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Abstract: There are several iterative models for solving general, large linear 
equations. In this paper a parallel algorithm with slow convergence speed 
for studying the speed-up effect of the parallel algorithms has been 
presented. The difference between the ring and hierarchical topology 
considering running speed and efficiency has also been explored. Detailed 
numerical test results of the algorithm including the speedup of parallel 
execution are shown. 

Keywords: parallel programming, linear equation, cluster computing 

1. The minimal residual algorithm 
The main goal of this article is to study the speed up effect on a parallel computer using 
a parallel algorithm for solving a full rank, general, symmetric, positive definite not 
sparse (but dense) linear equation with high condition number 
( 1000=n , 10102 ⋅=cond ; 5000=n  , 13104 ⋅=cond ; 10000=n  , 12107 ⋅=cond ; 

15000=n  , 16105 ⋅=cond ), where 1)( −⋅= AAAcond and Euclidean norm was used. 

The condition number shows the difficulty of the linear equation. Higher condition 
number means the complexity of the problem, in other words the equation gets more 
and more difficult with numerical methods. 

The solving algorithms of the general b=Ax  equation are well known [1] [2] [3]. In 
the case of large systems direct algorithms are inefficient. Only iterative methods can be 
used that can produce results with the desired precision [4] [10], otherwise the floating 
point arithmetic causes several rounding errors. 

The base of the presented numerical algorithm for the solution of linear systems of 
equations is a generalisation of the classical one-step iterative algorithm (such as the 
gradient method). Generalisation will not improve the convergence speed of the 
algorithm but it highly improves parallel execution. In a sequential case the base 
algorithm [5] [6] has slow convergence speed. The minimal residual algorithm is a 
widely known algorithm, but the suggested versions of Algorithm1 and Algorithm2 have 
been created by the authors. The results of the parallel realisation of the algorithms and 
the measured data are the results of the present research. 
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The suggested algorithms give a good opportunity to study the effects of parallel 
processing. If a cluster or a multiprocessor computer is used, one can expect 
considerable speed-up effect. 

2. Methods for parallelisation on homogeneous and heterogeneous systems 
The aim of parallel processing is to break a large problem down to several smaller 
components or calculations that can be solved parallelly with different processors at the 
same time. The most efficient tools for scientific computations would be massively 
parallel computers, with a large shared memory, but this hardware is expensive and 
unattainable for the research team. Other solutions can be distributed systems and 
cluster computing. A small cluster of 16 PCs with normal network connection and an 
interconnected cluster machine with 88 processors (HP BladeSystem C3000) were used. 
On the cluster computing model a message passing software (MPI) was used to solve 
the tasks. 

2.1. Ring and hierarchical topologies 

In parallel solutions there are two bottlenecks for optimisation: the communication and 
the calculations. These aspects have been studied with two topologies. For linear 
equations based on numerical models the ring model is often used [8]. In this case every 
node has a connection with the two neighbouring nodes, or other nodes. This solution 
works efficiently on homogeneous systems. On this model the heartbeat algorithm is 
useful (see Figure 1 a). First it starts an initialization procedure, then a loop starts. In 
the first phase of the loop a data sending and receiving mechanism process is 
accomplished (synchronization). This is the data exchange period between each 
computation node. After that, every node runs the computation algorithm. This is the 
“cpu” period of the work. The loop runs until the stopping criteria. In this model every 
node has an equivalent role. This model needs a homogeneous network and the same 
type of processor because each synchronization step made by the slowest node. Fast 
nodes need to wait for them. 

Figure 1. Ring (a) and hierarchical (b) topology 

In other cases hierarchical topologies are useful [9]. The master-worker model is based 
on a distributed and large, heterogeneous cluster (see Fig 1b.). The master node controls 
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the running processes, assigns problems to workers and manages the partial solutions. 
The role of the worker nodes is to solve smaller parts of the problem. This model works 
well with asynchronous methods, too because worker nodes have not connected to each 
other. Every worker node can reach the maximum performance of the processors. 

2.2. Algorithm 1 

For a ring topology the following algorithm has been used: 

I. Let P be the number of nodes, let eps be the tolerated error value. 

II. Let A be the matrix to be solved and let b be the solution vector. 

III. For every node Pp∈ do in parallel: generate 1x random vector.  

IV. For every node Pp∈ do in parallel:  

 Operation() while a result arrives or converges. 

V. The result of solution is 1x on master node. 

The algorithm uses the Operation() function on every node: 

1. do 

2.  let 2x be a new random vector 

3.  let bAx=r −11 and bAx=r −22 , where 021 ≠− rr  

4.  let 
( )

2
21

21,2
12 :

rr

rrr
=c

−

−
 

5.  let ( ) 21211212 1: xc+xc=x −  

6.  let ( ) 21211212 1: rc+rc=r −  

7.  let 121 : x=x , and 121 : r=r  

8.  if min<r 2
1  or n>umiterationn  

   then send 1x to the next node and wait for a new 2x vector 

9. while eps<r 2
1  

10. return 1x , the solution with desired precision. 

Remarks: 

From the vector exchange it is expected that the given result is better, or when the 
algorithm reaches a local minimum value this 1x  solution is sent to another node, which 
continues the computation with a new random number coming from another node (see 
Figure 2). 
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In the implementation of the algorithm the Mersenne-twister pseudorandom number 
generator has been applied [7] and the independence of iteration sequences is based on 
the independent clock of the computing nodes.  

