effect is achieved in one step. Moreover,
on the ring model we can only take the result of one or two neighbours into
consideration.

Figure 6. The results of working nodes (dotted) and the minimal residual error (solid

line) (n = 10000, P = 88, log-log scale)

The hierarchical model has better convergence features. At every iteration loop the
master node sends the best solution vector for the workers. This adds some genetic
features to the algorithm [5]. If we examine the details on Figure 3 and Figure 4 steps in
the curve can be seen. It has to be noted that in a P-processor master-worker model only
P-1 processors solve the linear equation.

Let us focus now on this hierarchical solution. If the convergence curves are observed it
can be noticed that all of the solutions are similar, and the final solution has always the
same order of error in every case. The differences between the exact values of the errors
are unfortunately caused by the pseudo-random number generator. In this algorithm
only an approximate solution is achieved, not the exact vector.

If the problem is examined from another point of view and the execution time of the
algorithm is recorded, the results shown in Figure 7 are achieved. If more computing
nodes are used the running time is expected to decrease.

Vol. 3. No. 1. 2010 Acta Technica Jaurinensis

72

Figure 7. Time of execution and processor numbers (n = 5000);

In these cases only parallel execution provides results in an acceptable time. At some
points larger than linear relative speed-up can be achieved, as it is shown in Fig 8. But
when the number of processors grows, the effective speedup and efficiency decreases as
the worker nodes report their own solutions and the load of the master node grows.
More precise load balancing can be used, but the size of the problem and the
communication delays prevent further advances. For better results another method has
to be used.

Figure 8. Algortihm2 relative speedup (n = 500)

Acta Technica Jaurinensis Vol. 3. No. 1. 2010

73

3. Results
Above a new type of algorithm for the solution of a linear equation system on
heterogeneous clusters has been presented. The algorithm is based on a residual
minimisation technique with master-worker solutions. The algorithm has some genetic
features because the new, better vectors are made from a group of good vectors as seen
in Figure 8 for extra speed-up.

Computer tests have proved the theoretical results; parallel implementation is much
better than the sequential one. We get a considerable speed-up effect using a parallel
computer.

The goal of creating these algorithms has been basic research but the solution of bad
condition linear equations is a useful method for several practical and realistic
problems. Optimization, finite element methods, control or simulation problems are
often based on large dense linear equations.

We have to note that only the simplest algorithm has been tested. The test with more
effective algorithms will be the subject of a forthcoming work.

4. References
[1] Louis A. Hageman, Davis M. Joung: Applied Iterative Methods, Computer Science

and Applied Mathematics, Academic Press, (1981).
[2] P. G. Ciarlet: Introduction à l’analyse numérique matricielle et à l’optimisation,

MASSON, Paris, (1982).
[3] G. Golub, A. Greenbaum, M. Luskin, eds., Recent Advances is Iterative Methods,

The IMA Volumes in Math. and its Applications Vol.60., Springer Verlag, (1994).
[4] G. Molnárka, N. Varjasi: Parallel algorithm for solution of general linear systems

of equations, Informatika a felsőoktatásban 2005, Debrecen ISBN 963 472 909 6,
pp.176.

[5] G. Molnárka: A scalable parallel algorithm for solving general linear system
equations, 77th GAMM annual meeting 2006, Berlin (2006) pp.441.

[6] N. Varjasi, Parallel Algorithm for linear equations with different network
topologies, Proceedings of International e-Conference on Computer Science
(IeCCS) 2006 in Lecture Series on Computer and Computational Sciences, (2007)
pp. 502-505, Brill Academic Publishers, ISBN 978-90-04-15592-3

[7] M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Trans. on
Modeling and Computer Simulation Vol. 8, No. 1, January (1998) pp. 3-30

[8] A. Basermann, B. Reichel, C. Schelthoff, Preconditioned CG methods for sparse
matrices on massively parallel machines, in Parallel Computing 23. (1997) pp.
381-398

[9] E. J. H. Yero, M. A. A Henriques, Speedup and scalability analysis of Master-
Slave applications on large heterogeneous clusters, in Journal of Parallel and
Distributed Computing 67. (2007) pp. 1155-1167

[10] I. S. Duff, H. A. van der Vorst, Developments and trends in the parallel solution of
linear systems, in Parallel Computing 25. (1999) pp. 1931-1970

Vol. 3. No. 1. 2010 Acta Technica Jaurinensis

74