Two error measure methods have been used in the algorithm. The first was the general 
residual error: 22

1 bAxrerrr −== . When the exact solution of the test case is known 

(x’), there is a chance to compute the absolute error value: 2xxerrx ′−= , where x is 
the approximate solution vector. 

 
Figure 2. The convergence of Algorithm1 (n = 100) 

In the case of large-sized, badly conditioned linear equations these error values are 
relatively high numbers (with 1610=cond , 1000=rerr  means a close solution as 

shown in Figure 4, in detail that means 2xx ′− is ∑
=

′−
n

i
ii xx

1

2 and the error for every 

member of the solution vector is approximately 82 10−≈′− ii xx ).  

If a problem was solved where the correct solution had already been known, and the 
residual and absolute error were compared it has to be noted that the absolute error of 
the solution is always better than the residual. 

The efficiency of the algorithm depends on load balancing: the operation can be 
repeated several times with slow convergence speed or the result vector can be 
exchanged between nodes to give extra speedup. In this case and referring to Amdahl's 
law the ring model has a theoretical maximum number of nodes. If more nodes are used 
and the best solution is sent to the next node, the larger ring will increase running time 
as the solution waves slowly on to the other nodes.  
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Figure 3. The convergence of Algorithm1 (n = 500) 

This Algorithm1 works well on a homogeneous cluster (see Figure3). But if there is a 
slower or a loaded computer on the ring the send-receive method will be slow and 
several traffic jams are expected and running times also grow. 

Algorithm1 has been revised and a new, hierarchical model has been composed. 

2.3. Algorithm 2 

I. Let P be the number of nodes, let eps be the tolerated error value. 

II. Let A be the matrix to be solved and let b be the solution vector. 

III. The master node generates a random vector 2x and sends for every worker 
node. 

IV. For every node Pp∈ do in parallel: generate a random vector 1x  

V. On master node do Control() while eps<x 2
1  

VI. For every worker node Pp∈ do in parallel:  

 Operation(x1) while a vector arrives 

VII. The result of solution is 1x on master node. 

On the worker nodes the Operation() function uses a residual approach like Algorithm1. 
The difference is that the operation function sends and receives data from the master 
node only. 
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Figure 4. Residual and absolute error of the solution vector 

 (n = 15000, P = 88 cpus, log-log scale)  

The Control function of the master node distributes and collects data from every worker 
node. On the master node the problem is not solved, but the result is presented here. The 
master node controls the data exchanges, and presents the best approximate result vector 
for every node (see Figure 4). This model is flexible because the number of worker 
nodes number can grow dynamically [8]. 

This model can be used on heterogeneous clusters, too, because the worker nodes are 
independent and communicate only with the master node. Every node works on the 
master’s best solution. 

 
Figure 5. Convergence speed between topologies (n = 500, P = 16 cpus);  
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The difference between the ring and hierarchical algorithm is that the hierarchical 
algorithm results in smaller computational time and better convergence. As it can be 
seen in Figure 5 the ring solution (solid line) has a minor gradient whereas the 
hierarchical solution (dotted line) has a steeper gradient. This is because at the ring 
model the corrective effect of a new solution reaches the previous node in P–1 steps, 
while in the hierarchical model the corrective effect is achieved in one step. Moreover, 
on the ring model we can only take the result of one or two neighbours into 
consideration. 

 
Figure 6. The results of working nodes (dotted) and the minimal residual error (solid 

line) (n = 10000, P = 88, log-log scale) 

 

The hierarchical model has better convergence features. At every iteration loop the 
master node sends the best solution vector for the workers. This adds some genetic 
features to the algorithm [5]. If we examine the details on Figure 3 and Figure 4 steps in 
the curve can be seen. It has to be noted that in a P-processor master-worker model only 
P-1 processors solve the linear equation. 

Let us focus now on this hierarchical solution. If the convergence curves are observed it 
can be noticed that all of the solutions are similar, and the final solution has always the 
same order of error in every case. The differences between the exact values of the errors 
are unfortunately caused by the pseudo-random number generator. In this algorithm 
only an approximate solution is achieved, not the exact vector. 

If the problem is examined from another point of view and the execution time of the 
algorithm is recorded, the results shown in Figure 7 are achieved. If more computing 
nodes are used the running time is expected to decrease.  
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Figure 7. Time of execution and processor numbers (n = 5000); 

In these cases only parallel execution provides results in an acceptable time. At some 
points larger than linear relative speed-up can be achieved, as it is shown in Fig 8. But 
when the number of processors grows, the effective speedup and efficiency decreases as 
the worker nodes report their own solutions and the load of the master node grows. 
More precise load balancing can be used, but the size of the problem and the 
communication delays prevent further advances. For better results another method has 
to be used. 

 
Figure 8. Algortihm2 relative speedup (n = 500) 
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3. Results 
Above a new type of algorithm for the solution of a linear equation system on 
heterogeneous clusters has been presented. The algorithm is based on a residual 
minimisation technique with master-worker solutions. The algorithm has some genetic 
features because the new, better vectors are made from a group of good vectors as seen 
in Figure 8 for extra speed-up.  

Computer tests have proved the theoretical results; parallel implementation is much 
better than the sequential one. We get a considerable speed-up effect using a parallel 
computer. 

The goal of creating these algorithms has been basic research but the solution of bad 
condition linear equations is a useful method for several practical and realistic 
problems. Optimization, finite element methods, control or simulation problems are 
often based on large dense linear equations.  

We have to note that only the simplest algorithm has been tested. The test with more 
effective algorithms will be the subject of a forthcoming work. 
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